# EE223: Stochastic Systems: Estimation and Control. 

Spring 2007
Lecture 12 - 22nd February
Lecturer: Venkat Anantharam
scribe: Rahul Tandra

### 12.1 Introduction

We consider the traditional sequential hypothesis testing problem and discuss it within a partially observed stochastic control framework. A decision maker takes observations from a finite set $\mathcal{Y}$. The distribution of the observations depend on the underlying hypotheses. For simplicity we discuss the binary hypothesis problem, i.e., there are two possibilities for the underlying hypotheses. Let $H_{0}$ and $H_{1}$ denote the two hypotheses. Also let $p_{0}(y)$ and $p_{1}(y)$ be the probability distribution of the observation under $H_{0}$ and $H_{1}$ respectively. In this problem, we assume that the observations are independent conditional on the underlying hypothesis. We work with a Bayesian framework and assume that the underlying hypothesis is $H_{0}$ with probability $\alpha$ and is $H_{1}$ with probability $1-\alpha, 0 \leq \alpha \leq 1$.

We assume that the decision maker can take upto $M$ observations sequentially at cost $C$ per observation. However, at any point he can make a decision on the true hypothesis without making further observations. Let $L_{1}$ denote the cost of deciding $H_{1}$ when the true hypothesis is $H_{0}$ and $L_{0}$ denote the cost of deciding $H_{0}$ when the true hypothesis is $H_{1}$. The goal is to design a strategy for the decision maker that minimizes the total expected cost.

### 12.2 Partially observed stochastic control formulation

We now formulate the above problem as a finite horizon partially observed stochastic control problem. Let $N=M+1$ be the time horizon. The state space can be modeled as

$$
\mathcal{X}=\{\Delta, \mathbf{0}, \mathbf{1}\}
$$

with the following interpretation:

- $\Delta$ : represents the state when a decision has already been made in the past
- 0: denotes the state where a decision has not yet been made and the true hypothesis is $H_{0}$
- 1: denotes the state where a decision has not yet been made and the true hypothesis is $H_{1}$

Under this state space model the initial distribution is given by $[0, \alpha, 1-\alpha]$. Let the set of controls be denoted by $\mathcal{U}=\left\{c, s_{0}, s_{1}\right\}$ where

- $c$ stands for the control action where the controller decides to continue and take another observation,
- $s_{0}$ denotes the control action where the controller decides on hypothesis $H_{0}$,
- $s_{1}$ denotes the control action where the controller decides on hypothesis $H_{1}$.

It is easy to see that the transition probability matrices are given as

$$
\mathbb{P}(c)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \mathbb{P}\left(s_{0}\right)=\mathbb{P}\left(s_{1}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Note that these transition probability matrices will determine the state update functions $f_{k}\left(x_{k}, u_{k}, w_{k}\right), k=0,1, \ldots, N-1$, in our general setup.

Recall that in the general setup we had the function $h_{0}\left(x_{0}, v_{0}\right)$ and the functions $h_{k}\left(x_{k}, u_{k-1}, v_{k}\right)$, $k=1,2, \cdots, N$. In the sequential hypothesis testing problem there is no observation at times 0 and $N$, and we can determine $h_{k}\left(x_{k}, u_{k-1}, v_{k}\right)$ for $k=1,2, \ldots, N-1$ using the functions $q_{k}\left(y_{k} \mid x_{k}, u_{k-1}\right)$ given by

$$
\begin{aligned}
q_{k}(* \mid \Delta, u) & =1 \text { for all } u \\
q_{k}(y \mid \mathbf{0}, c) & =p_{0}(y), \quad y \neq * \\
q_{k}(y \mid \mathbf{1}, c) & =p_{1}(y), \quad y \neq *
\end{aligned}
$$

for $k=1,2, \cdots, N-1$. Here we have augmented the state space $\mathcal{Y}$ by including the symbol '*' which represents the case when a decision has already been made in the past and hence no further observations are taken. Note that the remaining terms of the function are zero, i.e., $q_{k}(y \mid \Delta, u)=0$ for all $y \neq *$ and all $u$, and $q_{k}(* \mid \mathbf{0}, c)=q_{k}(* \mid \mathbf{1}, c)=0$ for all $y \neq *$. We cannot have $\left(x_{k}, u_{k-1}\right) \in\left\{\left(0, s_{0}\right),\left(0, s_{1}\right),\left(1, s_{0}\right),\left(1, s_{1}\right)\right\}$, so it is not necessary to define $q\left(y_{k} \mid x_{k}, u_{k-1}\right)$ for such pairs.

We now determine the cost functions $g_{k}\left(x_{k}, u_{k}\right)$.

$$
\begin{aligned}
g_{k}(\Delta, u) & =0, \quad k=0,1, \ldots, N-1, \quad \text { for all } u \in \mathcal{U} \\
g_{k}(\mathbf{1}, c) & =C, k=0,1, \ldots, N-2 \\
g_{k}(\mathbf{0}, c) & =C, k=0,1, \ldots, N-2 \\
g_{N-1}(\mathbf{1}, c) & =\infty \\
g_{N-1}(\mathbf{0}, c) & =\infty \\
g_{k}\left(\mathbf{1}, s_{0}\right) & =L_{0}, k=0,1, \ldots, N-1, \\
g_{k}\left(\mathbf{1}, s_{1}\right) & =0, k=0,1, \ldots, N-1 \\
g_{k}\left(\mathbf{0}, s_{1}\right) & =L_{1}, k=0,1, \ldots, N-1 \\
g_{k}\left(\mathbf{0}, s_{0}\right) & =0, k=0,1, \ldots, N-1
\end{aligned}
$$

Notice that the control action in state $\mathbf{0}$ or state $\mathbf{1}$ at time $N-1$ has to be $s_{0}$ or $s_{1}$ only, and this has been ensured by setting $g_{N-1}(\mathbf{1}, c)=g_{N-1}(\mathbf{0}, c)=\infty$.

### 12.3 Optimal strategy using DP algorithm

Now we are ready to solve this problem under our general DP framework.
Remark 12.1. At any time under any strategy $\Psi$, the conditional distribution of the state $X_{k}^{\Psi}$ given $I_{k}^{\Psi}=\left(Y_{0}^{\Psi}, Y_{1}^{\Psi}, \cdots, Y_{k}^{\Psi}, U_{0}^{\Psi}, \cdots, U_{k-1}^{\Psi}\right)$ is of the form $\left[0, \alpha_{k}, 1-\alpha_{k}\right]$ for some $0 \leq$ $\alpha_{k} \leq 1$ or it is $[1,0,0]$. For convenience we denote the distribution $[1,0,0]$ by $\mathbf{F}$ and $\left[0, \alpha_{k}, 1-\right.$ $\left.\alpha_{k}\right]$ is denoted by $\bar{\alpha}_{k}$, and sometimes, abusing notation, by $\alpha_{k}$.

From the above remark, it is clear that the cost to go function $J_{k}(),. k=0,1, \cdots, N$ is given by $J_{k}\left(\bar{\alpha}_{k}\right)$ and $J_{k}(\mathbf{F})$.

Remark 12.2. The terminal cost in this problem is zero, i.e., $g_{N}\left(x_{N}\right)=0$. Specifically, $g_{N}(\Delta)=0$. This implies that $J_{N}(\mathbf{F})=0$.

We have now converted the problem into a fully observed stochastic control problem. Under the general setup the information state evolves as

$$
\left[\gamma_{k}, \theta_{k}, \beta_{k}\right] \cdot \mathbb{P}\left(u_{k}\right) \cdot D\left(y_{k+1}, u_{k}\right) \propto\left[\gamma_{k+1}, \theta_{k+1}, \beta_{k+1}\right]
$$

where $\left[\gamma_{k}, \theta_{k}, \beta_{k}\right]$ is the distribution of the state at time $k, \mathbb{P}($.$) is the transition probability$ matrix and $D\left(y_{k+1}, u_{k}\right)$ is a diagonal matrix with entries $p\left(y_{k+1} \mid x, u_{k}\right)$.

However, in our problem $\left[\gamma_{k}, \theta_{k}, \beta_{k}\right]$ is either $\bar{\alpha}_{k}$ or $\mathbf{F}$. We now determine the information state for our problem.

- If $u_{k}=c$

$$
\begin{align*}
\mathbf{F} & \mapsto \mathbf{F} \\
\bar{\alpha}_{k} & \mapsto\left[0, \alpha_{k}, 1-\alpha_{k}\right] \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
- & 0 & 0 \\
0 & p_{0}\left(y_{k+1}\right) & 0 \\
0 & 0 & p_{1}\left(y_{k+1}\right)
\end{array}\right] \\
& =\left[0, \frac{\alpha_{k} p_{0}\left(y_{k+1}\right)}{\alpha_{k} p_{0}\left(y_{k+1}\right)+\left(1-\alpha_{k}\right) p_{1}\left(y_{k+1}\right)}, 1-\frac{\alpha_{k} p_{0}\left(y_{k+1}\right)}{\alpha_{k} p_{0}\left(y_{k+1}\right)+\left(1-\alpha_{k}\right) p_{1}\left(y_{k+1}\right)}\right] \tag{12.1}
\end{align*}
$$

- If $u_{k}$ is $s_{0}$ or $s_{1}$

$$
\begin{array}{rll}
\mathbf{F} & \mapsto & \mathbf{F} \\
\bar{\alpha}_{k} & \mapsto & \mathbf{F} \tag{12.2}
\end{array}
$$

Now, all we need to do is to solve the following DP equation

$$
J_{k}\left(\lambda_{k}\right)=\min _{u_{k}} \mathbb{E}\left[G_{k}\left(\lambda_{k}, u_{k}\right)+J_{k+1}\left(T_{k}\left(\lambda_{k} u_{k}, Y_{k+1}\right)\right)\right]
$$

Remark 12.3. $\lambda_{k}$ stands for a realization of $\lambda_{k}^{\Psi}$, the conditional law of the state $X_{k}^{\Psi}$ given $I_{k}^{\Psi}$. Recall that the only $\lambda_{k}$ of interest are those of the form $\bar{\alpha}_{k}$ or $\mathbf{F}$.

Remark 12.4. $T_{k}\left(\lambda_{k}, u_{k}, y_{k+1}\right)$ is the offline, strategy agnostic function that gave $p_{k+1 \mid k+1}\left(x_{k+1} \mid \eta_{k+1}\right)$ in terms of $p_{k \mid k}\left(x_{k} \mid \eta_{k}\right)$. In our example, this function is given in Eqn. (12.1) and Eqn. (12.2).

Remark 12.5. $T_{k}\left(\lambda_{k}, u_{k}, Y_{k+1}\right)$ is a random variable. Here $Y_{k+1}$ is distributed as the observation would be if $X_{k}$ had distribution $\lambda_{k}$ and control was $u_{k}$.

In our example

$$
\begin{align*}
J_{k}(\mathbf{F}) & =0 \\
J_{k}\left(\bar{\alpha}_{k}\right) & =\min \left\{\alpha_{k} L_{1},\left(1-\alpha_{k}\right) L_{0}, C+A_{k}\left(\alpha_{k}\right)\right\} \quad, k=0,1, \ldots, N-2 \tag{12.3}
\end{align*}
$$

where

$$
A_{k}(\alpha):=\mathbb{E}\left[J_{k+1}\left(\frac{\alpha p_{0}(Y)}{\alpha p_{0}(Y)+(1-\alpha) p_{1}(Y)}\right)\right]
$$

here the expectation is over $Y$ which has a distribution $\left(\alpha p_{0}(y)+(1-\alpha) p_{1}(y), y \in \mathcal{Y}\right)$. Further, $J_{N-1}(F)=0$ and the equation for $J_{N-1}\left(\bar{\alpha}_{N-1}\right)$ is like equation (12.3) above, except that only the first two terms show up in the minimization (because continuing is no longer an option).

Claim 12.6. The function $A_{k}(\alpha)$ satisfies the following properties:

- $A_{k}(\alpha)$ is concave over $\alpha \in[0,1]$
- $A_{k}(0)=A_{k}(1)=0$
- $A_{k}(\alpha)$ is monotonically increasing in $k$, i.e., $A_{k-1}(\alpha) \leq A_{k}(\alpha)$, for all $k$.

Figure 12.3 tells us the optimal strategy. The optimal control to choose at time $k$ is defined in terms of two thresholds $0 \leq \alpha_{k}^{(1)}<\alpha_{k}^{(2)} \leq 1$ by

$$
u_{k}^{*}\left(\alpha_{k}\right)=\left\{\begin{array}{cc}
\text { if } \alpha_{k} \leq \alpha_{k}^{(1)} & \text { decide } s_{1} \\
\text { if } \alpha_{k}^{(1)}<\alpha_{k}<\alpha_{k}^{(2)} & \text { decide } c \\
\text { if } \alpha_{k} \geq \alpha_{k}^{(2)} & \text { decide } s_{0}
\end{array}\right.
$$

### 12.4 Proof of Claim 12.6

It is trivial to verify that $A_{k}(0)=A_{k}(1)=0$ for all $k$. Now, we prove the monotonicity of $A_{k}(\alpha)$.

Note that $J_{N}(F)=0$. Also,

$$
J_{N-1}(\bar{\alpha})=\min \left\{\alpha L_{1},(1-\alpha) L_{0}\right\}
$$



Figure 12.1. Each term in Eqn. (12.3) is plotted as a function of $\alpha \in[0,1]$. The red and the blue straight lines correspond to the terms $(1-\alpha) L_{0}$ and $\alpha L_{1}$ respectively. The green curve plots the concave function $C+A_{k}(\alpha)$ for some time $k$.

Since $J_{N-2}(\bar{\alpha})$ is a minimum of three terms, two of which are $\alpha L_{1}$, and $(1-\alpha) L_{0}$, it is clear that

$$
\begin{aligned}
J_{N-2}(\bar{\alpha}) & \leq \min \left\{\alpha L_{1},(1-\alpha) L_{0}\right\} \\
& =J_{N-1}(\bar{\alpha})
\end{aligned}
$$

Therefore, by induction we have $J_{k-1}(\bar{\alpha}) \leq J_{k}(\bar{\alpha})$ for all $k$. From the expression for $A_{k}($.$) in$ terms of $J_{k}(\cdot)$ the monotonicity of $A_{k}($.$) immediately follows.$

Remark 12.7. One can use induction to show that both $J_{k}(\alpha)$ and $A_{k}(\alpha)$ are concave functions of $\alpha$.

We prove the concavity of $A_{k}(\alpha)$ given that of $J_{k+1}(\alpha)$. This would imply the concavity of $J_{k}(\alpha)$ via equation (12.3), allowing the induction to propagate. Consider $0 \leq \alpha_{0}, \alpha_{1} \leq 1$. Define, $\alpha_{\lambda}:=\lambda \alpha_{1}+(1-\lambda) \alpha_{0}$.

For each $y \in \mathcal{Y}$, let

$$
\begin{aligned}
\xi_{0}(y) & :=\alpha_{0} p_{0}(y)+\left(1-\alpha_{0}\right) p_{1}(y) \\
\xi_{1}(y) & :=\alpha_{1} p_{0}(y)+\left(1-\alpha_{1}\right) p_{1}(y) \\
\xi_{\lambda}(y) & :=\alpha_{\lambda} p_{0}(y)+\left(1-\alpha_{\lambda}\right) p_{1}(y)
\end{aligned}
$$

Now, from the definition of $A_{k}($.$) we have$

$$
\begin{align*}
& A_{k}\left(\alpha_{0}\right)=\sum_{y \in \mathcal{Y}} \xi_{0}(y) J_{k+1}\left(\frac{\alpha_{0} p_{0}(y)}{\xi_{0}(y)}\right) \\
& A_{k}\left(\alpha_{1}\right)=\sum_{y \in \mathcal{Y}} \xi_{1}(y) J_{k+1}\left(\frac{\alpha_{1} p_{0}(y)}{\xi_{1}(y)}\right) \\
& A_{k}\left(\alpha_{\lambda}\right)=\sum_{y \in \mathcal{Y}} \xi_{\lambda}(y) J_{k+1}\left(\frac{\alpha_{\lambda} p_{0}(y)}{\xi_{\lambda}(y)}\right) \tag{12.4}
\end{align*}
$$

Now for each $y \in \mathcal{Y}$, consider

$$
\lambda \xi_{1}(y) \cdot J_{k+1}\left(\frac{\alpha_{1} p_{0}(y)}{\xi_{1}(y)}\right)+(1-\lambda) \xi_{0}(y) \cdot J_{k+1}\left(\frac{\alpha_{0} p_{0}(y)}{\xi_{0}(y)}\right)
$$

Dividing and multiplying by $\left[\lambda \xi_{1}(y)+(1-\lambda) \xi_{0}(y)\right]=: \xi_{\lambda}(y)$, we get

$$
\begin{aligned}
& \xi_{\lambda}(y)\left[\frac{\lambda \xi_{1}(y)}{\xi_{\lambda}(y)} \cdot J_{k+1}\left(\frac{\alpha_{1} p_{0}(y)}{\xi_{1}(y)}\right)+\frac{(1-\lambda) \xi_{0}(y)}{\xi_{\lambda}(y)} \cdot J_{k+1}\left(\frac{\alpha_{0} p_{0}(y)}{\xi_{0}(y)}\right)\right] \\
\leq & \xi_{\lambda}(y)\left[J_{k+1}\left(\frac{\lambda \xi_{1}(y)}{\xi_{\lambda}(y)} \cdot \frac{\alpha_{1} p_{0}(y)}{\xi_{1}(y)}+\frac{(1-\lambda) \xi_{0}(y)}{\xi_{\lambda}(y)} \cdot \frac{\alpha_{0} p_{0}(y)}{\xi_{0}(y)}\right)\right] \\
= & \xi_{\lambda}(y)\left[J_{k+1}\left(\frac{\left[\lambda \alpha_{1}+(1-\lambda) \alpha_{0}\right] p_{0}(y)}{\xi_{\lambda}(y)}\right)\right] \\
= & \xi_{\lambda}(y)\left[J_{k+1}\left(\frac{\alpha_{\lambda} p_{0}(y)}{\xi_{\lambda}(y)}\right)\right]
\end{aligned}
$$

Note, that the inequality in the second step is justified because $J_{k+1}(\bar{\alpha})$ is a concave function of $\alpha$. Using the above inequality in Eqn. (12.4) will give

$$
\lambda A_{k}\left(\alpha_{1}\right)+(1-\lambda) A_{k}\left(\alpha_{0}\right) \leq A_{k}\left(\alpha_{\lambda}\right)
$$

which proves that $A_{k}(\alpha)$ is concave in $\alpha$.

