
EE 223: Stochastic Estimation and Control Spring 2007

Lecture 8 — February 8

Lecturer: Venkat Anantharam Scribe: none

This lecture was not scribed. Most of the calculations done during this lecture are avail-
able in the textbook.

We started out by discussing the structure of symmetric matrices. An n× n real matrix
A is called symmetric if it equals its transpose, i.e. A = AT .

Every eigenvalue of a symmetric matrix is real. This may be seen by considering it as a
complex matrix. Let λ be an eigenvalue (possibly complex) and v an associated eigenvector
(possibly complex), so we have Av = λv. Consider the expression v∗Av, where v∗ denotes
the complex conjugate transpose of v. Since v∗A∗ = v∗A (because A∗, the complex conjugate
transpose of A, equals AT by virtue of A being real, and also equals A, by virtue of A being
symmetric), we have v∗A = λ∗v∗ by taking the complex conjugate transpose of the equation
Av = λv, where λ∗ denotes the complex conjugate of λ. Now we can write

λ∗v∗v = v∗Av = λv∗v ,

from which it follows that λ∗ = λ, i.e. λ is real (because v is not the zero vector).

If v1 and v2 are eigenvector of the symmetric matrix A corresponding to distinct eigenval-
ues λ1 and λ2 respectively, then they are orthogonal. To see this, using the already proved
fact that both λ1 and λ2 are real, we may write

λ2v
T
2 v1 = v2Av1 = λ1v

T
2 v1 ,

where in one case we used vT2 A
T = vT2 A = λ2v

T
2 and in the other case we used Av1 = λ1v1.

From this it follows that vT2 v1 = 0, as claimed, because λ1 6= λ2.

Every symmetric matrix has a complete basis of eigenvectors. This is a consequence of
the fact that N ((λI − A)2) = N (λI − A) for any eigenvalue λ of A. To see this, suppose
v ∈ N ((λI − A)2) is nonzero and consider

vT (λI − A)2v = 0 .

Since (λI − A)T = (λI − A), this can be written as

((λI − A)v)T (λI − A)v = 0 ,

from which it follows that v ∈ N (λI − A).

From this discussion it follows that there is an orthogonal n × n matrix T (each of its
columns will be an eigenvector of A, each column will have squared norm 1, and any distinct
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pair of its columns is orthogonal) such at T−1AT is a diagonal matrix with its diagonal
entries being the eigenvalues of A, each with multiplicity equal to its multiplicity as a root
of the characteristic polynomial of A. Note that T−1 = T T (this is what it means for T to
be orthogonal).

A symmetric matrix is called positive semidefinite or nonnegative definite if all its eigen-
values are nonnegative. It is called positive definite if all its eigenvalues are strictly positive.

We discussed the fully observed finite horizon problem of controlling the linear system

xk+1 = Akxk +Bkuk + wk , k = 0, 1, . . . , N − 1

with the quadratic cost criterion of minimizing (informally)

E[
N−1∑
k=0

(XT
k QkXk + UT

k RkUk) +XT
NQNXN ] ,

where each Qk, k = 0, 1, . . . , N is a positive semidefinite symmetric matrix, and each Rk,
k = 0, 1, . . . , N − 1 is a positive definite symmetric matrix. Here xk ∈ Rn and uk ∈ Rm for
each k. wk is a zero mean vector noise with finite autocovariance matrix. See Section 4.1 of
the text.

We proved that the optimal control strategy can be taken as a linear feedback strategy
based on the current state, with the matrices defining the policy coming from the Riccati
equation, as in eqns. (4.3) and (4.4) and the equation that precedes them, in the textbook.

The problem formulation is motivated by trying to make the state track zero, with devi-
ations from the desired trajectory being subject to a direction dependent quadratic penalty
(given by the matrices Qk) and control effort also being penalized by a direction dependent
quadratic penalty (given by the matrices Rk). Further, the natural assumption is made
that there are no freebie control directions (this is what it means to assume that each Rk is
positive definite rather than just positive semidefinite).

8-2


