Bridging the GAP: Towards Approximate Graph Analytics

Anand Padmanabha Iyer*, Aurojit Panda®, Shivaram Venkataraman®,
Mosharaf Chowdhury', Aditya Akella®, Scott Shenker*, Ion Stoica*

*University of California, Berkeley °NYU

ABSTRACT

While there has been a tremendous interest in processing data
that has an underlying graph structure, existing distributed graph
processing systems take several minutes or even hours to execute
popular graph algorithms. However, in several cases, providing
an approximate answer is good enough. Approximate analytics is
seeing considerable attention in big data due to its ability to produce
timely results by trading accuracy, but they do not support graph
analytics. In this paper, we bridge this gap and take a first attempt at
realizing approximate graph analytics. We discuss how traditional
approximate analytics techniques do not carry over to the graph
usecase. Leveraging the characteristics of graph properties and
algorithms, we propose a graph sparsification technique, and a
machine learning based approach to choose the apt amount of
sparsification required to meet a given budget. Our preliminary
evaluations show encouraging results.

1 INTRODUCTION

The recent past has seen a resurgence in the interest in storing
and processing massive amounts of graph-structured data. Several
sources support this fact; for instance, a ranking among databases
revealed that graph databases have grown in popularity by over
500% in the last few years alone [1]. This trend is likely to grow
in the future. Fortunately, big data’s emphasis on the three V’s—
volume, velocity and variety—has made existing systems somewhat
future-proof. A deluge of graph processing systems exist today [11,
13, 14, 16-18, 20-22, 25, 27-29, 31] that can handle large graphs,
some even as large as a trillion edges.

While there are several contributing factors to the renewed pop-
ularity of graph analytics, a major one is the emergence of new
applications and use-cases. Such scenarios range from existing ap-
plications such as social network analytics, recommendations, to
upcoming applications such as industrial Internet and the Internet
of Things (IoT). A common requirement of many of these applica-
tions is the timeliness of the analysis results, a must for actionable
analytics [4]. Unfortunately, existing graph-processing systems, in
their quest to provide exact answers to graph algorithms, take sev-
eral minutes or even hours to provide answers even for moderately
sized graphs. Surprisingly, several of these applications can benefit

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GRADES-NDA’18, June 10-15, 2018, Houston, TX, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5695-4/18/06. .. $15.00
https://doi.org/10.1145/3210259.3210269

TUniversity of Michigan

® University of Wisconsin

from a rough answer. For example, in security contexts, it is useful
to find patterns, but often it is good enough to just a rough estimate
of the number of times the pattern occurs. That is, there is no need
to find the exact number of matches. Existing graph-processing
systems do not support producing such approximate answers.

Approximate analytics is an area that has garnered attention
recently in big data analytics [5, 6, 15], where the goal is to let the
end-user trade-off accuracy for much faster results. Several propos-
als for approximate analytics exist, but the underlying key idea is
to use a small portion of the dataset to compute the results. Some
approximation systems leverage the scheduler, and kill tasks selec-
tively to achieve the desired accuracy or latency budget. However,
all of the approximation systems focus on simple aggregate queries
or analytics and thus do not consider complex, iterative workloads
such as distributed graph processing.

Extending approximate analytics systems to support graph an-
alytics is a challenging task because of the differences in the un-
derlying assumptions. The fundamental assumption of a linear
relationship between the sample size and execution time falls apart
in graph processing. Further, approximation systems rely on sta-
tistical properties of the samples to compose partial results and/or
error characteristics. Finally, these systems store multiple samples
and cherry pick the right amount based on the linearity assumption.
These techniques are difficult to incorporate in distributed graph
processing due to the iterative nature of the algorithms.

In this paper, we explore the feasibility of bringing approximate
analytics to distributed graph processing. Achieving efficient ap-
proximate graph processing faces a number of challenges, including
the question of how to sample graphs and how to pick the right
sampling parameter given a budget (§2). To solve these challenges,
we leverage the recent advancements in spectral sparsification
theory [30] literature. Specifically, we propose a spectral graph
sparsification strategy that reduces the graph size significantly. We
then devise a machine learning based approach to modeling per-
formance and picking the right sparsification parameter (§3). We
are presently implementing our proposed techniques in a system
called GAP (for Graph Analytics by Proximation). Our preliminary
evaluations of GAP has shown encouraging results (§4).

2 BACKGROUND & CHALLENGES

We begin the paper with a brief overview of graph-parallel systems,
approximate analytics and then list the challenges in building a
system for approximate graph analytics.

2.1 Graph Processing Systems

Most existing general purpose graph processing systems allow
end-users to perform graph computations by exposing a graph-
parallel abstraction. The user provides a vertex program which is

https://doi.org/10.1145/3210259.3210269

System PageRank Runtime (s)
PowerGraph [17] 300
GraphX [16] 419
Giraph [7] 596
GraphLab [21] 442

Table 1: Runtimes for pagerank algorithm as reported by popular
graph processing systems used in production.

run repeatedly on each of the vertex (in parallel) by the system.
Interaction between vertices is implemented using either shared
state (e.g., GraphLab [21]) or message passing (e.g., Pregel [23]).
A barrier is usually enforced between each iteration of the vertex
program. PowerGraph [17] introduced the Gather-Apply-Scatter
(GAS) model that captures the conceptual phases of the vertex
program. Many popular open-source frameworks [16, 17] have
incorporated the GAS model.

The bottleneck in distributed graph-parallel processing arises
mainly from the message passing between vertices. In a big data
system, these are implemented as shuffles which are quite expen-
sive. As a result, executing graph algorithms take a non-negligible
amount of time. Table 1 reproduces the reported results from re-
cent graph processing literature for running 20 iterations of page
rank algorithm on a moderately sized graph of 1B edges using 16
machines. We see that the execution time is in the order of several
minutes. The performance numbers worsen significantly as the
input graph becomes larger.

2.2 Approximate Analytics

Approximate analytics is based on the premise that results from
partial execution is often good enough. Systems supporting approx-
imate analytics usually provide bounds on two dimensions—latency
and accuracy—and lets users trade-off one for the other. These sys-
tems have been used successfully for query processing [5], dataflow
jobs and straggler mitigation [6]. To provide this trade-off, they
leverage sampling strategies. The basic observation is that the more
data the system works on, the more accurate the results and vice-
versa. Thus, given a corpus of data, approximation systems save
samples of it using various criteria. Given a latency or accuracy bud-
get, the job of the system is then to pick the right amount of samples
to process and/or drop tasks when desired result is achieved.

2.3 Challenges

While it may seem straightforward to marry approximate analytics
with graph-processing systems, making approximate graph ana-
lytics a reality is far from trivial. A system for approximate graph
analytics faces a number of challenges. First, approximation sys-
tems rely on the fact that there exists a linear relationship between
the amount of data in the sample and the execution time. However,
such linear relationship does not exist in graph processing. While
this could be helpful (i.e., a small reduction in input could lead to a
large reduction in execution time), it also means that sampling could
lead to undesirable outputs. To illustrate this, consider fig. 1, which
shows the result of running connected components on different
random samples of a graph. Surprisingly, the execution time does
not improve at all, rather it even becomes worse when the sample
is small. This is because blind sampling destroys the structure of

Speedup
R

90 80 70 60 50 40 30 20 10
Edges sampled (%)

Figure 1: Sampling randomly leads to undesirable effects. Here, ex-
ecution time (speedup) increases (reduces) with smaller samples.

the graph leading to much longer paths. Thus, simple sampling
strategies employed by existing approximate analytics systems are
not applicable in our setting.

Second, due to this non-linearity, picking the right amount of
samples is difficult. Traditional approximation systems create, store
and precompute query results on samples based on the assumption
that partial results and errors could be composed. However, this
may not hold true in graphs. Thus, precomputing aggregates by
creating and storing samples is not a feasible approach.

Finally, existing approximation systems support only simple
queries, such as aggregates, where computing the error on the
result is intuitive. However, graph algorithms are executed in an
iterative manner and thus estimating error on the output of a graph
algorithm operating on a sampled graph is hard. Theoretical bounds
exist for a few specific algorithms, but to the best of our knowledge,
there are no general guarantees.

3 OUR APPROACH

We now describe our vision and approach for an approximate graph
analytics system. In addition to solving the challenges listed earlier,
we wish to achieve the following goals in our quest towards an
efficient approximate graph analytics solution:

e A large body of graph theoretical work exists in the area of
approximation algorithms. These works propose efficient approx-
imate versions of various graph processing algorithms. We do
not want to depend on such approximate version of any graph
algorithms. In other words, we would like to be approximation
algorithm agnostic. If an approximate version of the algorithm
we support is available, we discuss how to leverage them in §5.

o Similarly, several flavors of distributed graph-processing engines

exist. Some of them offer asynchronous processing mode [17],

while some of them offer the favorable properties of dataflow [16].

We would like to propose techniques that are generic and not

specific to one graph-parallel model.

Finally, existing graph processing systems support varied work-

loads. In this respect, we would like our solution to have low

overhead when it needs to accommodate new workloads.

The overall architecture of our solution GAP is depicted in fig. 2.

It consists of two main components. Leveraging the work in spectral

graph theory, a graph sparsifier is used to reduce the input graph’s

size. Based on the observation that a graph workload’s performance
characteristics is majorly dependent on the input graph [8], a ma-
chine learning (ML) based model is used to learn and predict the

‘ Run A within T sec H Result, Error ‘

Graph Algorithms
)
ET Sparsification Selector
&
...l Models

Figure 2: GAP System Architecture.

amount of sparsification required for a given budget. When an
input graph is provided, we map it to one of the benchmark mod-
els by a simple mapping technique. Our intuition is that since the
number of graph algorithms are limited and graph characteristics
are described by a few variables, ML models are apt at this job. We
discuss these components in detail in the rest of this section.

3.1 Graph Sparsification

The fundamental building block of any approximation system is
sampling. Carrying this over to graphs, a straightforward approach
is to sample edges and vertexes using some criteria. This approach,
commonly referred to as graph sparsification' has been studied
extensively in the literature on graph theory. The main idea in this
body of work is to compute a (much) smaller graph that preserves
crucial properties of the input graph.

While several proposals on the type of sparsifier exists, many of
them are either computationally intensive, or are not amenable to
a distributed implementation (which is the focus of our work)?. As
an initial solution, we developed a simple sparsifier adapted from
the work of Spielman and Teng [30] that is based on vertex degrees.
The sparsifier uses the following probability to decide to keep an
edge between vertex a and b:

davg Xs
min(dg, d;)
where dsy G is the average degree of the graph, d is the out-degree
of vertex a and d! is the in-degree of vertex b and s is a tunable
parameter that controls the level of sparsification.

Intuitively, we would like to drop one of many edges from a
vertex with large degree as opposed to dropping the only edge from
a vertex with low degree. The sparsifier in eq. (1) does exactly this.
The cost of running the sparsifier is negligible. We further reduce
this cost by computing vertex degrees when the graph is first loaded
into the system. One potential problem with the sparsifier is that it
takes decision solely on local information. To reduce the ill effects
of this, we leverage how the algorithm operates. For instance, we
can avoid removing an edge it is in the spanning tree and so on.

1

3.1.1 Estimating Error due to Sparsification. An important task
when using sampling strategies is to estimate the error in the out-
put. In a non-graph setting, error estimation is straightforward.
However, it is unclear how to estimate the error due to sparsifica-
tion on the output of graph algorithms. We take a simple approach
to this problem: we define a few error metrics, and leave the flexi-
bility of defining additional error metrics to the user. In our system,

! Also referred to as graph sketching.
2We are actively investigating several sparsification strategies.

one default error metric is the degree of reordering. This metric is
applicable to algorithms that output a ranking for the vertexes,
for example page rank or triangle count. In these algorithms, we
can define the degree of reordering as the amount of reordering of
the ranking compared to the ground truth. This flexibility exists
because we learn the relation between error and sparsification.

3.2 Picking Sparsification Parameter, s

Once the sparsification strategy is in place, the next question is how
to pick the right sparsification parameter s for a given accuracy
requirement. To the best of our knowledge, theoretical bounds on
error for the graph sparsification in a general setting is an open
problem, hence we develop heuristics to solve this problem. Specif-
ically, we use simple machine learning techniques to learn a model
for the relation between s and performance (latency/error).

3.2.1 Building a Model fors. At the simplest level, one can build
a model for s by running every possible algorithm on a given graph
at varying values of s and then feeding the observed results to a
learning algorithm. However, this requires too much time and effort.
Thus, an approximation system needs a smarter solution.

In GAP, we take a simple approach. We consider a set of stan-
dard graph algorithms. These algorithms are then run on a set of
representative graphs at varying values of s. The objective of this
task is to learn a function H that maps s and the characteristics of
the graph and algorithm to the performance profile. That is, we
would like to learn:

H:(s,a,9) = e/p

where a is the algorithm specific features (if any), g is the graph
specific features and e/p is the error / performance. Since there
is no standard benchmark for distributed graph processing, we
choose the representative set of algorithms and workloads from the
Graph500 benchmark [2]. Our observation (§2.3) indicates that per-
formance profiles are non-linear, hence we pick learning techniques
that can accommodate discontinuity (e.g., random forests).

3.2.2 Accommodating New Workloads. Once models are built,
the final step is to use the model to pick the sparsification pa-
rameter s when the system needs to run a graph algorithm on an
unknown/new graph workload. We do not want to build a model
per workload online (the model building phase is intensive and
hence is typically done offline). Thus, we need to find an existing
model that can operate on the new workload.

For this, we propose a light-weight mechanism®. We randomly
pick a few values of sparsification parameters and run the algorithm
on the new workload in an online fashion. Simultaneously, we use
the models to predict the output. We then pick the model(s) with the
least error. The random values of s could be chosen to complete the
tests within a given time budget. For every new workload, we also
use the results of running analytics as a feedback to our learning
component. This lets us refine and improve our models over time.

4 PRELIMINARY EVALUATION

We are actively working on refining and evaluating our approach by
implementing GAP at this time. We present our early experiences

3We are pursuing better techniques here at the time of writing.

£ 09 9
o 8; AstroPh —+— Wikivote —%— 8 [Speedup ——
e % 06 |- Epinions —&— Facebook —#— o 77 Error B3 <
9 2 05 2 6r <
[o . o
1] o 04 g 5 o
& - < 03 o 4 c
05 AstroPh —+— Wikivote —— g 02 © L i
’ Epinions —&— Facebook —#— s 0.l 4
0 | I S I N N N S N A I | 9 0 E 2
AN O NLONNINL TN ML) NN — o |
c®oho¥oNoYoNoNoc o
o o o o o o o o

Sparsification Parameter

characteristics (e.g., AstroPh and Facebook). of graphs with similar characteristics.

in this section. We chose to build GAPon GraphX [16], but note
that our techniques are not restricted to it. We picked five openly
available graph datasets [3, 9, 10] (with number of edges up to 3.7
billion for the largest graph) based on the characteristics of the
underlying graph, such as the diameter and clustering coefficient.

We evaluate our hypothesis of building a model for sampling
based on the characteristics of the graph in the following way. We
ran two algorithms, page rank and triangle count, on the datasets
with varying values of the sparsification parameter s. We then
recorded the speedup of the algorithm compared to the execution
on the complete graph. We also note the error by evaluating the
degree of reordering (§3) for each value of's.

Figure 3 shows the speedup obtained on triangle count algorithm,
while fig. 4 depicts the error in terms of reordering. We see that even
with a small reduction in input, the system is able to speedup the
execution. As seen in the error characteristics, this speedup does
not come at the expense of large errors. The error remains small for
a wide range of the sparsification parameter. It may be troubling to
see the diminishing returns with increase in sparsification, but this
is due to the use of small datasets and also due to the fact that the
experiment was done on a single machine (GraphX executes the
same way as in a distributed setting but does not incur network
penalties). As the graph grows larger and the computation is spread
across many machines, sparsification reduces the shuffled data, and
we see much larger gains as shown in fig. 5.

A more intriguing question is if our proposed approach is fea-
sible. That is, is it possible to learn a model at all for approximate
analytics? In our dataset, the Facebook and AstroPh datasets share
similarity in the diameter and clustering coefficients. Similarly,
Wikivote and Epinions share similar graph characteristics. More-
over, Facebook and AstroPh are social relationships while Wikivote
and Epinions represent voting/rating relationships. In our results,
we see that the performance and error trends follow the same
observation—-the performance and error curves of the Facebook
and AstroPh datasets exhibit similar trends, the same is true for the
Wikivote and Epinions datasets. Results from our experiments us-
ing page rank algorithm also show similar trends. Thus, we believe
that our approach is feasible.

5 DISCUSSION

We are presently working on improving all areas in our proposal
First, we are investigating better sparsifiers that we could lever-
age, including the possibility of using machine learning techniques

Sparsification Parameter

Sparsification Parameter
Figure 3: In triangle counting, we see similar Figure 4: Error due to sparsification. Like the Figure 5: Larger graph (uk-2007-05 [9, 10] with
trends in performance in graphs with similar speedup, we see similarity in the error profile 3.7B edges) sees better speedup due to the dis-

tributed nature of the execution.

such as deep learning to find such sparsifiers. We plan on making
the sparsifier pluggable to study the feasibility of choosing spar-
sifier on demand. Second, a large body of theoretical work exist
on approximation techniques on specific graph algorithms. If it
is possible to study the performance and error characteristics of
different proposals on the same algorithm, it may be possible to
cherry pick a proposal given a latency/error bound. Third, we are
looking at programming language techniques to evaluate our wild
idea of synthesizing approximate versions given an exact graph pro-
gram. Finally, since real-world graphs are dynamic, an interesting
direction is incremental approximate graph analytics.

6 RELATED WORK

Our work is related to distributed graph processing systems and
approximate analytics systems.

A large number of graph processing systems exist in the liter-
ature. [11, 16, 17, 20, 21, 27-29, 31] focus on iterative analytics on
static graphs. [12, 13, 18, 19, 22, 24-26] focus on analytics on evolv-
ing graphs. None of these systems support approximate analytics.
GraphTau [26], which focuses on evolving graph processing, sup-
ports approximate page rank computations. However, it does not
allow user to specify a budget. Our techniques can be used to bring
approximation to several of these graph processing systems.

Approximate analytics systems have gained much popularity in
the big data analytics community recently, and thus several propos-
als exist. BlinkDB [5] uses stratified sampling to generate samples
and then chooses samples to satisfy the query budget. [6] uses ap-
proximation techniques to mitigate stragglers. ApproxHadoop [15]
enables approximation enabled map-reduce jobs. These systems do
not support graph processing.

7 CONCLUSION

For many graph-processing application scenarios, computing an
approximate answer is good enough. Yet, existing graph processing
frameworks, in an effort to compute the exact answer, take several
minutes or even hours to execute popular graph algorithms. In this
paper, we looked at the problem of approximate graph analytics. We
presented our proposal, which uses a spectral sparsifier to reduce
the size of the graph, and a machine learning model to pick the
right amount of sparsification given a budget. We are currently
building GAP, a system that implements our proposals, and plan
on open-sourcing the system.

ACKNOWLEDGMENTS

We would like to thank the reviewers for their valuable feedback. In
addition to NSF CISE Expeditions Award CCF-1730628, this research
is supported in part by DHS Award HSHQDC-16-3-00083, and gifts
from Alibaba, Amazon Web Services, Ant Financial, CapitalOne,
Ericsson, Facebook, Google, Huawei, Intel, Microsoft, Scotiabank,
Splunk and VMware.

REFERENCES

(1]

[10

[11]

[12]

=
&

[14

[15]

[n. d.]. Graph DBMS increased their popularity by 500% within the last 2 years.
http://db-engines.com/en/blog_post//43. ([n. d.]).

[n. d.]. Graph500 Benchmarks. http://www.graph500.org. ([n. d.]).

[n. d.]. Stanford Large Network Dataset Collection. https://snap.stanford.edu/.
([n.d]).

2016. Graph Data Use-cases.
2016-state-of-the-graph/. (2016).

Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,
and Ion Stoica. 2013. BlinkDB: Queries with Bounded Errors and Bounded
Response Times on Very Large Data. In Proceedings of the 8th ACM European
Conference on Computer Systems (EuroSys '13). ACM, New York, NY, USA, 29-42.
https://doi.org/10.1145/2465351.2465355

Ganesh Ananthanarayanan, Michael Chien-Chun Hung, Xiaoqi Ren, Ion Sto-
ica, Adam Wierman, and Minlan Yu. 2014. GRASS: Trimming Stragglers in
Approximation Analytics.. In NSDI. 289-302.

Apache Giraph. [n. d.]. http://giraph.apache.org. ([n. d.]).

Scott Beamer, Krste Asanovic, and David Patterson. 2015. Locality Exists in Graph
Processing: Workload Characterization on an Ivy Bridge Server. In Proceedings of
the 2015 IEEE International Symposium on Workload Characterization (ISWC ’15).
IEEE Computer Society, Washington, DC, USA, 56-65. https://doi.org/10.1109/
IISWC.2015.12

Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered
Label Propagation: A MultiResolution Coordinate-Free Ordering for Compressing
Social Networks. In Proceedings of the 20th international conference on World Wide
Web. ACM Press.

Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Com-
pression Techniques. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). ACM Press, Manhattan, USA, 595-601.

Aydin Bulug¢ and John R. Gilbert. 2011. The Combinatorial BLAS: design,
implementation, and applications. IJHPCA 25, 4 (2011), 496-509. https:
//doi.org/10.1177/1094342011403516

Zhuhua Cai, Dionysios Logothetis, and Georgos Siganos. 2012. Facilitating
Real-time Graph Mining. In Proceedings of the Fourth International Workshop on
Cloud Data Management (CloudDB ’12). ACM, New York, NY, USA, 1-8. https:
//doi.org/10.1145/2390021.2390023

Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming Wu,
Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. 2012. Kineograph: Taking
the Pulse of a Fast-changing and Connected World. In Proceedings of the 7th ACM
European Conference on Computer Systems (EuroSys '12). ACM, New York, NY,
USA, 85-98. https://doi.org/10.1145/2168836.2168846

Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. 2015. One Trillion Edges: Graph Processing at Facebook-scale.
Proc. VLDB Endow. 8, 12 (Aug. 2015), 1804-1815. https://doi.org/10.14778/2824032.
2824077

Inigo Goiri, Ricardo Bianchini, Santosh Nagarakatte, and Thu D. Nguyen. 2015.
ApproxHadoop: Bringing Approximations to MapReduce Frameworks. In Pro-
ceedings of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’15). ACM, New York,
NY, USA, 383-397. https://doi.org/10.1145/2694344.2694351

https://neo4j.com/resources/

[16]

(17]

[19]

[20

[21

[22

[23

[24

[25]

[27]

[28

[29

@
=

[31

Joseph Gonzalez, Reynold Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed
Dataflow Framework. In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14). USENIX Association, Broomfield, CO. https:
//www.usenix.org/conference/osdil4/technical-sessions/presentation/gonzalez
Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-parallel Computation on Natural Graphs.
In Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation (OSDI’'12). USENIX Association, Berkeley, CA, USA, 17-30. http:
//dLacm.org/citation.cfm?id=2387880.2387883

Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou, Vi-
jayan Prabhakaran, Wenguang Chen, and Enhong Chen. 2014. Chronos: A Graph
Engine for Temporal Graph Analysis. In Proceedings of the Ninth European Con-
ference on Computer Systems (EuroSys ’14). ACM, New York, NY, USA, Article 1,

14 pages. https://doi.org/10.1145/2592798.2592799
Anand Iyer, Li Erran Li, and Ion Stoica. 2015. CellIQ : Real-Time Cellular Network

Analytics at Scale. In Proceedings of the 12th USENIX conference on Networked
Systems Design and Implementation (NSDI'15). USENIX Association, Berkeley,
CA, USA.

Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-Scale
Graph Computation on Just a PC. In Presented as part of the 10th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 12). USENIX, Holly-
wood, CA, 31-46. https://www.usenix.org/conference/osdi12/technical-sessions/
presentation/kyrola

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph M. Hellerstein. 2010. GraphLab: A New Framework For Parallel
Machine Learning.. In UAI Peter Griinwald and Peter Spirtes (Eds.). AUAI Press,
340-349. http://dblp.uni-trier.de/db/conf/uai/uai2010.html#LowGKBGH10

P. Macko, V. J. Marathe, D. W. Margo, and M. L. Seltzer. 2015. LLAMA: Efficient
graph analytics using Large Multiversioned Arrays. In 2015 IEEE 31st International
Conference on Data Engineering. 363-374. https://doi.org/10.1109/ICDE.2015.
7113298

Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-
scale Graph Processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data (SIGMOD °10). ACM, New York, NY, USA,
135-146. https://doi.org/10.1145/1807167.1807184

Microsoft Naiad Team. 2014. GraphLINQ: A graph library for Naiad. http://
bigdataatsve.wordpress.com/2014/05/08/graphling-a- graph-library-for-naiad/.
(2014).

Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martin Abadi. 2013. Naiad: A Timely Dataflow System. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP ’13). ACM,
New York, NY, USA, 439-455. https://doi.org/10.1145/2517349.2522738

Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica. 2016. Time-
evolving graph processing at scale. In Proceedings of the Fourth International
Workshop on Graph Data Management Experiences and Systems. ACM, 5.

Abdul Quamar, Amol Deshpande, and Jimmy Lin. 2016. NScale: Neighborhood-
centric Large-scale Graph Analytics in the Cloud. The VLDB Journal 25, 2 (April
2016), 125-150. https://doi.org/10.1007/s00778-015-0405-2

Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel.
2015. Chaos: Scale-out Graph Processing from Secondary Storage. In Proceedings
of the 25th Symposium on Operating Systems Principles (SOSP ’15). ACM, New
York, NY, USA, 410-424. https://doi.org/10.1145/2815400.2815408

Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-Stream: Edge-
centric Graph Processing Using Streaming Partitions. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles (SOSP °13). ACM, New
York, NY, USA, 472-488. https://doi.org/10.1145/2517349.2522740

Daniel A. Spielman and Shang-Hua Teng. 2008. Spectral Sparsification of Graphs.
CoRR abs/0808.4134 (2008). http://arxiv.org/abs/0808.4134

Guozhang Wang, Wenlei Xie, Alan J Demers, and Johannes Gehrke. 2013. Asyn-
chronous Large-Scale Graph Processing Made Easy.. In CIDR.

http://db-engines.com/en/blog_post//43
http://www.graph500.org
https://snap.stanford.edu/
https://neo4j.com/resources/2016-state-of-the-graph/
https://neo4j.com/resources/2016-state-of-the-graph/
https://doi.org/10.1145/2465351.2465355
http://giraph.apache.org
https://doi.org/10.1109/IISWC.2015.12
https://doi.org/10.1109/IISWC.2015.12
https://doi.org/10.1177/1094342011403516
https://doi.org/10.1177/1094342011403516
https://doi.org/10.1145/2390021.2390023
https://doi.org/10.1145/2390021.2390023
https://doi.org/10.1145/2168836.2168846
https://doi.org/10.14778/2824032.2824077
https://doi.org/10.14778/2824032.2824077
https://doi.org/10.1145/2694344.2694351
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
http://dl.acm.org/citation.cfm?id=2387880.2387883
http://dl.acm.org/citation.cfm?id=2387880.2387883
https://doi.org/10.1145/2592798.2592799
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/kyrola
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/kyrola
http://dblp.uni-trier.de/db/conf/uai/uai2010.html#LowGKBGH10
https://doi.org/10.1109/ICDE.2015.7113298
https://doi.org/10.1109/ICDE.2015.7113298
https://doi.org/10.1145/1807167.1807184
http://bigdataatsvc.wordpress.com/2014/05/08/graphlinq-a-graph-library-for-naiad/
http://bigdataatsvc.wordpress.com/2014/05/08/graphlinq-a-graph-library-for-naiad/
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1007/s00778-015-0405-2
https://doi.org/10.1145/2815400.2815408
https://doi.org/10.1145/2517349.2522740
http://arxiv.org/abs/0808.4134

	Abstract
	1 Introduction
	2 Background & Challenges
	2.1 Graph Processing Systems
	2.2 Approximate Analytics
	2.3 Challenges

	3 Our Approach
	3.1 Graph Sparsification
	3.2 Picking Sparsification Parameter, s

	4 Preliminary Evaluation
	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

