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13.1 Example: Dual role of control in partially ob-

served systems.

The controller has to both elicit information and try to get good performance, and there is
a tension between these goals.

Suppose X is a finite set and that xk ∈ X , k = 0, . . . , N , evolves as a controlled Markov
chain where the transition probabilities depend on a parameter θ ∈ Θ, where Θ is a finite
set. The controller can observe xk at time k. However, the true value of the parameter is
unknown to the controller.

Let U be a finite set, representing the set of allowed controls. Let P(u, θ) = [pij(u, θ)] be
the transition probability matrix, where u ∈ U , and θ ∈ Θ. Note that this depends on θ.
The aim is to minimize (informally):

E

[
N−1∑
k=0

gk(Xk, Uk) + gN(XN)

]
(13.1)

with initial distribution p(x0) on the state and p(θ) on the parameter (drawn independently
of x0).

This is actually a partially observed problem, even though the controller can see xk at
time k. xk is not the “true” state. The true state is (xk, θ) and the observation xk is therefore
partial.

If we rewrite the transition probabilities in terms of the “true” state, the transition are
from X ×Θ to X ×Θ and the transition probability matrix for control choice u is:

P(u) = [piα,jβ(u)] = [δ(α, β)pij(u, α)] (13.2)

where δ is the Kronecker delta function:

δ(α, β) =

{
1 if α = β
0 otherwise

(13.3)

Now, following the general technique for solving partially observed dynamic programming
problems, we need to write the evolution equations of pk|k(i, α|ηk), where

ηk = {x0, . . . , xk, u0, . . . , uk−1} .

Note that now xl is the observation at time l. We know that, along the dynamics:

pk|k(i, α|ηk) = δ(i, xk)πk|k(α|ηk) (13.4)
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where πk|k(α | ηk) is the conditional distribution of the parameter given the observations.
The evolution of the information state of the “true” state, i.e. the conditional law of the

“true” state given IΨ
k is described in terms of the functions:

pk+1|k+1(j, β|ηk+1) ∝
∑
(i,α)

pk|k(i, α|ηk)piα,jβ(u)p(xk+1|j, β, uk) (13.5)

Since
pk+1|k+1(j, β|ηk+1) = δ(j, xk+1)πk+1|k+1(β | ηk+1) ,

this can be written as:

δ(j, xk+1)πk+1,k+1(β|ηk+1) ∝
∑
(i,α)

δ(i, xk)πk|k(α|ηk)δ(α, β)pij(uk, α)δ(j, xk+1) ,

where we used (13.2) and the fact that p(xk+1|j, β, uk) = δ(j, xk+1). Simplifying, we get:

πk+1,k+1(β|ηk+1) ∝ πk|k(β|ηk)pxk,xk+1
(uk, β) (13.6)

i.e. the update equation for the information “true” state is just the Bayesian update equation
for the parameter estimate.

Here the controller can directly observe the xk (which is, however, not the “true” state)
and the objective depends only on the xk and the controls. Nevertheless, the DP theory tells
us that the controls have to be chosen as functions of the (πk|k(θ | IΨ

k ), θ ∈ Θ), i.e. of the
conditional law at each time of the parameter given the observations. Thus we see explicitly
in this example that the controller is working to influence the uncertainty in the system
model, while at the same time it is trying to achieve optimal performance. The control is
implicitly required to consider both how it influences the πk|k(· | ηk) and how it influences
the cost (13.1). This is the dual role of control.

13.2 Filling the gap left in the proof of the partially

observed problem.

In our general development of the translation of the partially observed DP problem into a
fully observed problem for the information state there was a gap. We need to argue that (in
dummy density notation), for every control choice u:

xk+1 7→ pk+1|k+1

(
xk+1|IΨ

k+1

)
(13.7)

results from:
xk 7→ pk|k

(
xk|IΨ

k

)
(13.8)

through a stochastic transformation driven by a variable independent of the past variables at
time k. Since IΨ

k+1 = (IΨ
k , Y

Ψ
k+1, u) when the control is u, what we know is that the evolution

is driven by Y Ψ
k+1 (but this is not yet good enough). We know that if the control is u then:

Y Ψ
k+1 = hk(X

Ψ
k+1, u, vk+1) (13.9)

= hk(fk(X
Ψ
k , u, ωk), u, vk+1) (13.10)
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where ωk and vk+1 are independent of all past variables. The problem is that this appears
to depend on XΨ

k .
It turns out that:

P (Y Ψ
k+1 ∈ B|IΨ

k ) = P (Y Ψ
k+1 ∈ B|λΨ

k ) ∀B (13.11)

which comes directly from equation (13.10).
In fact,

E
[
Y Ψ
k+1|IΨ

k

]
= E

[
Bk(X

Ψ
k , u)|IΨ

k

]
(13.12)

where
Bk(x, u) = E [hk(fk(x, u, ωk), u, vk+1)] (13.13)

and so

E
[
Y Ψ
k+1|IΨ

k

]
=

∫
Bk(x, u)P (XΨ

k ∈ dx|IΨ
k ) (13.14)

=

∫
Bk(x, u)λΨ

k (dx) (13.15)

13.3 The separation principle in the Linear Quadratic

partially observed control problem.

Recall the fully observed problem:

xk+1 = Akxk +Bkuk + ωk k = 0, . . . , N − 1 (13.16)

where the aim is to minimize (informally):

E

[
N−1∑
k=0

(
XT
k QkXk + UT

k RkUk
)

+XT
NQNXN

]
(13.17)

where {Qk}Nk=0 are positive semidefinite matrices and {Rk}N−1
k=0 are positive definite matrices.

An optimal strategy is to put uk = Lkxk where:

Lk = −
(
Rk +BT

kKk+1Bk

)−1
BT
kKk+1Ak (13.18)

and

KN = QN (13.19)

Kk = ATkKk+1Ak − Γk +Qk (13.20)

Γk = ATkKk+1Bk

(
Rk +BT

kKk+1Bk

)−1
BT
kKk+1Ak (13.21)

Now, the partially observed problem has the same state dynamics plus observations:

yk = Ck + vk (13.22)
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with the same objective but over strategies Ψ that depend causally only on the past obser-
vations {Y Ψ

l : l ≤ k}.
Our general theory already tells that there is an optimal strategy Ψ where the optimal

control at time k is a function only of λΨ
k , where:

λΨ
k = P (XΨ

k ∈ · |IΨ
k ) (13.23)

Let mΨ
k = E[XΨ

k |IΨ
k ], it turns out that the optimal control strategy uses controls:

uk = Lkm
Ψ
k . (13.24)

This is known as the separation principle, because it shows that the overall optimal control
strategy splits into two parts: (i) the estimation of the conditional mean of the state given
the observations, i.e. mΨ

k , and (ii) applying linear controls based on mΨ
k as if mΨ

k were the
true state in a fully observed control problem.
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