Lecturer: Venkat Anantharam
Scribe: none

This lecture was not scribed. Most of the calculations done during this lecture are available in the textbook.

We studied the Riccati equation

$$
P_{k+1}=A^{T}\left(P_{k}-P_{k} B\left(B^{T} P_{k} B+R\right)^{-1} B^{T} P_{k}\right) A+Q
$$

(eqn. (4.8) on pg. 153 of the textbook). We proved Prop. 4.4.1, as stated on pp. $153-154$ of the textbook. The proof we gave was essentially identical to that in the textbook. The only difference was in the proof that $A+B L$ must be stable (where $L=-\left(B^{T} P B+R\right)^{-1} B^{T} P A$ as in eqn. (4.11) on pg. 154 of the textbook). Starting from the equation

$$
P=(A+B L)^{T} P(A+B L)+Q+L^{T} R L
$$

(which is eqn. (4.12) on pg. 156 of the textbook) and assuming that $\lambda$ is a (possibly complex) eigenvalue of $A+B L$ with $|\lambda| \geq 1$, we let $v$ be a nonzero (possibly complex) eigenvector corresponding to this eigenvalue, i.e. $(A+B L) v=\lambda v$. We write

$$
v^{*} P v=|\lambda|^{2} v^{*} P v+v^{*} Q v+(L v)^{*} R L v,
$$

where the $*$ denotes complex conjugate transpose. Since all the terms above are real and nonnegative, we conclude that $v^{*} Q v=0$ and $(L v)^{*} R L v=0$. The second of these, together with the positive definiteness of $R$ implies that $L v=0$, from which we see that $A v=\lambda v$. With $Q=C^{T} C$ we learn from $v^{*} Q v=0$ that $C v=0$. But then

$$
\left[\begin{array}{c}
C \\
C A \\
C A^{2} \\
\vdots \\
C A^{n-1}
\end{array}\right] v=0
$$

which contradicts our assumption that $(C, A)$ is observable. Hence it must be that $(A+B L)$ is stable.

