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Abstract
In this paper, we present BlinkDB, a massively parallel, ap-
proximate query engine for running interactive SQL queries
on large volumes of data. BlinkDB allows users to trade-
off query accuracy for response time, enabling interactive
queries over massive data by running queries on data sam-
ples and presenting results annotated with meaningful error
bars. To achieve this, BlinkDB uses two key ideas: (1) an
adaptive optimization framework that builds and maintains
a set of multi-dimensional stratified samples from original
data over time, and (2) a dynamic sample selection strat-
egy that selects an appropriately sized sample based on a
query’s accuracy or response time requirements. We evalu-
ate BlinkDB against the well-known TPC-H benchmarks and
a real-world analytic workload derived from Conviva Inc., a
company that manages video distribution over the Internet.
Our experiments on a 100 node cluster show that BlinkDB

can answer queries on up to 17 TBs of data in less than 2
seconds (over 200× faster than Hive), within an error of 2-
10%.

1. Introduction
Modern data analytics applications involve computing ag-
gregates over a large number of records to roll-up web clicks,
online transactions, content downloads, and other features
along a variety of different dimensions, including demo-
graphics, content type, region, and so on. Traditionally, such
queries have been executed using sequential scans over a
large fraction of a database. Increasingly, new applications
demand near real-time response rates. Examples may in-
clude applications that (i) update ads on a website based on
trends in social networks like Facebook and Twitter, or (ii)
determine the subset of users experiencing poor performance
based on their service provider and/or geographic location.Over the past two decades a large number of approxima-
tion techniques have been proposed, which allow for fast
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processing of large amounts of data by trading result ac-
curacy for response time and space. These techniques in-
clude sampling [10, 14], sketches [12], and on-line aggre-
gation [15]. To illustrate the utility of such techniques, con-
sider the following simple query that computes the average
SessionTime over all users originating in New York:

SELECT AVG(SessionTime)

FROM Sessions

WHERE City = ‘New York’

Suppose the Sessions table contains 100 million tuples
for New York, and cannot fit in memory. In that case, the
above query may take a long time to execute, since disk
reads are expensive, and such a query would need multiple
disk accesses to stream through all the tuples. Suppose we
instead executed the same query on a sample containing only
10, 000 New York tuples, such that the entire sample fits in
memory. This would be orders of magnitude faster, while
still providing an approximate result within a few percent of
the actual value, an accuracy good enough for many practical
purposes. Using sampling theory we could even provide
confidence bounds on the accuracy of the answer [16].

Previously described approximation techniques make dif-
ferent trade-offs between efficiency and the generality of
the queries they support. At one end of the spectrum, ex-
isting sampling and sketch based solutions exhibit low space
and time complexity, but typically make strong assumptions
about the query workload (e.g., they assume they know the
set of tuples accessed by future queries and aggregation
functions used in queries). As an example, if we know all
future queries are on large cities, we could simply maintain
random samples that omit data about smaller cities.

At the other end of the spectrum, systems like online ag-
gregation (OLA) [15] make fewer assumptions about the
query workload, at the expense of highly variable perfor-
mance. Using OLA, the above query will likely finish much
faster for sessions in New York (i.e., the user might be
satisfied with the result accuracy, once the query sees the
first 10, 000 sessions from New York) than for sessions in
Galena, IL, a town with fewer than 4, 000 people. In fact,
for such a small town, OLA may need to read the entire table
to compute a result with satisfactory error bounds.

In this paper, we argue that none of the previous solutions
are a good fit for today’s big data analytics workloads. OLA



provides relatively poor performance for queries on rare tu-
ples, while sampling and sketches make strong assumptions
about the predictability of workloads or substantially limit
the types of queries they can execute.

To this end, we propose BlinkDB, a distributed sampling-
based approximate query processing system that strives to
achieve a better balance between efficiency and generality
for analytics workloads. BlinkDB allows users to pose SQL-
based aggregation queries over stored data, along with re-
sponse time or error bound constraints. As a result, queries
over multiple terabytes of data can be answered in seconds,
accompanied by meaningful error bounds relative to the an-
swer that would be obtained if the query ran on the full
data. In contrast to most existing approximate query solu-
tions (e.g., [10]), BlinkDB supports more general queries
as it makes no assumptions about the attribute values in
the WHERE, GROUP BY, and HAVING clauses, or the distribu-
tion of the values used by aggregation functions. Instead,
BlinkDB only assumes that the sets of columns used by
queries in WHERE, GROUP BY, and HAVING clauses are sta-
ble over time. We call these sets of columns “query column
sets” or QCSs in this paper.

BlinkDB consists of two main modules: (i) Sample Cre-
ation and (ii) Sample Selection. The sample creation mod-
ule creates stratified samples on the most frequently used
QCSs to ensure efficient execution for queries on rare values.
By stratified, we mean that rare subgroups (e.g., Galena,
IL) are over-represented relative to a uniformly random sam-
ple. This ensures that we can answer queries about any sub-
group, regardless of its representation in the underlying data.

We formulate the problem of sample creation as an opti-
mization problem. Given a collection of past QCS and their
historical frequencies, we choose a collection of stratified
samples with total storage costs below some user config-
urable storage threshold. These samples are designed to ef-
ficiently answer queries with the same QCSs as past queries,
and to provide good coverage for future queries over sim-
ilar QCS. If the distribution of QCSs is stable over time,
our approach creates samples that are neither over- nor
under-specialized for the query workload. We show that
in real-world workloads from Facebook Inc. and Conviva
Inc., QCSs do re-occur frequently and that stratified samples
built using historical patterns of QCS usage continue to per-
form well for future queries. This is in contrast to previous
optimization-based sampling systems that assume complete
knowledge of the tuples accessed by queries at optimization
time.

Based on a query’s error/response time constraints, the
sample selection module dynamically picks a sample on
which to run the query. It does so by running the query
on multiple smaller sub-samples (which could potentially be
stratified across a range of dimensions) to quickly estimate
query selectivity and choosing the best sample to satisfy
specified response time and error bounds. It uses an Error-

Latency Profile heuristic to efficiently choose the sample that
will best satisfy the user-specified error or time bounds.

We implemented BlinkDB1 on top of Hive/Hadoop [22]
(as well as Shark [13], an optimized Hive/Hadoop frame-
work that caches input/ intermediate data). Our implementa-
tion requires minimal changes to the underlying query pro-
cessing system. We validate its effectiveness on a 100 node
cluster, using both the TPC-H benchmarks and a real-world
workload derived from Conviva. Our experiments show that
BlinkDB can answer a range of queries within 2 seconds on
17 TB of data within 90-98% accuracy, which is two or-
ders of magnitude faster than running the same queries on
Hive/Hadoop. In summary, we make the following contri-
butions:

• We use a column-set based optimization framework to
compute a set of stratified samples (in contrast to ap-
proaches like AQUA [6] and STRAT [10], which com-
pute only a single sample per table). Our optimization
takes into account: (i) the frequency of rare subgroups in
the data, (ii) the column sets in the past queries, and (iii)
the storage overhead of each sample. (§4)

• We create error-latency profiles (ELPs) for each query
at runtime to estimate its error or response time on each
available sample. This heuristic is then used to select the
most appropriate sample to meet the query’s response
time or accuracy requirements. (§5)

• We show how to integrate our approach into an existing
parallel query processing framework (Hive) with mini-
mal changes. We demonstrate that by combining these
ideas together, BlinkDB provides bounded error and la-
tency for a wide range of real-world SQL queries, and it
is robust to variations in the query workload. (§6)

2. Background
Any sampling based query processor, including BlinkDB,
must decide what types of samples to create. The sample
creation process must make some assumptions about the na-
ture of the future query workload. One common assumption
is that future queries will be similar to historical queries.
While this assumption is broadly justified, it is necessary to
be precise about the meaning of “similarity” when building
a workload model. A model that assumes the wrong kind of
similarity will lead to a system that “over-fits” to past queries
and produces samples that are ineffective at handling future
workloads. This choice of model of past workloads is one
of the key differences between BlinkDB and prior work. In
the rest of this section, we present a taxonomy of workload
models, discuss our approach, and show that it is reasonable
using experimental evidence from a production system.

1 http://blinkdb.org

http://blinkdb.org


2.1 Workload Taxonomy
Offline sample creation, caching, and virtually any other
type of database optimization assumes a target workload that
can be used to predict future queries. Such a model can either
be trained on past data, or based on information provided by
users. This can range from an ad-hoc model, which makes no
assumptions about future queries, to a model which assumes
that all future queries are known a priori. As shown in Fig. 1,
we classify possible approaches into one of four categories:
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Figure 1. Taxonomy of workload models.

1. Predictable Queries: At the most restrictive end of
the spectrum, one can assume that all future queries are
known in advance, and use data structures specially designed
for these queries. Traditional databases use such a model
for lossless synopsis [12] which can provide extremely fast
responses for certain queries, but cannot be used for any
other queries. Prior work in approximate databases has also
proposed using lossy sketches (including wavelets and his-
tograms) [14].

2. Predictable Query Predicates: A slightly more flex-
ible model is one that assumes that the frequencies of group
and filter predicates — both the columns and the values in
WHERE, GROUP BY, and HAVING clauses — do not change
over time. For example, if 5% of past queries include only
the filter WHERE City = ‘New York’ and no other group
or filter predicates, then this model predicts that 5% of future
queries will also include only this filter. Under this model,
it is possible to predict future filter predicates by observing
a prior workload. This model is employed by materialized
views in traditional databases. Approximate databases, such
as STRAT [10] and SciBORQ [21], have similarly relied on
prior queries to determine the tuples that are likely to be used
in future queries, and to create samples containing them.

3. Predictable QCSs: Even greater flexibility is pro-
vided by assuming a model where the frequency of the sets
of columns used for grouping and filtering does not change
over time, but the exact values that are of interest in those
columns are unpredictable. We term the columns used for
grouping and filtering in a query the query column set, or
QCS, for the query. For example, if 5% of prior queries
grouped or filtered on the QCS {City}, this model assumes
that 5% of future queries will also group or filter on this QCS,
though the particular predicate may vary. This model can be
used to decide the columns on which building indices would
optimize data access. Prior work [20] has shown that a sim-
ilar model can be used to improve caching performance in
OLAP systems. AQUA [4], an approximate query database

based on sampling, uses the QCS model. (See §8 for a com-
parison between AQUA and BlinkDB).

4. Unpredictable Queries: Finally, the most general
model assumes that queries are unpredictable. Given this as-
sumption, traditional databases can do little more than just
rely on query optimizers which operate at the level of a sin-
gle query. In approximate databases, this workload model
does not lend itself to any “intelligent” sampling, leaving one
with no choice but to uniformly sample data. This model is
used by On-Line Aggregation (OLA) [15], which relies on
streaming data in random order.

While the unpredictable query model is the most flex-
ible one, it provides little opportunity for an approximate
query processing system to efficiently sample the data. Fur-
thermore, prior work [11, 19] has argued that OLA per-
formance’s on large clusters (the environment on which
BlinkDB is intended to run) falls short. In particular, access-
ing individual rows randomly imposes significant schedul-
ing and communication overheads, while accessing data at
the HDFS block2 level may skew the results.

As a result, we use the model of predictable QCSs. As
we will show, this model provides enough information to
enable efficient pre-computation of samples, and it leads to
samples that generalize well to future workloads in our ex-
periments. Intuitively, such a model also seems to fit in with
the types of exploratory queries that are commonly executed
on large scale analytical clusters. As an example, consider
the operator of a video site who wishes to understand what
types of videos are popular in a given region. Such a study
may require looking at data from thousands of videos and
hundreds of geographic regions. While this study could re-
sult in a very large number of distinct queries, most will use
only two columns, video title and viewer location, for group-
ing and filtering. Next, we present empirical evidence based
on real world query traces from Facebook Inc. and Conviva
Inc. to support our claims.

2.2 Query Patterns in a Production Cluster
To empirically test the validity of the predictable QCS model
we analyze a trace of 18, 096 queries from 30 days of queries
from Conviva and a trace of 69, 438 queries constituting
a random, but representative, fraction of 7 days’ workload
from Facebook to determine the frequency of QCSs.

Fig. 2(a) shows the distribution of QCSs across all queries
for both workloads. Surprisingly, over 90% of queries are
covered by 10% and 20% of unique QCSs in the traces
from Conviva and Facebook respectively. Only 182 unique
QCSs cover all queries in the Conviva trace and 455 unique
QCSs span all the queries in the Facebook trace. Further-
more, if we remove the QCSs that appear in less than 10
queries, we end up with only 108 and 211 QCSs covering
17, 437 queries and 68, 785 queries from Conviva and Face-
book workloads, respectively. This suggests that, for real-

2 Typically, these blocks are 64− 1024 MB in size.
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Figure 2. 2(a) and 2(b) show the distribution and stability of QCSs respectively across all queries in the Conviva and
Facebook traces. 2(c) shows the distribution of join queries with respect to the size of dimension tables.

world production workloads, QCSs represent an excellent
model of future queries.

Fig. 2(b) shows the number of unique QCSs versus the
queries arriving in the system. We define unique QCSs as
QCSs that appear in more than 10 queries. For the Con-
viva trace, after only 6% of queries we already see close to
60% of all QCSs, and after 30% of queries have arrived, we
see almost all QCSs — 100 out of 108. Similarly, for the
Facebook trace, after 12% of queries, we see close to 60%
of all QCSs, and after only 40% queries, we see almost all
QCSs — 190 out of 211. This shows that QCSs are relatively
stable over time, which suggests that the past history is a
good predictor for the future workload.

3. System Overview
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Figure 3. BlinkDB architecture.

Fig. 3 shows the overall architecture of BlinkDB. BlinkDB
extends the Apache Hive framework [22] by adding two ma-
jor components to it: (1) an offline sampling module that
creates and maintains samples over time, and (2) a run-time
sample selection module that creates an Error-Latency Pro-
file (ELP) for queries. To decide on the samples to create, we
use the QCSs that appear in queries (we present a more pre-
cise formulation of this mechanism in §4.) Once this choice
is made, we rely on distributed reservoir sampling3 [23] or
binomial sampling techniques to create a range of uniform
and stratified samples across a number of dimensions.

At run-time, we employ ELP to decide the sample to run
the query. The ELP characterizes the rate at which the error

3 Reservoir sampling is a family of randomized algorithms for creating
fixed-sized random samples from streaming data.

(or response time) decreases (or increases) as the size of the
sample on which the query operates increases. This is used
to select a sample that best satisfies the user’s constraints.
We describe ELP in detail in §5. BlinkDB also augments
the query parser, optimizer, and a number of aggregation
operators to allow queries to specify bounds on error, or
execution time.

3.1 Supported Queries
BlinkDB supports a slightly constrained set of SQL-style

declarative queries, imposing constraints that are similar to
prior work [10]. In particular, BlinkDB can currently provide
approximate results for standard SQL aggregate queries in-
volving COUNT, AVG, SUM and QUANTILE. Queries involv-
ing these operations can be annotated with either an error
bound, or a time constraint. Based on these constraints, the
system selects an appropriate sample, of an appropriate size,
as explained in §5.

As an example, let us consider querying a table
Sessions, with five columns, SessionID, Genre, OS,
City, and URL, to determine the number of sessions in which
users viewed content in the “western” genre, grouped by
OS. The query:

SELECT COUNT(*)

FROM Sessions

WHERE Genre = ‘western’

GROUP BY OS

ERROR WITHIN 10% AT CONFIDENCE 95%

will return the count for each GROUP BY key, with each count
having relative error of at most ±10% at a 95% confidence
level. Alternatively, a query of the form:

SELECT COUNT(*)

FROM Sessions

WHERE Genre = ‘western’

GROUP BY OS

WITHIN 5 SECONDS

will return the most accurate results for each GROUP BY key
in 5 seconds, along with a 95% confidence interval for the
relative error of each result.

While BlinkDB does not currently support arbitrary joins
and nested SQL queries, we find that this is usually not a hin-



drance. This is because any query involving nested queries
or joins can be flattened to run on the underlying data. How-
ever, we do provide support for joins in some settings which
are commonly used in distributed data warehouses. In par-
ticular, BlinkDB can support joining a large, sampled fact
table, with smaller tables that are small enough to fit in the
main memory of any single node in the cluster. This is one
of the most commonly used form of joins in distributed data
warehouses. For instance, Fig. 2(c) shows the distribution of
the size of dimension tables (i.e., all tables except the largest)
across all queries in a week’s trace from Facebook. We ob-
serve that 70% of the queries involve dimension tables that
are less than 100 GB in size. These dimension tables can be
easily cached in the cluster memory, assuming a cluster con-
sisting of hundreds or thousands of nodes, where each node
has at least 32 GB RAM. It would also be straightforward to
extend BlinkDB to deal with foreign key joins between two
sampled tables (or a self join on one sampled table) where
both tables have a stratified sample on the set of columns
used for joins. We are also working on extending our query
model to support more general queries, specifically focusing
on more complicated user defined functions, and on nested
queries.

4. Sample Creation
BlinkDB creates a set of samples to accurately and quickly
answer queries. In this section, we describe the sample cre-
ation process in detail. First, in §4.1, we discuss the creation
of a stratified sample on a given set of columns. We show
how a query’s accuracy and response time depends on the
availability of stratified samples for that query, and evaluate
the storage requirements of our stratified sampling strategy
for various data distributions. Stratified samples are useful,
but carry storage costs, so we can only build a limited num-
ber of them. In §4.2 we formulate and solve an optimization
problem to decide on the sets of columns on which we build
samples.

4.1 Stratified Samples
In this section, we describe our techniques for constructing a
sample to target queries using a given QCS. Table 1 contains
the notation used in the rest of this section.

Queries that do not filter or group data (for example, a
SUM over an entire table) often produce accurate answers
when run on uniform samples. However, uniform sampling
often does not work well for a queries on filtered or grouped
subsets of the table. When members of a particular subset
are rare, a larger sample will be required to produce high-
confidence estimates on that subset. A uniform sample may
not contain any members of the subset at all, leading to a
missing row in the final output of the query. The standard
approach to solving this problem is stratified sampling [16],
which ensures that rare subgroups are sufficiently repre-

Notation Description
T fact (original) table
Q a query
t a time bound for query Q
e an error bound for query Q
n the estimated number of rows that can be

accessed in time t
φ the QCS for Q, a set of columns in T
x a |φ|-tuple of values for a column set φ, for

example (Berkeley, CA) for φ =(City, State)
D(φ) the set of all unique x-values for φ in T
Tx, Sx the rows in T (or a subset S ⊆ T ) having the

values x on φ (φ is implicit)
S(φ,K) stratified sample associated with φ, where

frequency of every group x in φ is capped by K
∆(φ,M) the number of groups in T under φ having

size less than M — a measure of sparsity of T

Table 1. Notation in §4.1

sented. Next, we describe the use of stratified sampling in
BlinkDB.

4.1.1 Optimizing a stratified sample for a single query
First, consider the smaller problem of optimizing a stratified
sample for a single query. We are given a query Q specify-
ing a table T , a QCS φ, and either a response time bound t or
an error bound e. A time bound t determines the maximum
sample size on which we can operate, n; n is also the opti-
mal sample size, since larger samples produce better statisti-
cal results. Similarly, given an error bound e, it is possible to
calculate the minimum sample size that will satisfy the error
bound, and any larger sample would be suboptimal because
it would take longer than necessary. In general n is mono-
tonically increasing in t (or monotonically decreasing in e)
but will also depend on Q and on the resources available in
the cluster to process Q. We will show later in §5 how we
estimate n at runtime using an Error-Latency Profile.

Among the rows in T , letD(φ) be the set of unique values
x on the columns in φ. For each value x there is a set of rows
in T having that value, Tx = {r : r ∈ T and r takes values x
on columns φ}. We will say that there are |D(φ)| “groups”
Tx of rows in T under φ. We would like to compute an
aggregate value for each Tx (for example, a SUM). Since that
is expensive, instead we will choose a sample S ⊆ T with
|S| = n rows. For each group Tx there is a corresponding
sample group Sx ⊆ S that is a subset of Tx, which will be
used instead of Tx to calculate an aggregate. The aggregate
calculation for each Sx will be subject to error that will
depend on its size. The best sampling strategy will minimize
some measure of the expected error of the aggregate across
all the Sx, such as the worst expected error or the average
expected error.

A standard approach is uniform sampling — sampling
n rows from T with equal probability. It is important to
understand why this is an imperfect solution for queries that



compute aggregates on groups. A uniform random sample
allocates a random number of rows to each group. The size
of sample group Sx has a hypergeometric distribution with
n draws, population size |T |, and |Tx| possibilities for the
group to be drawn. The expected size of Sx is n |Tx||T | , which
is proportional to |Tx|. For small |Tx|, there is a chance that
|Sx| is very small or even zero, so the uniform sampling
scheme can miss some groups just by chance. There are 2
things going wrong:

1. The sample size assigned to a group depends on its size
in T . If we care about the error of each aggregate equally,
it is not clear why we should assign more samples to Sx
just because |Tx| is larger.

2. Choosing sample sizes at random introduces the possibil-
ity of missing or severely under-representing groups. The
probability of missing a large group is vanishingly small,
but the probability of missing a small group is substantial.

This problem has been studied before. Briefly, since error
decreases at a decreasing rate as sample size increases, the
best choice simply assigns equal sample size to each groups.
In addition, the assignment of sample sizes is deterministic,
not random. A detailed proof is given by Acharya et al. [4].
This leads to the following algorithm for sample selection:

1. Compute group counts: To each x ∈
x0, ..., x|D(φ)|−1, assign a count, forming a |D(φ)|-
vector of counts N∗n. Compute N∗n as follows: Let
N(n′) = (min(b n′

|D(φ)|c, |Tx0
|),min(b n′

|D(φ)|c, |Tx1
|, ...),

the optimal count-vector for a total sample size n′. Then
choose N∗n = N(max{n′ : ||N(n′)||1 ≤ n}). In words,
our samples cap the count of each group at some value
b n′

|D(φ)|c. In the future we will use the name K for the cap

size b n′

|D(φ)|c.
2. Take samples: For each x, sample N∗nx rows uni-

formly at random without replacement from Tx, forming the
sample Sx. Note that when |Tx| = N∗nx, our sample includes
all the rows of Tx, and there will be no sampling error for
that group.

V(φ) S(φ) 

K K 

φ 

Figure 4. Example of a stratified sample associated with a
set of columns, φ.

The entire sample S(φ,K) is the disjoint union of the
Sx. Since a stratified sample on φ is completely determined
by the group-size cap K, we henceforth denote a sample
by S(φ,K) or simply S when there is no ambiguity. K
determines the size and therefore the statistical properties of
a stratified sample for each group.

For example, consider query Q grouping by QCS φ, and
assume we use S(φ,K) to answer Q. For each value x on

φ, if |Tx| ≤ K, the sample contains all rows from the origi-
nal table, so we can provide an exact answer for this group.
On the other hand, if |Tx| > K, we answer Q based on
K random rows in the original table. For the basic aggre-
gate operators AVG, SUM, COUNT, and QUANTILE, K directly
determines the error of Q’s result. In particular, these aggre-
gate operators have standard error inversely proportional to√
K [16].

4.1.2 Optimizing a set of stratified samples for all
queries sharing a QCS

Now we turn to the question of creating samples for a set
of queries that share a QCS φ but have different values of n.
Recall that n, the number of rows we read to satisfy a query,
will vary according to user-specified error or time bounds. A
WHERE query may also select only a subset of groups, which
allows the system to read more rows for each group that is
actually selected. So in general we want access to a family
of stratified samples (Sn), one for each possible value of n.

Fortunately, there is a simple method that requires main-
taining only a single sample for the whole family (Sn). Ac-
cording to our sampling strategy, for a single value of n,
the size of the sample for each group is deterministic and
is monotonically increasing in n. In addition, it is not neces-
sary that the samples in the family be selected independently.
So given any sample Snmax , for any n ≤ nmax there is an
Sn ⊆ Snmax that is an optimal sample for n in the sense
of the previous section. Our sample storage technique, de-
scribed next, allows such subsets to be identified at runtime.

The rows of stratified sample S(φ,K) are stored sequen-
tially according to the order of columns in φ. Fig. 5(a) shows
an example of storage layout for S(φ,K).Bij denotes a data
block in the underlying file system, e.g., HDFS. Records cor-
responding to consecutive values in φ are stored in the same
block, e.g., B1. If the records corresponding to a popular
value do not all fit in one block, they are spread across sev-
eral contiguous blocks e.g., blocksB41,B42 andB43 contain
rows from Sx. Storing consecutive records contiguously on
the disk significantly improves the execution times or range
of the queries on the set of columns φ.

When Sx is spread over multiple blocks, each block con-
tains a randomly ordered random subset from Sx, and, by
extension, from the original table. This makes it possible to
efficiently run queries on smaller samples. Assume a query
Q, that needs to read n rows in total to satisfy its error
bounds or time execution constraints. Let nx be the num-
ber of rows read from Sx to compute the answer. (Note
nx ≤ max {K, |Tx|} and

∑
x∈D(φ),x selected byQ nx = n.)

Since the rows are distributed randomly among the blocks, it
is enough for Q to read any subset of blocks comprising Sx,
as long as these blocks contain at least nx records. Fig. 5(b)
shows an example where Q reads only blocks B41 and B42,
as these blocks contain enough records to compute the re-
quired answer.



K 

B1 

B21 

B22 

B31 

B32 

B33 

B41 

B42 

B51 

B52 

B6 B7 B8 

B43 

x 

(a)

K 

B1 

B21 

B22 

B31 

B32 

B33 

B51 

B52 

B6 B7 B8 

B43 

K1 
B42 

B41 

x 

(b)
Figure 5. (a) Possible storage layout for stratified sample S(φ,K).

Storage overhead. An important consideration is the over-
head of maintaining these samples, especially for heavy-
tailed distributions with many rare groups. Consider a table
with 1 billion tuples and a column set with a Zipf distribution
with an exponent of 1.5. Then, it turns out that the storage re-
quired by sample S(φ,K) is only 2.4% of the original table
for K = 104, 5.2% for K = 105, and 11.4% for K = 106.

These results are consistent with real-world data from
Conviva Inc., where for K = 105, the overhead incurred
for a sample on popular columns like city, customer, au-
tonomous system number (ASN) is less than 10%.

4.2 Optimization Framework
We now describe the optimization framework to select sub-
sets of columns on which to build sample families. Un-
like prior work which focuses on single-column stratified
samples [9] or on a single multi-dimensional (i.e., multi-
column) stratified sample [4], BlinkDB creates several multi-
dimensional stratified samples. As described above, each
stratified sample can potentially be used at runtime to im-
prove query accuracy and latency, especially when the orig-
inal table contains small groups for a particular column set.
However, each stored sample has a storage cost equal to its
size, and the number of potential samples is exponential in
the number of columns. As a result, we need to be careful in
choosing the set of column-sets on which to build stratified
samples. We formulate the trade-off between storage cost
and query accuracy/performance as an optimization prob-
lem, described next.

4.2.1 Problem Formulation
The optimization problem takes three factors into account in
determining the sets of columns on which stratified samples
should be built: the “sparsity” of the data, workload char-
acteristics, and the storage cost of samples.

Sparsity of the data. A stratified sample on φ is useful when
the original table T contains many small groups under φ.
Consider a QCS φ in table T . Recall that D(φ) denotes
the set of all distinct values on columns φ in rows of T .
We define a “sparsity” function ∆(φ,M) as the number of

groups whose size in T is less than some number M 4:

∆(φ,M) = |{x ∈ D(φ) : |Tx| < M}|

Workload. A stratified sample is only useful when it is
beneficial to actual queries. Under our model for queries,
a query has a QCS qj with some (unknown) probability pj
- that is, QCSs are drawn from a Multinomial (p1, p2, ...)
distribution. The best estimate of pj is simply the frequency
of queries with QCS qj in past queries.

Storage cost. Storage is the main constraint against build-
ing too many stratified samples, and against building strat-
ified samples on large column sets that produce too many
groups. Therefore, we must compute the storage cost of po-
tential samples and constrain total storage. To simplify the
formulation, we assume a single value of K for all samples;
a sample family φ either receives no samples or a full sample
with K elements of Tx for each x ∈ D(φ). |S(φ,K)| is the
storage cost (in rows) of building a stratified sample on a set
of columns φ.

Given these three factors defined above, we now intro-
duce our optimization formulation. Let the overall storage
capacity budget (again in rows) be C. Our goal is to select β
column sets from amongm possible QCSs, say φi1 , · · · , φiβ ,
which can best answer our queries, while satisfying:

β∑
k=1

|S(φik ,K)| ≤ C

Specifically, in BlinkDB, we maximize the following
mixed integer linear program (MILP) in which j indexes
over all queries and i indexes over all possible column sets:

G =
∑
j

pj · yj ·∆(qj ,M) (1)

subject to
m∑
i=1

|S(φi,K)| · zi ≤ C (2)

and

∀ j : yj ≤ max
i:φi⊆qj∪i:φi⊃qj

(zi min 1,
|D(φi)|
|D(qj)|

) (3)

4 Appropriate values for M will be discussed later in this section. Alterna-
tively, one could plug in different notions of sparsity of a distribution in our
formulation.



where 0 ≤ yj ≤ 1 and zi ∈ {0, 1} are variables.
Here, zi is a binary variable determining whether a sam-

ple family should be built or not, i.e., when zi = 1, we build
a sample family on φi; otherwise, when zi = 0, we do not.

The goal function (1) aims to maximize the weighted sum
of the coverage of the QCSs of the queries, qj . If we create
a stratified sample S(φi,K), the coverage of this sample
for qj is defined as the probability that a given value x of
columns qj is also present among the rows of S(φi,K). If
φi ⊇ qj , then qj is covered exactly, but φi ⊂ qj can also be
useful by partially covering qj . At runtime, if no stratified
sample is available that exactly covers a the QCS for a query,
a partially-covering QCS may be used instead. In particular,
the uniform sample is a degenerate case with φi = ∅; it is
useful for many queries but less useful than more targeted
stratified samples.

Since the coverage probability is hard to compute in prac-
tice, in this paper we approximate it by yj , which is deter-
mined by constraint (3). The yj value is in [0, 1], with 0
meaning no coverage, and 1 meaning full coverage. The in-
tuition behind (3) is that when we build a stratified sample
on a subset of columns φi ⊆ qj , i.e. when zi = 1, we have
partially covered qj , too. We compute this coverage as the
ratio of the number of unique values between the two sets,
i.e., |D(φi)|/|D(qj)|. When φi ⊂ qj , this ratio, and the true
coverage value, is at most 1. When φi = qj , the number of
unique values in φi and qj are the same, we are guaranteed
to see all the unique values of qj in the stratified sample over
φi and therefore the coverage will be 1. When φi ⊃ qj , the
coverage is also 1, so we cap the ratio |D(φi)|/|D(qj)| at 1.

Finally, we need to weigh the coverage of each set of
columns by their importance: a set of columns qj is more
important to cover when: (i) it appears in more queries,
which is represented by pj , or (ii) when there are more
small groups under qj , which is represented by ∆(qj ,M).
Thus, the best solution is when we maximize the sum of
pj · yj · ∆(qj ,M) for all QCSs, as captured by our goal
function (1).

The size of this optimization problem increases exponen-
tially with the number of columns in T , which looks worry-
ing. However, it is possible to solve these problems in prac-
tice by applying some simple optimizations, like considering
only column sets that actually occurred in the past queries,
or eliminating column sets that are unrealistically large.

Finally, we must return to two important constants we
have left in our formulation, M and K. In practice we set
M = K = 100000. Our experimental results in §7 show that
the system performs quite well on the datasets we consider
using these parameter values.

5. BlinkDB Runtime
In this section, we provide an overview of query execution
in BlinkDB and present our approach for online sample se-
lection. Given a query Q, the goal is to select one (or more)

sample(s) at run-time that meet the specified time or error
constraints and then compute answers over them. Picking a
sample involves selecting either the uniform sample or one
of the stratified samples (none of which may stratify on ex-
actly the QCS of Q), and then possibly executing the query
on a subset of tuples from the selected sample. The selec-
tion of a sample (i.e., uniform or stratified) depends on the
set of columns in Q’s clauses, the selectivity of its selection
predicates, and the data placement and distribution. In turn,
the size of the sample subset on which we ultimately exe-
cute the query depends on Q’s time/accuracy constraints, its
computation complexity, the physical distribution of data in
the cluster, and available cluster resources (i.e., empty slots)
at runtime.

As with traditional query processing, accurately predict-
ing the selectivity is hard, especially for complex WHERE and
GROUP BY clauses. This problem is compounded by the fact
that the underlying data distribution can change with the ar-
rival of new data. Accurately estimating the query response
time is even harder, especially when the query is executed
in a distributed fashion. This is (in part) due to variations in
machine load, network throughput, as well as a variety of
non-deterministic (sometimes time-dependent) factors that
can cause wide performance fluctuations.

Furthermore, maintaining a large number of samples
(which are cached in memory to different extents), allows
BlinkDB to generate many different query plans for the same
query that may operate on different samples to satisfy the
same error/response time constraints. In order to pick the
best possible plan, BlinkDB’s run-time dynamic sample se-
lection strategy involves executing the query on a small sam-
ple (i.e., a subsample) of data of one or more samples and
gathering statistics about the query’s selectivity, complex-
ity and the underlying distribution of its inputs. Based on
these results and the available resources, BlinkDB extrapo-
lates the response time and relative error with respect to sam-
ple sizes to construct an Error Latency Profile (ELP) of the
query for each sample, assuming different subset sizes. An
ELP is a heuristic that enables quick evaluation of different
query plans in BlinkDB to pick the one that can best satisfy a
query’s error/response time constraints. However, it should
be noted that depending on the distribution of underlying
data and the complexity of the query, such an estimate might
not always be accurate, in which case BlinkDB may need to
read additional data to meet the query’s error/response time
constraints.

In the rest of this section, we detail our approach to query
execution, by first discussing our mechanism for selecting a
set of appropriate samples (§5.1), and then picking an appro-
priate subset size from one of those samples by constructing
the Error Latency Profile for the query (§5.2). Finally, we
discuss how BlinkDB corrects the bias introduced by execut-
ing queries on stratified samples (§5.4).



5.1 Selecting the Sample
Choosing an appropriate sample for a query primarily de-
pends on the set of columns qj that occur in its WHERE and/or
GROUP BY clauses and the physical distribution of data in the
cluster (i.e., disk vs. memory). If BlinkDB finds one or more
stratified samples on a set of columns φi such that qj ⊆ φi,
we simply pick the φi with the smallest number of columns,
and run the query on S(φi,K). However, if there is no strat-
ified sample on a column set that is a superset of qj , we run
Q in parallel on in-memory subsets of all samples currently
maintained by the system. Then, out of these samples we se-
lect those that have a high selectivity as compared to others,
where selectivity is defined as the ratio of (i) the number of
rows selected by Q, to (ii) the number of rows read by Q
(i.e., number of rows in that sample). The intuition behind
this choice is that the response time of Q increases with the
number of rows it reads, while the error decreases with the
number of rows Q’s WHERE/GROUP BY clause selects.

5.2 Selecting the Right Sample/Size
Once a set of samples is decided, BlinkDB needs to select
a particular sample φi and pick an appropriately sized sub-
sample in that sample based on the query’s response time
or error constraints. We accomplish this by constructing an
ELP for the query. The ELP characterizes the rate at which
the error decreases (and the query response time increases)
with increasing sample sizes, and is built simply by running
the query on smaller samples to estimate the selectivity and
project latency and error for larger samples. For a distributed
query, its runtime scales with sample size, with the scaling
rate depending on the exact query structure (JOINS, GROUP

BYs etc.), physical placement of its inputs and the underlying
data distribution [7]. The variation of error (or the variance
of the estimator) primarily depends on the variance of the
underlying data distribution and the actual number of tuples
processed in the sample, which in turn depends on the selec-
tivity of a query’s predicates.

Error Profile: An error profile is created for all queries with
error constraints. If Q specifies an error (e.g., standard devi-
ation) constraint, the BlinkDB error profile tries to predict the
size of the smallest sample that satisfiesQ’s error constraint.
Variance and confidence intervals for aggregate functions are
estimated using standard closed-form formulas from statis-
tics [16]. For all standard SQL aggregates, the variance is
proportional to ∼ 1/n, and thus the standard deviation (or
the statistical error) is proportional to ∼ 1/

√
n, where n is

the number of rows from a sample of size N that match Q’s
filter predicates. Using this notation. the selectivity sq of the
query is the ratio n/N .

Let ni,m be the number of rows selected by Q when run-
ning on a subset m of the stratified sample, S(φi,K). Fur-
thermore, BlinkDB estimates the query selectivity sq , sample
variance Sn (for AVG/SUM) and the input data distribution
f (for Quantiles) by running the query on a number of

small sample subsets. Using these parameter estimates, we
calculate the number of rows n = ni,m required to meet Q’s
error constraints using standard closed form statistical error
estimates [16]. Then, we run Q on S(φi,K) until it reads n
rows.

Latency Profile: Similarly, a latency profile is created for
all queries with response time constraints. If Q specifies
a response time constraint, we select the sample on which
to run Q the same way as above. Again, let S(φi,K) be
the selected sample, and let n be the maximum number of
rows that Q can read without exceeding its response time
constraint. Then we simply run Q until reading n rows from
S(φi,K).

The value of n depends on the physical placement of in-
put data (disk vs. memory), the query structure and complex-
ity, and the degree of parallelism (or the resources available
to the query). As a simplification, BlinkDB simply predicts n
by assuming that latency scales linearly with input size, as is
commonly observed with a majority of I/O bounded queries
in parallel distributed execution environments [8, 26]. To
avoid non-linearities that may arise when running on very
small in-memory samples, BlinkDB runs a few smaller sam-
ples until performance seems to grow linearly and then esti-
mates the appropriate linear scaling constants (i.e., data pro-
cessing rate(s), disk/memory I/O rates etc.) for the model.

5.3 An Example
As an illustrative example consider a query which calculates
average session time for “Galena, IL”. For the purposes of
this example, the system has three stratified samples, one
biased on date and country, one biased on date and the
designated media area for a video, and the last one biased
on date and ended flag. In this case it is not obvious which
of these three samples would be preferable for answering the
query.

In this case, BlinkDB constructs an ELP for each of these
samples as shown in Figure 6. For many queries it is possible
that all of the samples can satisfy specified time or error
bounds. For instance all three of the samples in our example
can be used to answer this query with an error bound of
under 4%. However it is clear from the ELP that the sample
biased on date and ended flag would take the shortest
time to find an answer within the required error bounds
(perhaps because the data for this sample is cached), and
BlinkDB would hence execute the query on that sample.

5.4 Bias Correction
Running a query on a non-uniform sample introduces a cer-
tain amount of statistical bias in the final result since dif-
ferent groups are picked at different frequencies. In particu-
lar while all the tuples matching a rare subgroup would be
included in the sample, more popular subgroups will only
have a small fraction of values represented. To correct for
this bias, BlinkDB keeps track of the effective sampling rate
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(b) dt, dma
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(c) dt, ended flag

Figure 6. Error Latency Profiles for a variety of samples when executing a query to calculate average session time in Galena.
(a) Shows the ELP for a sample biased on date and country, (b) is the ELP for a sample biased on date and designated
media area (dma), and (c) is the ELP for a sample biased on date and the ended flag.
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Figure 7. BlinkDB’s Implementation Stack

for each group associated with each sample in a hidden col-
umn as part of the sample table schema, and uses this to
weight different subgroups to produce an unbiased result.

6. Implementation
Fig. 7 describes the entire BlinkDB ecosystem. BlinkDB is
built on top of the Hive Query Engine [22], supports both
Hadoop MapReduce [2] and Spark [25] (via Shark [13]) at
the execution layer and uses the Hadoop Distributed File
System [1] at the storage layer.

Our implementation required changes in a few key com-
ponents. We add a shim layer to the HiveQL parser to han-
dle the BlinkDB Query Interface, which enables queries with
response time and error bounds. Furthermore, the query in-
terface can detect data input, triggering the Sample Creation
and Maintenance module, which creates or updates the set of
random and multi-dimensional samples as described in §4.
We further extend the HiveQL parser to implement a Sam-
ple Selection module that re-writes the query and iteratively
assigns it an appropriately sized uniform or stratified sample
as described in §5. We also add an Uncertainty Propagation
module to modify all pre-existing aggregation functions with
statistical closed forms to return errors bars and confidence
intervals in addition to the result.

One concern with BlinkDB is that multiple queries might
use the same sample, inducing correlation among the an-
swers to those queries. For example, if by chance a sample
has a higher-than-expected average value of an aggregation
column, then two queries that use that sample and aggre-
gate on that column will both return high answers. This may
introduce subtle inaccuracies in analysis based on multiple
queries. By contrast, in a system that creates a new sample

for each query, a high answer for the first query is not predic-
tive of a high answer for the second. However, as we have
already discussed in §2, precomputing samples is essential
for performance in a distributed setting. We address correla-
tion among query results by periodically replacing the set of
samples used. BlinkDB runs a low priority background task
which periodically (typically, daily) samples from the orig-
inal data, creating new samples which are then used by the
system.

An additional concern is that the workload might change
over time, and the sample types we compute are no longer
“optimal”. To alleviate this concern, BlinkDB keeps track of
statistical properties of the underlying data (e.g., variance
and percentiles) and periodically runs the sample creation
module described in §4 to re-compute these properties and
decide whether the set of samples needs to be changed. To
reduce the churn caused due to this process, an operator can
set a parameter to control the percentage of sample that can
be changed at any single time.

In BlinkDB, uniform samples are generally created in a
few hundred seconds. This is because the time taken to create
them only depends on the disk/memory bandwidth and the
degree of parallelism. On the other hand, creating stratified
samples on a set of columns takes anywhere between a
5 − 30 minutes depending on the number of unique values
to stratify on, which decides the number of reducers and the
amount of data shuffled.

7. Evaluation
In this section, we evaluate BlinkDB’s performance on a 100
node EC2 cluster using a workload from Conviva Inc. and
the well-known TPC-H benchmark [3]. First, we compare
BlinkDB to query execution on full-sized datasets to demon-
strate how even a small trade-off in the accuracy of final
answers can result in orders-of-magnitude improvements in
query response times. Second, we evaluate the accuracy and
convergence properties of our optimal multi-dimensional
stratified-sampling approach against both random sampling
and single-column stratified-sampling approaches. Third,
we evaluate the effectiveness of our cost models and er-
ror projections at meeting the user’s accuracy/response time
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Figure 8. 8(a) and 8(b) show the relative sizes of the set of stratified sample(s) created for 50%, 100% and 200% storage
budget on Conviva and TPC-H workloads respectively. 8(c) compares the response times (in log scale) incurred by Hive (on
Hadoop), Shark (Hive on Spark) – both with and without input data caching, and BlinkDB, on simple aggregation.

requirements. Finally, we demonstrate BlinkDB’s ability to
scale gracefully with increasing cluster size.

7.1 Evaluation Setting
The Conviva and the TPC-H datasets were 17 TB and 1 TB
(i.e., a scale factor of 1000) in size, respectively, and were
both stored across 100 Amazon EC2 extra large instances
(each with 8 CPU cores (2.66 GHz), 68.4 GB of RAM, and
800 GB of disk). The cluster was configured to utilize 75
TB of distributed disk storage and 6 TB of distributed RAM
cache.

Conviva Workload. The Conviva data represents informa-
tion about video streams viewed by Internet users. We use
query traces from their SQL-based ad-hoc querying system
which is used for problem diagnosis and data analytics on a
log of media accesses by Conviva users. These access logs
are 1.7 TB in size and constitute a small fraction of data
collected across 30 days. Based on their underlying data dis-
tribution, we generated a 17 TB dataset for our experiments
and partitioned it across 100 nodes. The data consists of a
single large fact table with 104 columns, such as customer
ID, city, media URL, genre, date, time, user

OS, browser type, request response time, etc.
The 17 TB dataset has about 5.5 billion rows and shares all
the key characteristics of real-world production workloads
observed at Facebook Inc. and Microsoft Corp. [7].

The raw query log consists of 19, 296 queries, from which
we selected different subsets for each of our experiments.
We ran our optimization function on a sample of about 200
queries representing 42 query column sets. We repeated the
experiments with different storage budgets for the stratified
samples– 50%, 100%, and 200%. A storage budget of x%
indicates that the cumulative size of all the samples will not
exceed x

100 times the original data. So, for example, a budget
of 100% indicates that the total size of all the samples should
be less than or equal to the original data. Fig. 8(a) shows
the set of samples that were selected by our optimization
problem for the storage budgets of 50%, 100% and 200%
respectively, along with their cumulative storage costs. Note
that each stratified sample has a different size due to variable
number of distinct keys in the table. For these samples, the
value of K for stratified sampling is set to 100, 000.

TPC-H Workload. We also ran a smaller number of exper-
iments using the TPC-H workload to demonstrate the gener-
ality of our results, with respect to a standard benchmark. All
the TPC-H experiments ran on the same 100 node cluster, on
1 TB of data (i.e., a scale factor of 1000). The 22 benchmark
queries in TPC-H were mapped to 6 unique query column
sets. Fig. 8(b) shows the set of sample selected by our opti-
mization problem for the storage budgets of 50%, 100% and
200%, along with their cumulative storage costs. Unless oth-
erwise specified, all the experiments in this paper are done
with a 50% additional storage budget (i.e., samples could use
additional storage of up to 50% of the original data size).

7.2 BlinkDB vs. No Sampling
We first compare the performance of BlinkDB versus frame-
works that execute queries on complete data. In this exper-
iment, we ran on two subsets of the Conviva data, with 7.5
TB and 2.5 TB respectively, spread across 100 machines. We
chose these two subsets to demonstrate some key aspects of
the interaction between data-parallel frameworks and mod-
ern clusters with high-memory servers. While the smaller
2.5 TB dataset can be be completely cached in memory,
datasets larger than 6 TB in size have to be (at least partially)
spilled to disk. To demonstrate the significance of sampling
even for the simplest analytical queries, we ran a simple
query that computed average of user session times with
a filtering predicate on the date column (dt) and a GROUP

BY on the city column. We compared the response time of
the full (accurate) execution of this query on Hive [22] on
Hadoop MapReduce [2], Hive on Spark (called Shark [13])
– both with and without caching, against its (approximate)
execution on BlinkDB with a 1% error bound for each GROUP

BY key at 95% confidence. We ran this query on both data
sizes (i.e., corresponding to 5 and 15 days worth of logs, re-
spectively) on the aforementioned 100-node cluster. We re-
peated each query 10 times, and report the average response
time in Figure 8(c). Note that the Y axis is log scale. In all
cases, BlinkDB significantly outperforms its counterparts (by
a factor of 10 − 200×), because it is able to read far less
data to compute a fairly accurate answer. For both data sizes,
BlinkDB returned the answers in a few seconds as compared
to thousands of seconds for others. In the 2.5 TB run, Shark’s



caching capabilities help considerably, bringing the query
runtime down to about 112 seconds. However, with 7.5 TB
of data, a considerable portion of data is spilled to disk and
the overall query response time is considerably longer.

7.3 Multi-Dimensional Stratified Sampling
Next, we ran a set of experiments to evaluate the er-
ror (§7.3.1) and convergence (§7.3.2) properties of our opti-
mal multi-dimensional stratified-sampling approach against
both simple random sampling, and one-dimensional strati-
fied sampling (i.e., stratified samples over a single column).
For these experiments we constructed three sets of samples
on both Conviva and TPC-H data with a 50% storage con-
straint:

1. Uniform Samples. A sample containing 50% of the
entire data, chosen uniformly at random.

2. Single-Dimensional Stratified Samples. The column
to stratify on was chosen using the same optimization frame-
work, restricted so a sample is stratified on exactly 1 column.

3. Multi-Dimensional Stratified Samples. The sets of
columns to stratify on were chosen using BlinkDB’s opti-
mization framework (§4.2), restricted so that samples could
be stratified on no more than 3 columns (considering four
or more column combinations caused our optimizer to take
more than a minute to complete).

7.3.1 Error Properties
In order to illustrate the advantages of our multi-dimensional
stratified sampling strategy, we compared the average statis-
tical error at 95% confidence while running a query for 10
seconds over the three sets of samples, all of which were
constrained to be of the same size.

For our evaluation using Conviva’s data we used a set of
40 of the most popular queries (with 5 unique QCSs) and 17
TB of uncompressed data on 100 nodes. We ran a similar
set of experiments on the standard TPC-H queries (with 6
unique QCSs). The queries we chose were on the lineitem
table, and were modified to conform with HiveQL syntax.

In Figures 9(a), and 9(b), we report the average statisti-
cal error in the results of each of these queries when they
ran on the aforementioned sets of samples. The queries are
binned according to the set(s) of columns in their GROUP BY,
WHERE and HAVING clauses (i.e., their QCSs) and the num-
bers in brackets indicate the number of queries which lie
in each bin. Based on the storage constraints, BlinkDB’s op-
timization framework had samples stratified on QCS1 and
QCS2 for Conviva data and samples stratified on QCS1,
QCS2 and QCS4 for TPC-H data. For common QCSs,
multi-dimensional samples produce smaller statistical errors
than either one-dimensional or random samples. The opti-
mization framework attempts to minimize expected error,
rather than per-query errors, and therefore for some spe-
cific QCS single-dimensional stratified samples behave bet-
ter than multi-dimensional samples. Overall, however, our

optimization framework significantly improves performance
versus single column samples.

7.3.2 Convergence Properties
We also ran experiments to demonstrate the convergence
properties of multi-dimensional stratified samples used by
BlinkDB. We use the same set of three samples as §7.3, taken
over 17 TB of Conviva data. Over this data, we ran multiple
queries to calculate average session time

For a particular ISP’s customers in 5 US Cities and deter-
mined the latency for achieving a particular error bound with
95% confidence. Results from this experiment (Figure 9(c))
show that error bars from running queries over multi-
dimensional samples converge orders-of-magnitude faster
than random sampling (i.e., Hadoop Online [11, 19]), and
are significantly faster to converge than single-dimensional
stratified samples.

7.4 Time/Accuracy Guarantees
In this set of experiments, we evaluate BlinkDB’s effective-
ness at meeting different time/error bounds requested by the
user. To test time-bounded queries, we picked a sample of
20 Conviva queries, and ran each of them 10 times, with a
maximum time bound from 1 to 10 seconds. Figure 10(a)
shows the results run on the same 17 TB data set, where
each bar represents the minimum, maximum and average re-
sponse times of the 20 queries, averaged over 10 runs. From
these results we can see that BlinkDB is able to accurately
select a sample to satisfy a target response time.

Figure 10(b) shows results from the same set of queries,
also on the 17 TB data set, evaluating our ability to meet
specified error constraints. In this case, we varied the re-
quested maximum error bound from 2% to 32% . The bars
again represent the minimum, maximum and average errors
across different runs of the queries. Note that the measured
error is almost always at or less than the requested error.
However, as we increase the error bound, the measured error
becomes closer to the bound. This is because at higher er-
ror rates the sample size is quite small and error bounds are
wider.

7.5 Scaling Up
Finally, in order to evaluate the scalability properties of
BlinkDB as a function of cluster size, we created 2 differ-
ent sets of query workload suites consisting of 40 unique
Conviva queries each. The first set (marked as selective)
consists of highly selective queries – i.e., those queries that
only operate on a small fraction of input data. These queries
occur frequently in production workloads and consist of one
or more highly selective WHERE clauses. The second set
(marked as bulk) consists of those queries that are intended
to crunch huge amounts of data. While the former set’s in-
put is generally striped across a small number of machines,
the latter set of queries generally runs on data stored on a
large number of machines, incurring a higher communica-
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Figure 9. 9(a) and 9(b) compare the average statistical error per QCS when running a query with fixed time budget of 10
seconds for various sets of samples. 9(c) compares the rates of error convergence with respect to time for various sets of
samples.
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Figure 10. 10(a) and 10(b) plot the actual vs. requested maximum response time and error bounds in BlinkDB. 10(c) plots the
query latency across 2 different query workloads (with cached and non-cached samples) as a function of cluster size

tion cost. Figure 10(c) plots the query latency for each of
these workloads as a function of cluster size. Each query op-
erates on 100n GB of data (where n is the cluster size). So
for a 10 node cluster, each query operates on 1 TB of data
and for a 100 node cluster each query operates on around
10 TB of data. Further, for each workload suite, we evaluate
the query latency for the case when the required samples are
completely cached in RAM or when they are stored entirely
on disk. Since in reality any sample will likely partially re-
side both on disk and in memory these results indicate the
min/max latency bounds for any query.

8. Related Work
Prior work on interactive parallel query processing frame-
works has broadly relied on two different sets of ideas.

One set of related work has focused on using additional
resources (i.e., memory or CPU) to decrease query pro-
cessing time. Examples include Spark [25], Dremel [17]
and Shark [13]. While these systems deliver low-latency re-
sponse times when each node has to process a relatively
small amount of data (e.g., when the data can fit in the
aggregate memory of the cluster), they become slower as
the data grows unless new resources are constantly being
added in proportion. Additionally, a significant portion of
query execution time in these systems involves shuffling or
re-partitioning massive amounts of data over the network,
which is often a bottleneck for queries. By using samples,
BlinkDB is able to scale better as the quantity of data grows.
Additionally, being built on Spark, BlinkDB is able to effec-
tively leverage the benefits provided by these systems while
using limited resources.

Another line of work has focused on providing approxi-
mate answers with low latency, particularly in database sys-
tems. Approximate Query Processing (AQP) for decision
support in relational databases has been the subject of ex-
tensive research, and can either use samples, or other non-
sampling based approaches, which we describe below.

Sampling Approaches. There has been substantial work
on using sampling to provide approximate responses, includ-
ing work on stratified sampling techniques similar to ours
(see [14] for an overview). Especially relevant are:

1. STRAT [10] builds a single stratified sample, while
BlinkDB employs different biased samples. However, the
more fundamental difference is in the assumptions and goals
of the two systems. STRAT tries to minimize the expected
relative error of the queries, for which it has to make stronger
assumptions about the future queries. Specifically, STRAT
assumes that fundamental regions (FRs) of future queries are
identical to the FRs of past queries, where FR of a query is
the exact set of tuples accessed by that query. Unfortunately,
in many domains including those discussed in this paper, this
assumption does not hold, since even queries with slightly
different constants can have different FRs and thus, having
seen one of them does not imply that STRAT can minimize
the error for the other. In contrast, BlinkDB relies on the
weaker assumption that the set of columns that have co-
appeared in the past are likely to co-appear in the future too.
Thus, instead of directly minimizing the error (which would
be impossible without assuming perfect knowledge of future
queries), BlinkDB focuses on maximizing the coverage of
those column-sets, which as shown in §2, is much more
suitable to ad-hoc workloads.



2. SciBORQ [21] is a data-analytics framework designed
for scientific workloads, which uses special structures, called
impressions. Impressions are biased samples where tuples
are picked based on past query results. SciBORQ targets
exploratory scientific analysis. In contrast to BlinkDB, Sci-
BORQ only supports time-based constraints. SciBORQ also
does not provide any guarantees on the error margin.

3. Babcock et al. [9] also describe a stratified sampling
technique where biased samples are built on a single column,
in contrast to our multi-column approach. In their approach,
queries are executed on all biased samples whose biased
column is present in the query and the union of results is
returned as the final answer. Instead, BlinkDB runs on a
single sample, chosen based on the current query.

4. AQUA [4, 6] creates a single stratified sample for a
given table based on the union of the set(s) of columns that
occur in the GROUP BY or HAVING clauses of all the queries
on that table. The number of tuples in each stratum are then
decided according to a weighting function that considers the
sizes of groups of all subsets of the grouping attributes. This
implies that for g grouping attributes, AQUA considers all 2g

combinations, which can be prohibitive for large values of g
(e.g., in our workloads g exceeds 10). In contrast, BlinkDB
considers only a small subset of these combinations by tak-
ing the data distribution and the past QCSs into account, at
the expense of a higher storage overhead. In addition, AQUA
always operates on the full sample, limiting the user’s abil-
ity to specify a time or an error bound for a query. BlinkDB
supports such bounds by maintaining multiple samples and
employing a run-time sample selection module to select the
appropriate sample type and size to meet a given query time
or error bound.

5. Olston et al. [18] use sampling for interactive data
analysis. However, their approach requires building a new
sample for each query template, while BlinkDB shares strati-
fied samples across column-sets. This both reduces our stor-
age overhead, and allows us to effectively answer queries for
which templates are not known a priori.

Online Aggregation. Online Aggregation (OLA) [15]
and its successors [11, 19] proposed the idea of providing
approximate answers which are constantly refined during
query execution. It provides users with an interface to stop
execution once they are satisfied with the current accuracy.
As commonly implemented, the main disadvantage of OLA
systems is that they stream data in a random order, which
imposes a significant overhead in terms of I/O. Naturally,
these approaches cannot exploit the workload characteris-
tics in optimizing the query execution. However, in princi-
ple, techniques like online aggregation could be added to
BlinkDB, to make it continuously refine the values of aggre-
gates; such techniques are largely orthogonal to our ideas of
optimally selecting pre-computed, stratified samples.

Materialized Views, Data Cubes, Wavelets, Synopses,
Sketches, Histograms. There has been a great deal of

work on “synopses” (e.g., wavelets, histograms, sketches,
etc.) and lossless summaries (e.g. materialized views, data
cubes). In general, these techniques are tightly tied to spe-
cific classes of queries. For instance, Vitter and Wang [24]
use Haar wavelets to encode a data cube without reading
the least significant bits of SUM/COUNT aggregates in a
flat query5, but it is not clear how to use the same encoding
to answer joins, subqueries, or other complex expressions.
Thus, these techniques are most applicable6 when future
queries are known in advance (modulo constants or other mi-
nor details). Nonetheless, these techniques are orthogonal to
BlinkDB, as one could use different wavelets and synopses
for common queries and resort to stratified sampling when
faced with ad-hoc queries that cannot be supported by the
current set of synopses. For instance, the join-synopsis [5]
can be incorporated into BlinkDB whereby any join query in-
volving multiple tables would be conceptually rewritten as a
query on a single join synopsis relation. Thus, implementing
such synopsis alongside the current set of stratified samples
in BlinkDB may improve the performance for certain cases.
Incorporating the storage requirement of such synopses into
our optimization formulation makes an interesting line of fu-
ture work.

9. Conclusion
In this paper, we presented BlinkDB, a parallel, sampling-
based approximate query engine that provides support for
ad-hoc queries with error and response time constraints.
BlinkDB is based on two key ideas: (i) a multi-dimensional
sampling strategy that builds and maintains a variety of sam-
ples, and (ii) a run-time dynamic sample selection strategy
that uses parts of a sample to estimate query selectivity and
chooses the best samples for satisfying query constraints.
Evaluation results on real data sets and on deployments of
up to 100 nodes demonstrate the effectiveness of BlinkDB

at handling a variety of queries with diverse error and time
constraints, allowing us to answer a range of queries within
2 seconds on 17 TB of data with 90-98% accuracy.
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