## Homework 4: Due in class on Thursday 4/12

1. An individual has initial capital $S_{0}$. At the beginning of time period $k, k \geq 0$, the individual has capital $S_{k}$. This must be allocated, consuming $C_{k}$, investing $I_{k}$ at a sure rate that will return $r I_{k}$ by the beginning of the next period, and investing $J_{k}$ in a risky venture that will return $Z_{k} J_{k}$ by the end of the next period, where $Z_{k}$ is a nonnegative random variable having some distribution $P\left(Z_{k} \in d z\right)=F(d z)$, and the $\left(Z_{k}, k \geq 0\right)$ are i.i.d.. We must have $S_{k}=C_{k}+I_{k}+J_{k}$, and we have $S_{k+1}=\left(S_{k}-C_{k}\right)+r I_{k}+Z_{k} J_{k}$, according to the preceding description. The utility of consumption is described by a function $R(c), c \geq 0$. The objective is to maximize $E\left[\sum_{k=0}^{\infty} \alpha^{k} R\left(C_{k}\right)\right]$, where $0<\alpha<1$ is a given discount factor.
(a) Set the problem up as a discounted dynamic programming problem and write down the corresponding Bellman equation.
(b) If $R(c)=c^{\beta}$, where $0<\beta<1$, show that the optimal policy allocates a fixed fraction of one's current fortune to each of the three alternatives. Also show in this case that $J^{*}(s)=K R(s)$ for some fixed constant $K$, where $J^{*}(s)$ denotes the optimal overall discounted utility when the initial capital is $s$.
(c) Suppose that $R(c)$ is a concave function of $c$. Suppose $E\left[Z_{k}\right]<r$. How much of the current capital will an optimal stationary Markov strategy allocate to the risky asset?
2. Let $\mu_{1}$ and $\mu_{2}$ define stationary Markov policies in a finite state finite control space discounted dynamic programming problem with one step costs $g(i, u)$ and state transition probabilities $p_{i j}(u)$. Thus $\mu_{1}$ and $\mu_{2}$ are functions from the state space $\mathcal{X}$ to the set of controls $\mathcal{U}$.
(a) Let $\mu_{3}$ denote a stationary Markov policy that chooses actions to minimize

$$
g(i, u)+\alpha \sum_{j} p_{i j}(u) \min \left\{J_{\mu_{1}}^{*}(j), J_{\mu_{2}}^{*}(j)\right\}
$$

where $J_{\mu}^{*}$ denotes the optimal overall discounted cost when the stationary Markov control strategy $\mu$ is in effect. Show that

$$
J_{\mu_{3}}^{*} \leq \min \left\{J_{\mu_{1}}^{*}, J_{\mu_{2}}^{*}\right\}
$$

(the inequality is meant to hold state by state, as usual).
(b) Let $\mu_{4}$ be defined by

$$
\mu_{4}(i)=\left\{\begin{array}{cc}
\mu_{1}(i) & \text { if } J_{\mu_{1}}^{*}(i) \leq J_{\mu_{2}}^{*}(i) \\
\mu_{2}(i) & \text { if } J_{\mu_{2}}^{*}(i)<J_{\mu_{1}}^{*}(i)
\end{array}\right.
$$

Show that

$$
J_{\mu_{4}}^{*} \leq \min \left\{J_{\mu_{1}}^{*}, J_{\mu_{2}}^{*}\right\}
$$

3. Problem 7.7 on pg. 447 of Vol. 1 of the text. (Read Example 7.3.2. on pp. $420-421$ of Vol. 1 of the text.)
4. Problem 1.9 on pp. $78-79$ of Vol. 2 of the text.
5. Problem 1.15 on pg. 82 of Vol. 2 of the text.
