
EE223: Stochastic Systems: Estimation and Control. SP’07

Lecture 21 — April, 05

Lecturer: Venkat Anantharam scribe: Assane Gueye

In this lecture, we continue to explore the average cost DP problem started in lecture 20.
We have already seen the main result of average cost DP and we have proven it. We will
now derive a sufficient condition under which the hypothesis of the main result holds.

Let’s first recall the model adopted for the average cost DP.

21.1 Average Cost Dynamic Programming

We consider a finite state controlled Markov chain with transition probability matrices

P (u) = [pij(u)], i, j ∈ X, finite, and u ∈ U finite (21.1)

Our aim is to minimize over all strategies Ψ the average cost

lim sup
N→∞

1

N

N−1∑
k=0

g(XΨ
k , U

Ψ
K)

where g(i, u) is the expected one step cost incurred when the system is in state i and control
u is applied.

Main Result:
Suppose that there exist λ ∈ R and a vector h = [h(1), . . . , h(d)]T (d = |X |) such that

λ+ h(i) = min
u

[
g(i, u) +

d∑
j=1

pij(u)h(j)

]
(21.2)

holds for all 1 ≤ i ≤ d.
Then λ is the optimal expected cost and any µ : X→ U such that for all i µ(i) minimizes in
the i’th equation in (21.2) defines an optimal stationary Markov strategy.

For a proof of this main result, refer to lecture 20 or to [1]. In the next section, we will
study the optimality conditions for the average cost DP.

21.2 Optimality conditions: Blackwell Optimal Poli-

cies

The main result shows that the solutions of the average cost DP problem can be identified
if we could find λ (the optimal average cost) and h (an associated vector of differential
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costs) satisfying the average cost DP equation (average cost Bellman equation). However, it
provides no assurance on the existence of λ and h. In this section, we will study conditions
under which the existence is guaranteed. For that we need to first define the notion of
Blackwell optimality.

Definition 21.1. Blackwell Optimal Strategy
A Blackwell optimal strategy is one given by a function µ : X → U such that µ defines an
optimal strategy in every α-discounted problem (for the given Markov Chain and per stage
cost g(i, ·)) for α ∈ (ᾱ, 1), where 0 < ᾱ < 1 is some number.

Claim 21.2. A Blackwell optimal strategy always exists.

A proof of this claim is given in [1], pg. 202.

Now we will derive a sufficient condition for the existence of the λ and h hypothesized in
the main result. We will first recall, as an aside, some results about Markov chain.
Given a finite state MC with transition probability P , the following limit exists and is well
defined.

P ∗ = lim
n→∞

1

n

n−1∑
k=0

P k (21.3)

Write P ∗ =
[
p∗ij
]
. The intuition is that p∗ij is the long-run proportion of time that the

chain will be in state j given that it started in state i. This intuition holds irrespective of
the number of communicating classes: from a transient state the chain will eventually end
up in one of the recurrent communicating classes, p∗ij will be non-zero only if j lies in a
recurrent communicating class, and for each i the sum of p∗ij over all j in a given recurrent
communicating class will give the probability with which the chain started at i eventually
ends up in that recurrent communicating class. See any book on Markov chains for more
details.
Furthermore, we have that∥∥∥∥∥ 1

D

n−1+D∑
k=0

P k − P ∗
∥∥∥∥∥ < Cγn, for C <∞ and γ < 1.

where D is the l.c.m of the periods of the recurrent communicating classes.
This last inequality implies that

H =
∞∑
k=0

(P k − P ∗)

is well defined. Its (i, j) entry can be thought of as giving the expected excess over stationarity
of the number of visits to state j, given that the chain started in state i.
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By re-writing the expression for H, one can get

H =
∞∑
k=0

(P k − P ∗)

= (I − P ∗) +
∞∑
k=1

(P k − P ∗)

= (I − P ∗) + P

∞∑
k=0

(P k − P ∗) (21.4)

= I − P ∗ + PH (21.5)

where (21.4) comes from the fact that PP ∗ = P ∗P = P ∗P ∗ = P ∗. For more details about
this fact, refer to [1] page 195. From (equation 21.5), we see that H satisfies

P ∗ +H = I + PH (21.6)

Notice that equality (21.6) (a matrix equation) has the same shape as equation (21.2).

Now, notice that for any stochastic matrix P we have

(I − αP )−1 =
∞∑
k=0

αkP k

=

(
∞∑
k=0

αk

)
P ∗ +

∞∑
k=0

αk(P k − P ∗)

= (1− α)−1P ∗ +H +
∞∑
k=0

αk(P k − P ∗)−
∞∑
k=0

(P k − P ∗)

= (1− α)−1P ∗ +H +
∞∑
k=0

(αk − 1)(P k − P ∗)

= (1− α)−1P ∗ +H + Γα , (21.7)

where P ∗ is defined in terms of P as in equation (21.3). Note that Γα, as defined (21.7),
tends to zero as α→ 1.

The α-discounted overall expected cost for the stationary strategy µ is given by:

Jα,µ = (I − αPµ)−1gµ

where Jα,µ = [Jα,µ(1), . . . , Jα,µ(d)]T , gµ = [g(1, µ(1)), . . . , g(d, µ(d))]T , and Pµ has entries
pij(µ(i)).
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Further, for a given strategy µ : X → U, if we let Jµ denote the associated long term
average cost i.e.

Jµ = P ∗µgµ ⇔ Jµ(i) =
d∑

k=1

pi,j(µ(i))gµ(j) , for all i,

and let P ∗µ be defined in terms of Pµ as in equation (21.3), then we have

Jα,µ = (I − αPµ)−1gµ

=
(
(1− α)−1P ∗µ +Hµ + Γα,µ

)
gµ

= (1− α)−1P ∗µgµ +Hµgµ + Γα,µgµ

= (1− α)−1Jµ + hµ + o(1− α) . (21.8)

Here Hµ and Γα,µ are associated to Pµ as in equation21.7. Also, hµ = Hµgµ. Finally, o(1−α)
is a function that tends to zero as α → 1, and we may take this to happen uniformly over
all µ because there are only finitely many possibilities for µ.
Equality (21.8) holds for every strategy µ and α ∈ (0, 1). In particular, for a Blackwell
optimal strategy µ∗, we have

Jα,µ∗ = (1− α)−1Jµ∗ + hµ∗ + o(1− α) (21.9)

Also, by applying equality (21.6) to gµ we get

Jµ + hµ = gµ + Pµhµ for every strategy µ. (21.10)

Now consider the Blackwell strategy µ∗. For all α ∈ (ᾱ, 1) and for every strategy µ we have

gµ∗ + αPµ∗Jα,µ∗ ≤ gµ + αPµJα,µ∗

Combining this inequality with (21.9), we obtain (after arranging the terms)

0 ≤ gµ − gµ∗ + α (Pµ − Pµ∗) Jα,µ∗
⇔ 0 ≤ gµ − gµ∗ + α (Pµ − Pµ∗) ((1− α)−1Jµ∗ + hµ∗ + o(1− α)) (21.11)

Multiplying the last inequality by (1− α) and letting α→ 1, we get

0 ≤ PµJµ∗ − Pµ∗Jµ∗ ⇔ Pµ∗Jµ∗ ≤ PµJµ∗ (21.12)

Further, if µ is such that Pµ∗Jµ∗ = PµJµ∗ , then the inequality 21.11 can be written as

0 ≤ gµ − gµ∗ + α (Pµ − Pµ∗) (hµ∗ + o(1− α))

Again, by taking the limit as α→ 1, we obtain, using equation (21.10),

Jµ∗ + hµ∗ = gµ∗ + Pµ∗hµ∗ ≤ gµ + Pµhµ∗ (21.13)

As a consequence of (21.13), we obtain the following sufficient condition for the existence of
λ and h in the main result.
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Theorem 21.3. If the optimal average cost is the same for all initial conditions, then there
exist λ and h as in the main result.

Corollary 21.4. If the chain Pµ is irreducible for every strategy µ, then there exist λ and
h as in the main result.

Proof: (of the theorem) If µ∗ is Blackwell optimal (we can always find such µ∗), then we have
Jµ∗(i) = λ for all i, because the optimal long term average cost is the same for all initial con-
ditions. Letting Jµ∗ = λe with e = [1, 1, . . . , 1]T , we have for all µ that PµJµ∗ = λe = Pµ∗Jµ∗
(because the sum of the entries of each row of Pµ is equal to 1).
From equation (21.13) we have Jµ∗ + hµ∗ ≤ gµ +Pµhµ∗ for all µ, with equality when µ = µ∗.

We conclude that if the optimal average cost is the same for all initial conditions, then

λ+ h(i) = min
u

(
g(i, u) +

d∑
j=1

pij(u)h(j)

)

where
λ = Jµ∗(1) and h(i) = hµ∗(i)

with µ∗ being Blackwell optimal. �

The corollary follows immediately, since if the conditions of the corollary hold then the
optimal average cost must be the same for all initial conditions.
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