
EE223: Stochastic Systems: Estimation and Control. SP’07

Lecture 15 — March 6

Lecturer: Venkat Anantharam scribe: Jiwoong Lee

15.1 Today’s topics

We continue our discussion in the partially observed finite horizon linear quadratic setting.
Recall that we are dealing with a newly defined state at time k, which is the conditional law
of the old state.

15.2 Review

We define a new state at time k, which is the conditional law of the old state Xk given
IΨ
k = (Y Ψ

0 , · · · , Y Ψ
k , U

Ψ
0 , · · · , UΨ

k−1). Then the cost-to-go at time N is

JN(λ) = Eλ[X
TQNX] =

∫
<n

(xTQNx)λ(dx) (15.1)

where λ is the conditional law at time N and X here is considered as a dummy variable
having the distribution λ.

In the previous lecture we evaluated JN−1(λ) as follows:

� Take X in <n with distribution λ;

� Let X̃ = AN−1X +BN−1u+ wN−1 (for fixed u);

� Let Y = CNX̃ + vN .

Then we have:

JN−1(λ) = min
u

[
Eλ[X

TQN−1X] + uTRN−1u+ E[JN(TN−1,N(λ, u, Y ))]
]
, (15.2)

where TN−1,N(λ, u, y) is the conditional law of the state at timeN given that we used control u
and that we observed Y = y. Note that the expectation in the third term inside the minimum
is evaluated over Y , since the observation itself is random. Further, the distribution of this
observation Y itself depends on λ.

In the previous lecture, we saw that:

JN−1(λ) = Eλ[X
TKN−1X] + Eλ0 [XTΓN−1X] + E[wTN−1KNwN−1] , (15.3)
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and that the associated optimal control is:

uN−1 = LN−1mN−1, (15.4)

where mN−1 = Eλ[X]. Recall that in this equation λ0 denotes the centered version of λ.
Today, we will compute JN−2(λ). For convenience, we designate the respective terms in the
optimal cost-to-go at time N − 1 as ©1 ,©2 , ©3 in order.

To find JN−2(λ),

� Start with X in <n with distribution λ;

� Let X̃ = AN−2X +BN−2u+ wN−2 (for fixed u);

� Let Y = CN−1X̃ + vN−1.

Then we have:

JN−2(λ) = min
u

[
Eλ[X

TQN−2X] + uTRN−2u+ E[JN−1(TN−2,N−1(λ, u, Y ))
]
]. (15.5)

We now observe that:

Eλ[X
TQN−2X] = mTQN−2m+ Eλ0 [XTQN−2X] , (15.6)

where m = Eλ[X]. Further,

JN−1(TN−2,N−1(λ, u, Y )) (15.7)

is the sum of three terms, ©1 , ©2 , and ©3 . Term ©3 is just an additive constant term and
does not affect the calculation of the optimal control. Term ©1 is

E[ETN−2,N−1(λ,u,Y )[X
TKN−1X]] (15.8)

= E[

∫
xTKN−1xP(X̃ ∈ dx|Y )] (15.9)

=

∫
xTKN−1xP(X̃ ∈ dx) (15.10)

= E[X̃KN−1X̃] (15.11)

= (AN−2m+BN−2u)TKN−1(AN−2m+BN−2u) (15.12)

+Eλ0 [(AN−2X)TKN−1(AN−2X)] + E[wTN−2KN−1wN−2] . (15.13)

This calculation is similar to one done in the previous lecture.
Term ©2 is

E[ET 0
N−2,N−1(λ,u,Y )[X

TΓN−1X]] , (15.14)

where T 0
N−2,N−1(λ, u, Y ) denotes the centered version of distribution TN−2,N−1(λ, u, Y ).

15-2



EE223 Lecture 15 — March 6 SP’07

Note that

T 0(λ, u, y) = T 0(λ0, 0, y − CN−1(AN−2m+BN−2u)) (15.15)

and the law of the observation Y is the translate by CN−1(AN−2m+BN−2u) of the law of the
observation if the initial distribution were λ0 and the control were 0. Hence this contribution
does not depend on u and depends on λ only through λ0. Let’s call it CN−2,N−1(λ0).

By putting together these intermediate results, we have

JN−2(λ) = Eλ0 [XTQN−2X] (15.16)

+ Eλ0 [XTATN−2KN−1AN−2X]

+ CN−2,N−1(λ0)

+
N−1∑
l=N−2

wTl Kl+1wl

+ min
u

[mTQN−2m+ uTRN−2u+ (AN−2m+BN−2u)TKN−1(AN−2m+BN−2u)].

As far as the last term concerned, we see, as in the fully observed case, that the minimum
occurs at uN−2 = LN−2m and yields mTKN−2m. In addition, by noting the relation

QN−2 + ATN−2KN−1AN−2 = KN−2 + ΓN−2 , (15.17)

we have

JN−2(λ) = Eλ[X
TKN−2X] + Eλ0 [XTΓN−2X] + CN−2,N−1(λ0) +

N−1∑
l=N−2

wTl Kl+1wl ,

which we may write as

JN−2(λ) = Eλ[X
TKN−2X] + CN−2,N−2(λ0) + CN−2,N−1(λ0) +

N−1∑
l=N−2

wTl Kl+1wl ,

where CN−2,N−2(λ0) is defined to be Eλ0 [XTΓN−2X]. Note that, defining CN−1,N−1(λ0) to
be Eλ0 [XTΓN−1X], our earlier formula for JN−1(λ) could have been written as:

JN−1(λ) = Eλ[X
TKN−1X] + CN−1,N−1(λ0) +

N−1∑
l=N−1

wTl Kl+1wl .

This suggests that we should have in general that

Jk(λ) = Eλ[X
TKkX] +

N−1∑
l=k

Ck,l(λ
0) +

N−1∑
l=k

wTl Kl+1wl (15.18)
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where

Ck,k(λ
0) = Eλ0 [XTΓkX] (15.19)

and Ck,l(λ
0) for l ≥ k + 1 comes from Ck+1,l(·) via (15.20)

Ck,l(λ) = E[Ck+1,l(T
0
k,k+1(λ, u, Y ))], (15.21)

which depends only on λ0 but does not depend on u. This can be verified as above by noting
that

T 0
k,k+1(λ, u, y) = T 0

k,k+1(λ0, 0, y − Ck+1(Akm+Bku)) ,

where m = Eλ[X] and by noting that the distribution of Ck+1(AkX +Bku) when X has the
distribution λ is the translate by Ck+1(Akm+ Bku) of the distribution of Ck+1(AkX) when
X has the distribution λ0.

There remains the problem of computing the conditional expectation of the state given
the information available to the controller, at each time. This can be done under assumptions
of joint Gaussianity on the noise variables and the initial condition (in addition to the usual
independence assumptions).

15.3 Vector Gaussianity

A Gaussian random vector Z ∈ <d is one whose joint characteristic function has the form:

ΦZ(η) = eiη
Tm−ηTKη, i =

√
−1 (15.22)

for some m ∈ <d and positive semidefinite matrix K. This definition works even in the
absence of a density for Z. Here, we recall the definition:

ΦZ(η) ≡ E[eiη
TZ ] (15.23)

Note that m = E[Z] and K = E[(Z −m)(Z −m)T ].
If K is positive definite, the coordinates of Z have joint density

fZ(z) =
1

(2π)d/2(detK)1/2
e−

1
2

(z−m)TK−1(z−m) (15.24)

Z1, Z2, · · · , Zd are called jointly Gaussian if [Z1, Z2, · · · , Zd]T is vector Gaussian.

Remark 15.1. Suppose Z1, Z2, . . . , ZL are jointly Gaussian with means m1,m2, . . . ,mL re-
spectively.

If

E



Z1 −m1

Z2 −m2
...

ZL −mL

 [ (Z1 −m1)T (Z2 −m2)T . . . (ZL −mL)T
]
 =

 K11 0 0

0
. . . 0

0 0 KLL


then, Z1, Z2, . . . , ZL are mutually independent. That is, uncorrelatedness implies mutual
independence for jointly Gaussian random vectors.
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If Z1 and Z2 are jointly Gaussian random vectors with respective means m1 and m2, then

E[Z1|Z2] = m1 + A(Z2 −m2) for some matrix A. (15.25)

To see this, note that

E[(Z1 − (m1 + A(Z2 −m2)))(Z2 −m2)T ] = K12 + AK22 , (15.26)

where K12 = E[(Z1−m1)(Z2−m2)T ]. If this can be made zero for some A, then Z1− (m1 +
A(Z2 −m2)) would be independent of (Z2 −m2). i.e.,

E[(Z1 − (m1 + A(Z2 −m2)))f(Z2)] = 0 for all functions f(·) , (15.27)

which would prove the claim.
If K22 is invertible, set A = −K12K

−1
22 . Otherwise, find B having the rank of K22 and

satisfying B(Z2 −m2) = Z3 with K33 = E[Z3Z
T
3 ] invertible (we can always do this). Then

we have

K13 = K12B
T , (15.28)

K33 = BK22B
T , (15.29)

where K13 = E[(Z1 −m1)ZT
3 ]. Set A = −K13K

−1
33 B.
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