
EECS 223 Spring 2007
* *

Jordan canonical form c©V. Anantharam

Jordan canonical form

Let A be any complex n× n matrix. The expression det(sI −A) is a polynomial in s of degree
n. It is called the characteristic polynomial of A. It is a monic polynomial, i.e. the coefficient
of the highest degree term (sn) is 1.

By the fundamental theorem of algebra, every polynomial with complex coefficients factors into
degree one factors with complex coefficients. If the polynomial is monic, so are the factors, i.e
each factor is of the form (s− λ) for some complex number λ. These complex numbers are the
roots of the polynomial. The roots of the characteristic polynomial of a matrix are called its
eigenvalues.

In general, a polynomial can have repeated roots. Suppose det(sI − A) has d distinct roots
λ1, λ2, . . . , λd having respective multiplicities a1, a2, . . . , ad, i.e.

det(sI −A) =
d∏
i=1

(s− λi)ai .

ai is called the algebraic multiplicity of the eigenvalue λi. We have
∑d
i=1 ai = n.

The eigenspace of A corresponding to the eigenvalue λi is the null space of the matrix λiI −A,
denoted N (λiI − A). It is nontrivial, i.e. it has dimension at least 1, as can be checked by
realizing that λiI − A is a singular complex matrix, i.e. has determinant equal to zero, which
in turn is equivalent to λi being a root of the characteristic polynomial of A, i.e. being an
eigenvalue of A. The dimension of the null space of λiI −A, denoted gi, is called the geometric
multiplicity of the eigenvalue λi.

This handout will mention several facts without proof. Some of these facts may be new to you.
If so, you may want to look up their proofs. You will find good treatments of this in most books
on linear algebra (e.g. Strang) or abstract algebra (e.g. Hungerford or Jacobson). Another way
to get intuition is to play around with several examples. You can do this quite easily by using
MATLAB to do the calculations for you.

In general, for each eigenvalue λi, we have gi ≤ ai, i.e. the dimension of the eigenspace of the
eigenvalue at most equals its multiplicity as a root of the characteristic polynomial, and the
inequality can be strict. One has

N (λiI −A) ⊆ N ((λiI −A)2) ⊆ . . .

Strict inclusion will hold till a certain stage, call it mi, after which all the subspaces in this
sequence will be equal, i.e. mi is defined by

N ((λiI −A)mi−1)
⊂
6= N ((λiI −A)mi) = N ((λiI −A)mi+1) = N ((λiI −A)mi+2) = . . .
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The dimension of N ((λiI−A)mi) will equal ai, the algebraic multiplicity of λi. N ((λiI−A)mi)
is called the generalized eigenspace of the eigenvalue λi. Note that the generalized eigenspace of
an eigenvalue equals its eigenspace precisely when the geometric multiplicity of the eigenvalue
equals its algebraic multiplicity. In particular, this is always true if the algebraic multiplicity
of the eigenvalue is 1, i.e., if it is a simple root of the characteristic polynomial. However,
this condition is not necessary. For instance, each eigenvalue of a symmetric matrix has its
geometric multiplicity equal to its algebraic multiplicity (i.e. the dimension of its eigenspace
equals its multiplicity as a root of the characteristic polynomial) irrespective of what its algebraic
multiplicity is.

Every matrix A can be put in Jordan canonical form by a similarity transformation (change of
basis). In fact, one can choose a basis bi1, . . . , biai for each generalized eigenspaceN ((λiI−A)mi),
1 ≤ i ≤ d, such that if U denotes the matrix

U = [b11 . . . b1a1b21 . . . b2a2 . . . bd1 . . . bdad ]

then one has U−1AU = J , where J has the block diagonal form

J = diag(J11, . . . , J1g1 , J21, . . . , J2g2 , . . . , Jd1, . . . , Jdgd) .

Here each Jij for 1 ≤ j ≤ gi is an mij ×mij matrix of the form

Jij =


λi 1 0 . . . 0
0 λi 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . λi

 .

Note that, for each 1 ≤ i ≤ d,

ai =
gi∑
j=1

mij .

For each 1 ≤ i ≤ d, one has maxjmij = mi, where mi was defined above. The dimension of the
eigenspace N (λiI −A) equals

∑gi
j=1 1(mij ≥ 1) =

∑gi
j=1 1 = gi, the dimension of N ((λiI −A)2)

equals
∑gi
j=1 1(mij ≥ 1) +

∑gi
j=1 1(mij ≥ 2) and so on, with the dimension of N ((λiI − A)mi)

equaling
gi∑
j=1

1(mij ≥ 1) + . . .+
gi∑
j=1

1(mij ≥ mi) =
gi∑
j=1

mij = ai .

Further, the columns bi1, bi(1+mi1), . . . , bi(1+mi1+...mi(gi−1)) (of which there are exactly gi) form
a basis for the eigenspace of λi.

Note that if we write

U−1 =
[
cT11 . . . c

T
1a1
cT21 . . . c

T
2a2

. . . cTd1 . . . c
T
dad

]T
then the rows ci1, . . . , ciai are a basis for the left generalized eigenspace corresponding to the
eigenvalue λi, and cimi1 , ci(mi1+mi2), . . . , ci(mi1+...migi)

are a basis for the left eigenspace corre-
sponding to the eigenvalue λi.
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Since A = UJU−1 we can now calculate the powers of A quite easily : An = UJnU−1 and
Jn = diag(Jn11, . . . , J

n
1g1
, Jn21, . . . , J

n
2g2
, . . . , Jnd1, . . . , J

n
dgd

) . Here

Jnij =


λni

(n
1

)
λn−1
i

(n
2

)
λn−2
i . . .

( n
mij−1

)
λ
n−mij+1
i

0 λni
(n

1

)
λn−1
i . . .

( n
mij−2

)
λ
n−mij+2
i

...
...

...
. . .

...
0 0 0 . . . λni

 .

Check this !!
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