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Jointly Gaussian Random Variables c©V. Anantharam

Definition

Let X1, X2, . . . , Xd be real valued random variables defined on the same sample space. They
are called jointly Gaussian if their joint characteristic function is given by

ΦX(u) = exp(iuTm− 1
2
uTCu) . (1)

where C is a real, symmetric, nonnegative definite matrix, and m = [m1, . . . ,md]T ∈ Rd.

If C is positive definite, then one can show that the real valued random variables X1, X2, . . . , Xd

are jointly Gaussian iff they have a joint density of the form

fX(x) =
1√

(2π)ddetC
exp(−1

2
((x−m)TC−1(x−m))) .

Proof It is a simple calculation that the characteristic function associated to the density above
is of the form in Eqn. (1). The converse follows from the uniqueness of Fourier inversion. 2

However, when C is singular the jointly Gaussian random variables X1, X2, . . . , Xd will not
admit a joint density, because the entire joint distribution will be concentrated on the subspace
orthogonal to the null space of C.

It is also important to realize that though each of the random variables in a family of jointly
Gaussian random variables is necessarily Gaussian, it is possible for random variables to be
defined on the sample space, to be individually Gaussian, but to not be jointly Gaussian. For
example, consider X and Y jointly distributed with a density that is of the form

fXY (x, y) =
1

2π
exp(−x

2 + y2

2
)+α(x−1, y−1)−α(x+1, y−1)+α(x+1, y+1)−α(x−1, y+1)

where α(x, y) is a nonnegative function zero outside {(x, y) :| x |, | y |≤ 1/2 and | α(x, y) |≤
0.001 for all (x, y). You can check that fXY (·, ·) is a joint density. Then X and Y are each
N(0, 1) random variables. However they are not jointly Gaussian.

Characterization via linear combinations

Jointly Gaussian random variables can be characterized by the property that every scalar linear
combination of such variables is Gaussian.

Theorem 1 Real valued random variables X1, X2, . . . , Xd are jointly Gaussian iff for all a ∈
Rd, the real r.v.

∑
i aiXi is Gaussian.
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Proof If X1, X2, . . . , Xd are jointly Gaussian, and X =
∑
i aiXi, then

ΦX(u) = E[exp(iu
∑
i

aiXi)]

= ΦX(ua1, . . . , uad)

= exp(iu(aTm)− 1
2
u2(aTCa)) .

So X ∼ N (aTm,aTCa), by the characterization of a Gaussian random variable via its charac-
teristic function.

Conversely, if for all a ∈ Rd, X =
∑
i aiXi is Gaussian, then in particular each Xi is Gaus-

sian. Hence Xi has a finite mean, say mi. Also, each Xi has finite variance, and using the
Cauchy-Schwarz inequality E[XiXj ] ≤ (E[X2

i ]E[X2
j ])1/2, it follows that the covariance ma-

trix of X1, X2, . . . , Xd, has finite entries. Call this covariance matrix C. Now, setting with
X =

∑
i uiXi, we see that E[X] = uTm, and E[X2] − E[X]2 = uTCu. Since X is assumed

Gaussian (we assumed that all linear combinations of X1, . . . , Xd are Gaussian), we can write

ΦX(u1, . . . , ud) = E[exp(i
∑
i

uiXi)]

= Φ∑
i
uiXi

(1)

= exp(iuTm− 1
2
uTCu)

where in the last step we used the formula for the characteristic function of a Gaussian rv in
terms of its mean and variance. But we have now completely determined the joint characteristic
function of X1, . . . , Xd and, by definition, we see they are jointly Gaussian. 2

More generally, any family of random variables arrived at as linear combinations of jointly
Gaussian random variables is a jointly Gaussian family of random variables.

Theorem 2 Suppose the real valued random variables X1, X2, . . . , Xd are jointly Gaussian
with mean m and covariance matrix C. Let A ∈ Rr×d and b ∈ Rr. Let Y1, . . . , Yr be defined
by Y = AX+ b. Then Y1, . . . , Yr are jointly Gaussian with mean Am+ b and covariance matrix
ACAT .

Proof

ΦY (u1, . . . , ur) = E[exp(iuT (AX + b))]

= exp(iuT b)E[iuTAX]

= exp(iuT b) exp(iuTAm− 1
2
uTACATu)

= exp(iuT (b+Am)) exp(−1
2
uTACATu)

Conditional expectation for jointly Gaussian random variables

It is very easy to check when a family of jointly Gaussian random variables is mutually inde-
pendent.
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Theorem 3 Let X1, X2, . . . , Xd be real valued random variables that are jointly Gaussian
with mean m and covariance matrix C. Then X1, X2, . . . , Xd are uncorrelated iff they are
independent.

Proof X1, X2, . . . , Xd are uncorrelated iff their covariance matrix C is diagonal. If this is the
case, we have

ΦX(u) = exp(iuTm− 1
2
uTCu)

=
d∏

k=1

exp(iukmk − Ckk
u2
k

2
)

=
d∏

k=1

ΦXk(uk) .

But we know that the joint characteristic function of rvs X1, X2, . . . , Xd is separable into their
individual characteristic functions iff X1, X2, . . . , Xd are mutually independent.

Conversely, suppose X1, X2, . . . , Xd are mutually independent jointly defined Gaussian rvs. Xi

must have mean mi and variance Cii by assumption. Independence implies the joint char-
acteristic of X1, X2, . . . , Xd is separable into their individual characteristic functions, so we
have

ΦX(u) =
d∏

k=1

exp(iukmk − Ckk
u2
k

2
) .

But from the form of this joint characteristic function, we see, by definition, that X1, X2, . . . , Xd

are jointly Gaussian, and that their covariance matrix is diagonal, i.e. that X1, X2, . . . , Xd are
uncorrelated. 2

An important consequence of Theorem 1 is the following result :

Theorem 4 Let X,Y1, Y2, . . . , Ym be jointly Gaussian. Then E[X | Y ] is an affine function of
Y1, . . . , Yd (i.e. a constant plus a linear combination of Y1, . . . , Yd).

Proof The conditional expectation E[X | Y ] is almost surely uniquely defined as that Borel
function of Y for which E[(X − E[X | Y ])g(Y )] = 0 for all Borel functions g. In the jointly
Gaussian case, it suffices to verify that there is an affine combination a0 +

∑m
i=1 aiYi such that

X − (a0 +
∑m
i=1 aiYi) is uncorrelated with the random variables Y and has zero mean. This is

because, since (X − (a0 +
∑m
i=1 aiYi), Y ) is a linear transformation of (X,Y ), these variables

are jointly Gaussian and so this uncorrelatedness would imply that X − (a0 +
∑m
i=1 aiYi)q Y ,

which implies that for all Borel functions g

E[(X − (a0 +
m∑
i=1

aiYi))g(Y1, . . . , Ym)] = E[X − (a0 +
m∑
i=1

aiYi)]E[g(Y1, . . . , Ym)] = 0

where the second line used E[X − (a0 +
∑m
i=1 aiYi)] = 0. This then implies E[X | Y ] =

a0 +
∑m
i=1 aiYi by the definition of conditional expectation. Writing down the equations corre-

sponding to this uncorrelatedness and the equation E[E[X | Y ]] = E[X] gives a collection of
simultaneous linear equations that can be solved for the coefficients a0, a1, . . . , am.
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You can (and probably should) check that if (X1, . . . , Xn, Y1, . . . , Ym) are jointly Gaussian and
if Zi denotes E[Xi | Y1, . . . , Ym] for 1 ≤ i ≤ n, then (X1, . . . , Xn, Z1, . . . , Zn, Y1, . . . , Ym) are
jointly Gaussian and the collection of random variables (X1 − Z1, . . . , Xn − Zn) (which can be
thought of as error terms) is independent of (Y1, . . . , Ym).

Example 5 Let X1, X2, X3 be jointly Gaussian with mean [1, 4, 6]T and covariance matrix 3 1 0
1 2 1
0 1 1

. To find E[X1 | X2, X3] we write

E[X1 | X2, X3] = a0 + a1(X2 − 4) + a2(X3 − 6) .

(Note that we already subtracted the means from the conditioning variables to make covariance
calculations easier). The equation E[E[X1 | X2, X3]] = E[X1] gives a0 = 1. The requirements
that X1− (a0 + a1(X2− 4) + a2(X3− 6)) be uncorrelated with X2 and X3 respectively give the
equations : [

2 1
1 1

] [
a1

a2

]
=

[
1
0

]
.

Thus

[
a1

a2

]
=

[
1 −1
−1 2

] [
1
0

]
=

[
1
−1

]
and

E[X1 | X2, X3] = 1 + (X2 − 4)− (X3 − 6) = X2 −X3 + 3 .

As another example, to find E[X2 | X1, X3], we write

E[X2 | X1, X3] = 4 + b1(X1 − 1) + b2(X3 − 6) .

(Note that we have right away observed that the constant term must be the mean of X2). You
can write simultaneous linear equations for b1 and b2 based on the requirement that X2 − (4 +
b1(X1 − 1) + b2(X3 − 6)) should be uncorrelated with X1 and X3 to conclude that

E[X2 | X1, X3] = (1/3)X1 +X3 − (7/3) .

Note that E[X1 | X3] = E[X1] = 1, because X1 and X3 are uncorrelated jointly Gaussian rvs,
and therefore independent. Using this, we can see from successive conditioning that

E[X2 | X3] = E[E[X2 | X1, X3] | X3]
= E[(1/3)X1 +X3 − (7/3) | X3]
= 1/3 +X3 − 7/3
= X3 − 2 .

This can also be verified directly by solving for c in the equation

E[X2 | X3] = 4 + c(X3 − 6)

by noting that X2 − (4 + c(X3 − 6)) should be uncorrelated with (X3 − 6). We get c = 1. 2
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