
EE 223: Stochastic Systems: Estimation and Control Fall 2006

Lecture 11 — February 20

Lecturer: Venkat Anantharam Scribe: Saurabh Amin

We continue our discussion on partially observed dynamic programming from last time.
This lecture will revisit the material of Lecture 10 before making further progress.

11.1 Finite Horizon Partially Observed DP Problem

Consider the stochastic system model starting from initial state x0 in the state space form

xk+1 = fk(xk, uk, wk) k = 0, . . . , N − 1

y0 = h0(x0, v0)

yk = hk(xk, uk−1, vk) k = 1, . . . , N

with x0, w0, . . . , wN−1, v0, . . . , vN mutually independent random variables.
A strategy Ψ is comprised of functions uk = νk(y0, . . . , yk), k = 0, . . . , N − 1. The aim is to
minimize the following cost function

min
Ψ
E

[
N−1∑
k=0

gk(X
Ψ
k , U

Ψ
k , wk) + gN(XΨ

N)

]

with UΨ
k = νk(Y

Ψ
0 , . . . , Y

Ψ
k ). Notice that the essential difference with respect to the fully

observed case is that the controller has to be a function of only the past observations. We
convert the partially observed problem to a fully observed one with a new definition of state.
Recall the notation from Lecture 10:

ηk , (y0, . . . , yk, u0, . . . , uk−1)

IΨ
k , (Y Ψ

0 , . . . , Y
Ψ
k , U

Ψ
0 , . . . , U

Ψ
k−1)

We want to find a new state (also known as information state) that satisfies the following:

• The information state at time k is a function of information available upto time k,

• The information state at time k + 1 can be determined from the information state at
time k, control applied at time k, and observation obtained at time k + 1.

We saw last time that these properties are satisfied by the conditional law of XΨ
k given

IΨ
k . We denote the conditional law by λΨ

k . The conditional law is a probability distribution
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valued random variable taking values in the space of all probability distributions on the state
space Xk at time k and is a (deterministic) function of IΨ

k . That is, for all A ⊆ Xk

λΨ
k (A) = P (XΨ

k ∈ A|IΨ
k ) = E[1(XΨ

k ∈ A|IΨ
k ] =

∫
A

pΨ(xk|IΨ
k )dxk ,

where the last of these expressions uses a density type notation. For example, if Xk is a finite
set of cardinality 5, then λΨ

k lies in the unit simplex in R5. To understand the difference
between conditional law and conditional expectation, let us recall the definition of the latter.

Remark 11.1. (Conditional Expectation) Given random variables X and Y1, . . . , Ym, the
conditional expectation E[X|Y1, . . . , Ym] is the function of Y1, . . . , Ym which is the best es-
timate of X given Y1, . . . , Ym in the least squares sense. This may be characterized by the
requirement that [X − E[X|Y1, . . . , Ym]] is orthogonal to all functions of the conditioning
variables, i.e., E[(X − E[X|Y1, . . . , Ym])g(Y1, . . . , Ym)] = 0 for all g(Y1, . . . , Ym).

One can view the conditional law of X as the function of Y1, . . . , Ym that best estimates the
distribution of X (and not just X) given Y1, . . . , Ym. Therefore, the conditional law is much
more informative than the conditional expectation, in that it will enable us to simultaneously
estimate all functions of X given Y1, . . . , Ym.

In Lecture 10, using a density type notation we defined functions pk|k(xk|ηk) and pk+1|k(xk+1|ηk, uk),
starting with p0|−1(x0) = p(x0), the initial law, that could be recursively calculated as

pk+1|k+1(xk+1|ηk+1) =
p(yk+1|xk+1, uk)pk+1|k(xk+1|ηk, uk)∫

p(yk+1|xk+1, uk)pk+1|k(xk+1|ηk, uk)dxk+1

pk+1|k(xk+1|ηk, uk) =

∫
p(xk+1|xk, uk)pk|k(xk|ηk)dxk

Here, p(yk+1|xk+1, uk) comes from the observation equation yk+1 = hk+1(xk+1, uk, vk+1) and
p(xk+1|xk, uk) comes from the state equation xk+1 = fk(xk, uk, wk). Also recall that these
functions do not depend on strategy Ψ for k = 0, . . . , N − 1.

Under strategy Ψ, we saw that we could compute the conditional law λΨ
k as begin given

by

xk 7→ pk|k(xk|IΨ
k )

in density type notation. Moving further, we want to see that the original cost functions can
be expressed as functions of the information state.

First observe that since wk is independent of (IΨ
k , X

Ψ
0 ), we can work with g̃k(xk, uk) ,

Ewk [gk(xk, uk, wk)], to write E[gk(X
Ψ
k , U

Ψ
k , wk)] = E[g̃k(X

Ψ
k , U

Ψ
k )]. This is because

E[gk(X
Ψ
k , U

Ψ
k , wk)] = E[E[gk(X

Ψ
k , U

Ψ
k , wk) | XΨ

k , U
Ψ
k ]] = E[g̃k(X

Ψ
k , U

Ψ
k )] ,
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where the second step comes from the independent of wk from (XΨ
k , U

Ψ
k ), which is a conse-

quence of the independence of wk from (IΨ
k , X

Ψ
0 ).

We now claim that

E[g̃k(X
Ψ
k , U

Ψ
k )] = E[Gk(λ

Ψ
k , U

Ψ
k )]

for some function Gk of laws on the state space at time k and controls at time k. This follows
from the fact that UΨ

k is a function of IΨ
k and so E[g̃k(X

Ψ
k , U

Ψ
k )] can be expressed in terms

of the conditional law of XΨ
k given IΨ

k , namely λΨ
k . Indeed

E[g̃k(X
Ψ
k , U

Ψ
k )] = E[E[g̃k(X

Ψ
k , U

Ψ
k )|IΨ

k ]] = E[

∫
g̃k(x, U

Ψ
k )λΨ

k (dx)] ,

where the quantity in the expectation in the RHS term depends on IΨ
k and is hence random.

Thus, what we call Gk(λ, u) for λ a probability distribution on Xk and u a control would be

Gk(λ, u) =

∫
g̃k(x, u)λ(dx) .

Thus we arrive at the following conclusion: Our control problem has been reformulated
as a fully observed control problem for a new dynamical system whose states are conditional
laws of the original state (also called the information state). There is only one gap: we need
to argue that the evolution of the new state can be treated as being driven at each step by
a random variable that is independent from time to time and such that these variables are
independent of the initial condition. We will accept for the moment that this true; this gap
will be closed in one of the later lectures. So, by the theory of fully observed DP, there exists
an optimal control that depends only on the current information state.

11.2 Finite State Partially Observed Markov Decision

Process

Suppose the state space at each time is X = {1, . . . , d}. Controls are drawn from a finite set
U at each time. The observations take values in a finite setY at each time. For each u ∈ U ,
we have a transition probability matrix P(u) , [pij(u)]. The observation at time k has
the conditional probability described by q(yk|xk, uk−1), where q(y | j, u) gives a probability
distribution on Y for each (j, u) ∈ X ×U . The information state at time k can be determined
in terms of a row vector of size d.

πk|k(ηk) = [pk|k(1|ηk), . . . , pk|k(d|ηk)] ,

whose dynamics are given by

πk+1|k+1(ηk+1) ∝ πk|k(ηk)P(uk)D(uk, yk+1) ,
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where D(uk, yk+1) denotes the d× d diagonal matrix with entry q(yk+1 | i, uk) in the (i, i)-th
location. The starting condition π0|0(η0) can be computed from π0|−1, which is the initial
distribution of the state. We can compute these quantities offline. Note that the quantity
on the RHS of these equations denote the unnormalized πk+1|k+1(ηk+1) and these evolve
according to a linear equation. The information state at time k for any strategy Ψ will be
πk|k(I

Ψ
k ). The optimal control at time k, as part of the optimal strategy Ψ, will be a function

only of the information state πk|k(I
Ψ
k ).

11.3 Sequential Probability Ratio Test

We first recall the static binary hypothesis testing problem in a Bayesian setting. The de-
cision maker makes an observation from a finite set Y . Let α be the prior probability that
hypothesis H0 is true. (p0(y), y ∈ Y) is the distribution of the observation given that hypoth-
esis H0 is true. (p1(y), y ∈ Y) is the distribution of the observation given that hypothesis
H1 is true. The problem is to decide which hypothesis is true based on the observation.

If the decision maker makes the correct decision, zero cost is incurred. If H0 (H1) holds
and H1 (H0) is decided, cost L1 (L0) is incurred. A decision rule is a map d : Y 7→ {0, 1}.
The optimal decision rule can be obtained by minimizing the total expected cost

αL1

∑
y:d(y)=1

p0(y) + (1− α)L0

∑
y:d(y)=0

p1(y)

For any given y ∈ Y , the decision maker can either take the hit αL1p0(y) or (1−α)L0p1(y).
The decision rule will be optimal if and only if the smaller hit is chosen (if there is a tie it
doesn’t matter what decision is made). That is, an optimal decision rule is

d∗(y) = 1⇔ (1− α)L0p1(y)

αL1p0(y)
≥ 1

This is a threshold rule based on the likelihood ratio p1(y)
p0(y)

: if the likelihood ratio is big enough

(at least αL1

(1−α)L0
) the decision maker should decide H1 on observing y.

In the next lecture, we will consider the sequential hypothesis testing problem in which
instead of deciding based on one sample, the decision maker has the option of getting new
samples, at a cost C, up to a total of M samples. All samples are independent over time
conditioned on the true hypothesis, and the underlying hypothesis does not change over
time.
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