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There exist various methods to break symmetries. The two that concern us in this pa-
per are static symmetry breaking where we add static constraints to the problem (see
e.g. [1,3]) and symmetry breaking by dominance detection (SBDD) where we filter
values based on a symmetric dominance analysis when comparing the current search-
node with those that were previously expanded [2,5]. The core task of SBDD is domi-
nance detection. The first provably polynomial-time dominance checkers for value sym-
metry were devised in [18] and [14]. For problems exhibiting both “piecewise” sym-
metric values and variables, [15] devised structural symmetry breaking (SSB). SSB is
a polynomial-time dominance checker for piecewise symmetries which, used within
SBDD, eliminates symmetric subproblems from the search-tree. Piecewise symmetries
are of particular interest as they result naturally from symmetry detection based on a
static analysis of a given CSP that exploits the knowledge about problem substructures
as captured in global constraints [17]. Static SSB was developed in [4] and is based on
the structural abstractions that were introduced in [17].

Compared with other symmetry-breaking techniques, the big advantage of dynamic
symmetry breaking is that it can accommodate dynamic search orderings without run-
ning an increased risk of thrashing. Dynamic orderings have often been shown to vastly
outperform static orderings in many different types of constraint satisfaction problems.
However, when adding static symmetry-breaking constraints that are not aligned with
the variable and value orderings, it is entirely possible that we dismiss perfectly good so-
lutions just because they are not the ones that are favored by the static constraints, which
(ideally) leave only one representative solution in each equivalence class of solutions.
To address this problem, Puget suggested an elegant semi-static symmetry breaking
method that provably does not remove the first solution found by a dynamic search-
method [12]. It is not clear how this method can be generalized, though, and for the
case of piecewise variable and value symmetry, no method with similar properties is
known yet. On the other hand, static methods are generally easy to use, enjoy a low
overhead per choice point, and exhibit an anticipatory character that emerges from fil-
tering symmetry-breaking constraints in combination with constraints in the problem.

In this paper, for the first time ever we compare static and dynamic SSB in prac-
tice. We will show that static SSB works much faster than dynamic SSB. However,
this gain comes at a cost: Static SSB introduces a huge variance in runtime as static
symmetry breaking constraints may clash with dynamic search orderings. Using static
search orderings, on the other hand, can also cause large variances in runtime as they
are not equally well suited for different problem instances. To avoid this core problem
of static symmetry breaking, we introduce the idea of “model restarts.” We will show
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how they allow us to efficiently combine static symmetry breaking with semi-dynamic
search-orderings. The method is very simple to use and we show that model restarts
greatly improve the robustness of static symmetry breaking.

1 Static and Dynamic Structural Symmetry Breaking

A Constraint Satisfaction Problem (CSP) is a tuple (Z, V, D, C) where Z is a finite
set of variables, V is a set of values, D = {D1, . . . , Dn} is a set of finite domains
where each Di ⊆ V is the set of possible instantiations to variable Xi ∈ Z , and
C = {c1, . . . , cp} is a finite set of constraints where each ci ∈ C is defined on a
subset of the variables in Z and specifying their valid combinations. Given a set S and
a set of sets P = {P1, . . . , Pr} such that

⋃
i Pi = S and the Pi are pairwise non-

overlapping, we say that P is a partition of S, and we write S =
∑

i Pi. Given a set
S and a partition S =

∑
i Pi, a bijection π : S �→ S such that π(Pi) = Pi (where

π(Pi) = {π(s) | s ∈ Pi}) is called a piecewise permutation over S =
∑

i Pi. Given
a CSP (Z, V, D, C), and partitions Z =

∑
k≤r Pk, V =

∑
l≤s Ql, we say that the

CSP has piecewise variable and value symmetry iff all variables within each Pk and all
values within each Ql are considered symmetric.

As mentioned in the introduction, dynamic SSB is a special case of SBDD. Before
we expand a new search-node we first check if the partial assignment that led us to the
current node is not dominated by any partial assignment that has been fully explored
earlier. SBDD ensures that there is only a linear number of dominance checks needed.
SSB performs the dominance checks by setting up a bipartite graph and pruning the
current node if and only if a perfect matching can be found. In [15] it was shown how
dynamic SSB can be used for filtering in time O(nm3.5 + n2m2), where m is the
number of values and n the number of variables in the given CSP.

Static SSB is based on the abstractions used by the dominance checker in dynamic
SSB. In [4] a linear set of (global) constraints was devised which provably leaves one
and only one solution in each equivalence class of solutions. Using Regin’s filtering
algorithm [13] for the global cardinality constraints (GCCs) in this set, filtering all static
SSB constraints does not take longer than amortized O(

∑a
k=1 |Pk|2m) = O(n2m),

where m is the number of values and n the number of variables in the given CSP.

2 Model Restarts

As the runtime comparison shows, static symmetry-breaking imposes much less over-
head. However, it suffers from one important drawback, and that is the fact that it
is much more sensitive to search-orderings. Both in [10] and [16] it has been noted
that static symmetry-breaking constraints can cause great variances in expected run-
time. Knowing that static symmetry-breaking constraints work by excluding all but
one representative out of each equivalence class of solutions, this is hardly surprising:
When the symmetry-breaking constraints are not aligned with the search-orderings,
static symmetry-breaking constraints may interrupt the construction of many perfectly
good solutions, simply because they are not the representatives we have chosen. On the
other hand, when using static search orderings, they themselves are much less robust
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and perform with greatly varying performance on different problem instances. The
question arises how we can combine the benefits of being able to change the search
orderings while using lean static symmetry breaking.

We exploit the idea of randomization and restarts [7,9], which has been shown to
greatly improve the robustness of systematic search: When the search takes too long (as
determined by exceeding a given fail-limit) we interrupt our search, and try again with
an updated fail-limit [9]. To avoid that we conduct the same search over and over again,
a random component is added to the selection heuristics for the branching variable
and/or the branching value. The method has been proven both experimentally and the-
oretically to eliminate heavy-tailed run-time distributions [7]. Complemented by non-
chronological backtracking and no-good learning, the idea of randomization and restarts
marks one of the backbones of modern systematic SAT solvers.

To improve on the robustness of static symmetry breaking, we therefore propose to
exploit randomization and restarts. Note that, when posing static symmetry breaking
constraints, there is often a lot of freedom in how we determine the representatives that
we leave in each equivalence class of solutions (see, e.g., [16]). In our case, with respect
to the ordering of variables, we have the freedom to arbitrarily choose the ordering of the
variable partitions. We start our search and use the static variable ordering as induced
by the ordering of variable partitions used in the static symmetry breaking constraints.
This avoids clashes between static SSB and the search ordering used. However, the
particular search ordering we choose may not be suited well for the concrete instance
we need to solve. Consequently, we interrupt our search when a fail-limit is reached.
Now, we would like to choose a new and somewhat randomized search ordering, but
if we do, then it is likely to clash with our static constraints. Consequently, rather than
updating the search ordering only, we also change the underlying CP model! That is,
at every restart we do not only change the search-orderings, but also the corresponding
static symmetry-breaking constraints. This way, we avoid clashes between the search-
orderings and static symmetry-breaking constraints, and are still not bound to one static
search-ordering which may be bad for the given problem instance. We refer to this
simple and easy to use idea as “model restarts.”

3 Experimental Results
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Fig. 1. Mean number of fails (log-scale)
for the biased graph-coloring benchmark
(q=1)

We experiment on the benchmark introduced
in [11] that consists of graph coloring prob-
lems over symmetric graphs. Colors are inter-
changeable values and nodes that have the same
set of neighbors form a partition of piecewise
interchangeable variables. Randomized graph
coloring problems are generated with either a
uniform or a biased distribution of partitions of
interchangeable nodes in the graphs, and a pa-
rameter q influences the density of the graphs
(for details, see [11]). For reasons of compa-
rability, our experimental set-up is the same as
in [11]. Each data point we report represents the
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mean of runs on 20 different instances with a cutoff of one hour. For each data point, at
least 90% of all runs finish within this time-frame. For the restarted methods, fail-limits
grow linearly as multiples of 100. We use the same CSP model as in [11].
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Fig. 2. Mean times (seconds, log-scale)
for the uniform (top two) and biased
(bottom two) graph-coloring bench-
mark with q = 0.5 (1st and 3rd) and
q = 1 (2nd and 4th)

In Figure 1, we study three different algo-
rithms on the biased graph-coloring benchmark:
static SSB in combination with a min-domain
heuristic (sSSB-gcc-md), static SSB in combina-
tion with a corresponding static variable ordering
(sSSB-gcc-st), and static SSB with model restarts
(sSSB-gcc-res), where the ordering of variable
partitions is permuted at every model restart, with
a bias to place larger partitions earlier in the or-
dering. The figure shows the average number of
failures, but since the time per choice point for
all variants is practically the same, we get the ex-
act same picture when comparing running times
(for the actual runtime of sSSB-gcc-res, com-
pare with Figure 2). We observe that sSSB-gcc-
md and sSSB-gcc-st are both not robust at all.
Due to a high variance in runtime the curves
are highly erratic. The reason why sSSB-gcc-st
shows such a high variance in solution time is
that the static ordering that is chosen is good
for some instances and bad for others. Dynamic
variable orderings like the min-domain heuristic
usually lead to much more robust performance.
However, in the case of symmetric problems, the
dynamic orderings may clash with the static con-
straints, and sSSB-gcc-md is not performing con-
sistently well either. On the other hand, we can
see clearly how model restarts greatly improve
the robustness of sSSB.

In Figure 2 we compare restarted static
SSB based on GCC constraints (sSSB-gcc-res)
with dynamic SSB (with min-domain heuristic,
dSSB-md) and a different variant of static SSB
based on regular constraints that was introduced
in [11] (with min-domain heuristic, sSSB-reg-
md). The first two algorithms were run on an
AMD-Athlon 64-X2 3800+ (2.0GHz), the lat-
ter was run on a Sun Blade 2500 (1.6GHz)
and the curve shown is an adaptation of that
shown in [11]. Based on the data given in
that paper, we can infer that their machine can
process about 20K failures per second when
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running sSSB-gcc-md, while we measured 30K failures per second on our architecture
for the same method. We conclude that our machine works about a factor 1.5 faster and
thus divided the data-points underlying the curve shown in [11] by that factor to make
the comparison fair.

We see that the restarted method works equally robust as sSSB-reg-md, but roughly
one order of magnitude faster. In [11] it is reported that sSSB-reg visits less than 100
choice points on the biased instances (which makes it highly unlikely that restarts will
lead to any further improvements), the number of failures of sSSB-gcc-res is shown
in Figure 1. Consequently, sSSB-gcc-res visits about two orders of magnitude more
choice points than sSSB-reg. This implies that sSSB-gcc works almost three orders of
magnitude faster per choice point. This efficiency gives the simple sSSB-gcc-res the
advantage over the much more effective filtering of sSSB-reg-md. When comparing
with dynamic SSB, finally, as the theoretical runtime comparison of dSSB and sSSB in
Section 1 already suggested, we find that the dynamic variant cannot compete with the
static methods, despite our great efforts to tune the method as best as possible using the
heuristic improvements introduced in [8].
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Fig. 3. Mean times (seconds, log-scale,
cutoff 600 seconds) on 100 random
AllDiff-CSP instances

In Figure 3 we compare dSSB with sSSB on a
different benchmark where we generate random
AllDifferent constraints which each partition a
set of 12 values and 15 variables, thus leaving a
piecewise symmetric CSP. By varying the num-
ber of values per constraint, we achieve a range
of more and more restricted piecewise symmetric
problems which allows us to compare methods
over an entire regime of constrainedness. Again,
we see that static symmetry breaking vastly out-
performs dynamic symmetry breaking. Although
we cannot show the result of those tests here, we
would also like to note that restarts do not lead to
performance improvements for dynamic SSB.

We conclude that dynamic SSB for piecewise symmetry is inferior to its static coun-
terpart. Moreover, we found that static SSB based on GCC constraints is far less effec-
tive than static SSB based on regular constraints as it visits many more choice points.
However, its extremely low cost per choice points causes it to run faster, and when used
with model restarts it works equally robustly.
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