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12.1 Introduction

We consider the traditional sequential hypothesis testing problem and discuss it within a
partially observed stochastic control framework. A decision maker takes observations from a
finite set Y . The distribution of the observations depend on the underlying hypotheses. For
simplicity we discuss the binary hypothesis problem, i.e., there are two possibilities for the
underlying hypotheses. Let H0 and H1 denote the two hypotheses. Also let p0(y) and p1(y)
be the probability distribution of the observation under H0 and H1 respectively. In this
problem, we assume that the observations are independent conditional on the underlying
hypothesis. We work with a Bayesian framework and assume that the underlying hypothesis
is H0 with probability α and is H1 with probability 1 − α, 0 ≤ α ≤ 1.

We assume that the decision maker can take upto M observations sequentially at cost
C per observation. However, at any point he can make a decision on the true hypothesis
without making further observations. Let L1 denote the cost of deciding H1 when the true
hypothesis is H0 and L0 denote the cost of deciding H0 when the true hypothesis is H1. The
goal is to design a strategy for the decision maker that minimizes the total expected cost.

12.2 Partially observed stochastic control formulation

We now formulate the above problem as a finite horizon partially observed stochastic control
problem. Let N = M + 1 be the time horizon. The state space can be modeled as

X = {∆, 0, 1}

with the following interpretation:

• ∆: represents the state when a decision has already been made in the past

• 0: denotes the state where a decision has not yet been made and the true hypothesis
is H0

• 1: denotes the state where a decision has not yet been made and the true hypothesis
is H1

Under this state space model the initial distribution is given by [0, α, 1 − α].
Let the set of controls be denoted by U = {c, s0, s1} where
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• c stands for the control action where the controller decides to continue and take another
observation,

• s0 denotes the control action where the controller decides on hypothesis H0,

• s1 denotes the control action where the controller decides on hypothesis H1.

It is easy to see that the transition probability matrices are given as

P(c) =





1 0 0
0 1 0
0 0 1



 , P(s0) = P(s1) =





1 0 0
1 0 0
1 0 0





Note that these transition probability matrices will determine the state update functions
fk(xk, uk, wk), k = 0, 1, . . . , N − 1, in our general setup.

Recall that in the general setup we had the function h0(x0, v0) and the functions hk(xk, uk−1, vk),
k = 1, 2, · · · , N . In the sequential hypothesis testing problem there is no observation at times
0 and N , and we can determine hk(xk, uk−1, vk) for k = 1, 2, . . . , N − 1 using the functions
qk(yk|xk, uk−1) given by

qk(∗|∆, u) = 1 for all u

qk(y|0, c) = p0(y), y 6= ∗

qk(y|1, c) = p1(y), y 6= ∗

for k = 1, 2, · · · , N − 1. Here we have augmented the state space Y by including the symbol
‘∗’ which represents the case when a decision has already been made in the past and hence
no further observations are taken. Note that the remaining terms of the function are zero,
i.e., qk(y|∆, u) = 0 for all y 6= ∗ and all u, and qk(∗|0, c) = qk(∗|1, c) = 0 for all y 6= ∗.
We cannot have (xk, uk−1) ∈ {(0, s0), (0, s1), (1, s0), (1, s1)}, so it is not necessary to define
q(yk|xk, uk−1) for such pairs.

We now determine the cost functions gk(xk, uk).

gk(∆, u) = 0, k = 0, 1, . . . , N − 1, for all u ∈ U

gk(1, c) = C , k = 0, 1, . . . , N − 2,

gk(0, c) = C , k = 0, 1, . . . , N − 2,

gN−1(1, c) = ∞

gN−1(0, c) = ∞

gk(1, s0) = L0 , k = 0, 1, . . . , N − 1,

gk(1, s1) = 0 , k = 0, 1, . . . , N − 1,

gk(0, s1) = L1 , k = 0, 1, . . . , N − 1,

gk(0, s0) = 0 , k = 0, 1, . . . , N − 1 ,

Notice that the control action in state 0 or state 1 at time N − 1 has to be s0 or s1 only,
and this has been ensured by setting gN−1(1, c) = gN−1(0, c) = ∞.
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12.3 Optimal strategy using DP algorithm

Now we are ready to solve this problem under our general DP framework.

Remark 12.1. At any time under any strategy Ψ, the conditional distribution of the state
XΨ

k given IΨ
k = (Y Ψ

0 , Y Ψ
1 , · · · , Y Ψ

k , UΨ
0 , · · · , UΨ

k−1) is of the form [0, αk, 1 − αk] for some 0 ≤
αk ≤ 1 or it is [1, 0, 0]. For convenience we denote the distribution [1, 0, 0] by F and [0, αk, 1−
αk] is denoted by ᾱk, and sometimes, abusing notation, by αk.

From the above remark, it is clear that the cost to go function Jk(.), k = 0, 1, · · · , N is
given by Jk(ᾱk) and Jk(F).

Remark 12.2. The terminal cost in this problem is zero, i.e., gN(xN ) = 0. Specifically,
gN(∆) = 0. This implies that JN(F) = 0.

We have now converted the problem into a fully observed stochastic control problem.
Under the general setup the information state evolves as

[γk, θk, βk] · P(uk) · D(yk+1, uk) ∝ [γk+1, θk+1, βk+1]

where [γk, θk, βk] is the distribution of the state at time k, P(.) is the transition probability
matrix and D(yk+1, uk) is a diagonal matrix with entries p(yk+1|x, uk).

However, in our problem [γk, θk, βk] is either ᾱk or F. We now determine the information
state for our problem.

• If uk = c

F 7→ F

ᾱk 7→ [0, αk, 1 − αk] ·





1 0 0
0 1 0
0 0 1



 ·





− 0 0
0 p0(yk+1) 0
0 0 p1(yk+1)





=

[

0,
αkp0(yk+1)

αkp0(yk+1) + (1 − αk)p1(yk+1)
, 1 −

αkp0(yk+1)

αkp0(yk+1) + (1 − αk)p1(yk+1)

]

(12.1)

• If uk is s0 or s1

F 7→ F

ᾱk 7→ F (12.2)

Now, all we need to do is to solve the following DP equation

Jk(λk) = min
uk

E [Gk(λk, uk) + Jk+1 (Tk(λkuk, Yk+1))]

Remark 12.3. λk stands for a realization of λΨ
k , the conditional law of the state XΨ

k given
IΨ
k . Recall that the only λk of interest are those of the form ᾱk or F.
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Remark 12.4. Tk(λk, uk, yk+1) is the offline, strategy agnostic function that gave pk+1|k+1(xk+1|ηk+1)
in terms of pk|k(xk|ηk). In our example, this function is given in Eqn. (12.1) and Eqn. (12.2).

Remark 12.5. Tk(λk, uk, Yk+1) is a random variable. Here Yk+1 is distributed as the obser-
vation would be if Xk had distribution λk and control was uk.

In our example

Jk(F) = 0

Jk(ᾱk) = min {αkL1, (1 − αk)L0, C + Ak(αk)} , k = 0, 1, . . . , N − 2 (12.3)

where

Ak(α) := E

[

Jk+1

(

αp0(Y )

αp0(Y ) + (1 − α)p1(Y )

)]

here the expectation is over Y which has a distribution (αp0(y) + (1 − α)p1(y), y ∈ Y).
Further, JN−1(F ) = 0 and the equation for JN−1(ᾱN−1) is like equation (12.3) above, except
that only the first two terms show up in the minimization (because continuing is no longer
an option).

Claim 12.6. The function Ak(α) satisfies the following properties:

• Ak(α) is concave over α ∈ [0, 1]

• Ak(0) = Ak(1) = 0

• Ak(α) is monotonically increasing in k, i.e., Ak−1(α) ≤ Ak(α), for all k.

Figure 12.3 tells us the optimal strategy. The optimal control to choose at time k is
defined in terms of two thresholds 0 ≤ α

(1)
k < α

(2)
k ≤ 1 by

u∗
k(αk) =











if αk ≤ α
(1)
k decide s1

if α
(1)
k < αk < α

(2)
k decide c

if αk ≥ α
(2)
k decide s0

12.4 Proof of Claim 12.6

It is trivial to verify that Ak(0) = Ak(1) = 0 for all k. Now, we prove the monotonicity of
Ak(α).

Note that JN (F ) = 0. Also,

JN−1(ᾱ) = min {αL1, (1 − α)L0} .
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Figure 12.1. Each term in Eqn. (12.3) is plotted as a function of α ∈ [0, 1]. The red and the blue straight
lines correspond to the terms (1 − α)L0 and αL1 respectively. The green curve plots the concave function
C + Ak(α) for some time k.

Since JN−2(ᾱ) is a minimum of three terms, two of which are αL1, and (1−α)L0, it is clear
that

JN−2(ᾱ) ≤ min {αL1, (1 − α)L0}

= JN−1(ᾱ)

Therefore, by induction we have Jk−1(ᾱ) ≤ Jk(ᾱ) for all k. From the expression for Ak(.) in
terms of Jk(·) the monotonicity of Ak(.) immediately follows.

Remark 12.7. One can use induction to show that both Jk(α) and Ak(α) are concave
functions of α.

We prove the concavity of Ak(α) given that of Jk+1(α). This would imply the concavity
of Jk(α) via equation (12.3), allowing the induction to propagate. Consider 0 ≤ α0, α1 ≤ 1.
Define, αλ := λα1 + (1 − λ)α0.

For each y ∈ Y , let

ξ0(y) := α0p0(y) + (1 − α0)p1(y)

ξ1(y) := α1p0(y) + (1 − α1)p1(y)

ξλ(y) := αλp0(y) + (1 − αλ)p1(y)
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Now, from the definition of Ak(.) we have

Ak(α0) =
∑

y∈Y

ξ0(y)Jk+1

(

α0p0(y)

ξ0(y)

)

Ak(α1) =
∑

y∈Y

ξ1(y)Jk+1

(

α1p0(y)

ξ1(y)

)

Ak(αλ) =
∑

y∈Y

ξλ(y)Jk+1

(

αλp0(y)

ξλ(y)

)

(12.4)

Now for each y ∈ Y , consider

λξ1(y) · Jk+1

(

α1p0(y)

ξ1(y)

)

+ (1 − λ)ξ0(y) · Jk+1

(

α0p0(y)

ξ0(y)

)

Dividing and multiplying by [λξ1(y) + (1 − λ)ξ0(y)] =: ξλ(y), we get

ξλ(y)

[

λξ1(y)

ξλ(y)
· Jk+1

(

α1p0(y)

ξ1(y)

)

+
(1 − λ)ξ0(y)

ξλ(y)
· Jk+1

(

α0p0(y)

ξ0(y)

)]

≤ ξλ(y)

[

Jk+1

(

λξ1(y)

ξλ(y)
·
α1p0(y)

ξ1(y)
+

(1 − λ)ξ0(y)

ξλ(y)
·
α0p0(y)

ξ0(y)

)]

= ξλ(y)

[

Jk+1

(

[λα1 + (1 − λ)α0]p0(y)

ξλ(y)

)]

= ξλ(y)

[

Jk+1

(

αλp0(y)

ξλ(y)

)]

Note, that the inequality in the second step is justified because Jk+1(ᾱ) is a concave
function of α. Using the above inequality in Eqn. (12.4) will give

λAk(α1) + (1 − λ)Ak(α0) ≤ Ak(αλ)

which proves that Ak(α) is concave in α.
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