Jointly Gaussian Random Variables

(c)V. Anantharam

Definition

Let $X_{1}, X_{2}, \ldots, X_{d}$ be real valued random variables defined on the same sample space. They are called jointly Gaussian if their joint characteristic function is given by

$$
\begin{equation*}
\Phi_{\underline{X}}(\underline{u})=\exp \left(i \underline{u}^{T} \underline{m}-\frac{1}{2} \underline{u}^{T} C \underline{u}\right) . \tag{1}
\end{equation*}
$$

where C is a real, symmetric, nonnegative definite matrix, and $\underline{m}=\left[m_{1}, \ldots, m_{d}\right]^{T} \in \mathbf{R}^{d}$.
If C is positive definite, then one can show that the real valued random variables $X_{1}, X_{2}, \ldots, X_{d}$ are jointly Gaussian iff they have a joint density of the form

$$
f_{\underline{X}}(\underline{x})=\frac{1}{\sqrt{(2 \pi)^{d} \operatorname{det} C}} \exp \left(-\frac{1}{2}\left((\underline{x}-\underline{m})^{T} C^{-1}(\underline{x}-\underline{m})\right)\right) .
$$

Proof It is a simple calculation that the characteristic function associated to the density above is of the form in Eqn. (1). The converse follows from the uniqueness of Fourier inversion.

However, when C is singular the jointly Gaussian random variables $X_{1}, X_{2}, \ldots, X_{d}$ will not admit a joint density, because the entire joint distribution will be concentrated on the subspace orthogonal to the null space of C.

It is also important to realize that though each of the random variables in a family of jointly Gaussian random variables is necessarily Gaussian, it is possible for random variables to be defined on the sample space, to be individually Gaussian, but to not be jointly Gaussian. For example, consider X and Y jointly distributed with a density that is of the form
$f_{X Y}(x, y)=\frac{1}{2 \pi} \exp \left(-\frac{x^{2}+y^{2}}{2}\right)+\alpha(x-1, y-1)-\alpha(x+1, y-1)+\alpha(x+1, y+1)-\alpha(x-1, y+1)$ where $\alpha(x, y)$ is a nonnegative function zero outside $\{(x, y):|x|,|y| \leq 1 / 2$ and $|\alpha(x, y)| \leq$ 0.001 for all (x, y). You can check that $f_{X Y}(\cdot, \cdot)$ is a joint density. Then X and Y are each $N(0,1)$ random variables. However they are not jointly Gaussian.

Characterization via linear combinations

Jointly Gaussian random variables can be characterized by the property that every scalar linear combination of such variables is Gaussian.

Theorem 1 Real valued random variables $X_{1}, X_{2}, \ldots, X_{d}$ are jointly Gaussian iff for all $\underline{a} \in$ \mathbf{R}^{d}, the real r.v. $\sum_{i} a_{i} X_{i}$ is Gaussian.

Proof If $X_{1}, X_{2}, \ldots, X_{d}$ are jointly Gaussian, and $X=\sum_{i} a_{i} X_{i}$, then

$$
\begin{aligned}
\Phi_{X}(u) & =E\left[\exp \left(i u \sum_{i} a_{i} X_{i}\right)\right] \\
& =\Phi_{\underline{X}}\left(u a_{1}, \ldots, u a_{d}\right) \\
& =\exp \left(i u\left(\underline{a}^{T} \underline{m}\right)-\frac{1}{2} u^{2}\left(\underline{a}^{T} C \underline{a}\right)\right)
\end{aligned}
$$

So $X \sim \mathcal{N}\left(\underline{a}^{T} \underline{m}, \underline{a}^{T} C \underline{a}\right)$, by the characterization of a Gaussian random variable via its characteristic function.
Conversely, if for all $\underline{a} \in \mathbf{R}^{d}, X=\sum_{i} a_{i} X_{i}$ is Gaussian, then in particular each X_{i} is Gaussian. Hence X_{i} has a finite mean, say m_{i}. Also, each X_{i} has finite variance, and using the Cauchy-Schwarz inequality $E\left[X_{i} X_{j}\right] \leq\left(E\left[X_{i}^{2}\right] E\left[X_{j}^{2}\right]\right)^{1 / 2}$, it follows that the covariance matrix of $X_{1}, X_{2}, \ldots, X_{d}$, has finite entries. Call this covariance matrix C. Now, setting with $X=\sum_{i} u_{i} X_{i}$, we see that $E[X]=\underline{u}^{T} \underline{m}$, and $E\left[X^{2}\right]-E[X]^{2}=\underline{u}^{T} C \underline{u}$. Since X is assumed Gaussian (we assumed that all linear combinations of X_{1}, \ldots, X_{d} are Gaussian), we can write

$$
\begin{aligned}
\Phi_{\underline{X}}\left(u_{1}, \ldots, u_{d}\right) & =E\left[\exp \left(i \sum_{i} u_{i} X_{i}\right)\right] \\
& =\Phi_{\sum_{i} u_{i} X_{i}}(1) \\
& =\exp \left(i \underline{u}^{T} \underline{m}-\frac{1}{2} \underline{u}^{T} C \underline{u}\right)
\end{aligned}
$$

where in the last step we used the formula for the characteristic function of a Gaussian rv in terms of its mean and variance. But we have now completely determined the joint characteristic function of X_{1}, \ldots, X_{d} and, by definition, we see they are jointly Gaussian.

More generally, any family of random variables arrived at as linear combinations of jointly Gaussian random variables is a jointly Gaussian family of random variables.

Theorem 2 Suppose the real valued random variables $X_{1}, X_{2}, \ldots, X_{d}$ are jointly Gaussian with mean \underline{m} and covariance matrix C. Let $A \in \mathbf{R}^{r \times d}$ and $\underline{b} \in \mathbf{R}^{r}$. Let Y_{1}, \ldots, Y_{r} be defined by $\underline{Y}=A \underline{X}+\underline{b}$. Then Y_{1}, \ldots, Y_{r} are jointly Gaussian with mean $A \underline{m}+\underline{b}$ and covariance matrix $A C A^{T}$.

Proof

$$
\begin{aligned}
\Phi_{\underline{Y}}\left(u_{1}, \ldots, u_{r}\right) & =E\left[\exp \left(i \underline{u}^{T}(A \underline{X}+\underline{b})\right)\right] \\
& =\exp \left(i \underline{u}^{T} \underline{b}\right) E\left[i \underline{u}^{T} A \underline{X}\right] \\
& =\exp \left(i \underline{u}^{T} \underline{b}\right) \exp \left(i \underline{u}^{T} A \underline{m}-\frac{1}{2} \underline{u}^{T} A C A^{T} \underline{u}\right) \\
& =\exp \left(i \underline{u}^{T}(\underline{b}+A \underline{m})\right) \exp \left(-\frac{1}{2} \underline{u}^{T} A C A^{T} \underline{u}\right)
\end{aligned}
$$

Conditional expectation for jointly Gaussian random variables

It is very easy to check when a family of jointly Gaussian random variables is mutually independent.

Theorem 3 Let $X_{1}, X_{2}, \ldots, X_{d}$ be real valued random variables that are jointly Gaussian with mean \underline{m} and covariance matrix C. Then $X_{1}, X_{2}, \ldots, X_{d}$ are uncorrelated iff they are independent.

Proof $X_{1}, X_{2}, \ldots, X_{d}$ are uncorrelated iff their covariance matrix C is diagonal. If this is the case, we have

$$
\begin{aligned}
\Phi_{\underline{X}}(\underline{u}) & =\exp \left(i \underline{u}^{T} \underline{m}-\frac{1}{2} \underline{u}^{T} C \underline{u}\right) \\
& =\prod_{k=1}^{d} \exp \left(i u_{k} m_{k}-C_{k k} \frac{u_{k}^{2}}{2}\right) \\
& =\prod_{k=1}^{d} \Phi_{X_{k}}\left(u_{k}\right)
\end{aligned}
$$

But we know that the joint characteristic function of rvs $X_{1}, X_{2}, \ldots, X_{d}$ is separable into their individual characteristic functions iff $X_{1}, X_{2}, \ldots, X_{d}$ are mutually independent.
Conversely, suppose $X_{1}, X_{2}, \ldots, X_{d}$ are mutually independent jointly defined Gaussian rvs. X_{i} must have mean m_{i} and variance $C_{i i}$ by assumption. Independence implies the joint characteristic of $X_{1}, X_{2}, \ldots, X_{d}$ is separable into their individual characteristic functions, so we have

$$
\Phi_{\underline{X}}(\underline{u})=\prod_{k=1}^{d} \exp \left(i u_{k} m_{k}-C_{k k} \frac{u_{k}^{2}}{2}\right) .
$$

But from the form of this joint characteristic function, we see, by definition, that $X_{1}, X_{2}, \ldots, X_{d}$ are jointly Gaussian, and that their covariance matrix is diagonal, i.e. that $X_{1}, X_{2}, \ldots, X_{d}$ are uncorrelated.

An important consequence of Theorem 1 is the following result :

Theorem 4 Let $X, Y_{1}, Y_{2}, \ldots, Y_{m}$ be jointly Gaussian. Then $E[X \mid \underline{Y}]$ is an affine function of Y_{1}, \ldots, Y_{d} (i.e. a constant plus a linear combination of Y_{1}, \ldots, Y_{d}).

Proof The conditional expectation $E[X \mid \underline{Y}]$ is almost surely uniquely defined as that Borel function of \underline{Y} for which $E[(X-E[X \mid \underline{Y}]) g(\underline{Y})]=0$ for all Borel functions g. In the jointly Gaussian case, it suffices to verify that there is an affine combination $a_{0}+\sum_{i=1}^{m} a_{i} Y_{i}$ such that $X-\left(a_{0}+\sum_{i=1}^{m} a_{i} Y_{i}\right)$ is uncorrelated with the random variables \underline{Y} and has zero mean. This is because, since $\left(X-\left(a_{0}+\sum_{i=1}^{m} a_{i} Y_{i}\right), \underline{Y}\right)$ is a linear transformation of (X, \underline{Y}), these variables are jointly Gaussian and so this uncorrelatedness would imply that $X-\left(a_{0}+\sum_{i=1}^{m} a_{i} Y_{i}\right) \amalg \underline{Y}$, which implies that for all Borel functions g

$$
E\left[\left(X-\left(a_{0}+\sum_{i=1}^{m} a_{i} Y_{i}\right)\right) g\left(Y_{1}, \ldots, Y_{m}\right)\right]=E\left[X-\left(a_{0}+\sum_{i=1}^{m} a_{i} Y_{i}\right)\right] E\left[g\left(Y_{1}, \ldots, Y_{m}\right)\right]=0
$$

where the second line used $E\left[X-\left(a_{0}+\sum_{i=1}^{m} a_{i} Y_{i}\right)\right]=0$. This then implies $E[X \mid \underline{Y}]=$ $a_{0}+\sum_{i=1}^{m} a_{i} Y_{i}$ by the definition of conditional expectation. Writing down the equations corresponding to this uncorrelatedness and the equation $E[E[X \mid \underline{Y}]]=E[X]$ gives a collection of simultaneous linear equations that can be solved for the coefficients $a_{0}, a_{1}, \ldots, a_{m}$.

You can (and probably should) check that if ($X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}$) are jointly Gaussian and if Z_{i} denotes $E\left[X_{i} \mid Y_{1}, \ldots, Y_{m}\right]$ for $1 \leq i \leq n$, then $\left(X_{1}, \ldots, X_{n}, Z_{1}, \ldots, Z_{n}, Y_{1}, \ldots, Y_{m}\right)$ are jointly Gaussian and the collection of random variables $\left(X_{1}-Z_{1}, \ldots, X_{n}-Z_{n}\right)$ (which can be thought of as error terms) is independent of $\left(Y_{1}, \ldots, Y_{m}\right)$.

Example 5 Let X_{1}, X_{2}, X_{3} be jointly Gaussian with mean $[1,4,6]^{T}$ and covariance matrix

$$
\begin{aligned}
& {\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right] . \text { To find } E\left[X_{1} \mid X_{2}, X_{3}\right] \text { we write }} \\
& \qquad E\left[X_{1} \mid X_{2}, X_{3}\right]=a_{0}+a_{1}\left(X_{2}-4\right)+a_{2}\left(X_{3}-6\right)
\end{aligned}
$$

(Note that we already subtracted the means from the conditioning variables to make covariance calculations easier). The equation $E\left[E\left[X_{1} \mid X_{2}, X_{3}\right]\right]=E\left[X_{1}\right]$ gives $a_{0}=1$. The requirements that $X_{1}-\left(a_{0}+a_{1}\left(X_{2}-4\right)+a_{2}\left(X_{3}-6\right)\right)$ be uncorrelated with X_{2} and X_{3} respectively give the equations :

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Thus $\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and

$$
E\left[X_{1} \mid X_{2}, X_{3}\right]=1+\left(X_{2}-4\right)-\left(X_{3}-6\right)=X_{2}-X_{3}+3
$$

As another example, to find $E\left[X_{2} \mid X_{1}, X_{3}\right]$, we write

$$
E\left[X_{2} \mid X_{1}, X_{3}\right]=4+b_{1}\left(X_{1}-1\right)+b_{2}\left(X_{3}-6\right)
$$

(Note that we have right away observed that the constant term must be the mean of X_{2}). You can write simultaneous linear equations for b_{1} and b_{2} based on the requirement that $X_{2}-(4+$ $\left.b_{1}\left(X_{1}-1\right)+b_{2}\left(X_{3}-6\right)\right)$ should be uncorrelated with X_{1} and X_{3} to conclude that

$$
E\left[X_{2} \mid X_{1}, X_{3}\right]=(1 / 3) X_{1}+X_{3}-(7 / 3)
$$

Note that $E\left[X_{1} \mid X_{3}\right]=E\left[X_{1}\right]=1$, because X_{1} and X_{3} are uncorrelated jointly Gaussian rvs, and therefore independent. Using this, we can see from successive conditioning that

$$
\begin{aligned}
E\left[X_{2} \mid X_{3}\right] & =E\left[E\left[X_{2} \mid X_{1}, X_{3}\right] \mid X_{3}\right] \\
& =E\left[(1 / 3) X_{1}+X_{3}-(7 / 3) \mid X_{3}\right] \\
& =1 / 3+X_{3}-7 / 3 \\
& =X_{3}-2
\end{aligned}
$$

This can also be verified directly by solving for c in the equation

$$
E\left[X_{2} \mid X_{3}\right]=4+c\left(X_{3}-6\right)
$$

by noting that $X_{2}-\left(4+c\left(X_{3}-6\right)\right)$ should be uncorrelated with $\left(X_{3}-6\right)$. We get $c=1$.

