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To illustrate the control problem for finite horizon, fully observable systems, consider the trellis:

Figure 1: Minimum weight path example (Trellis)

We define a trellis to be a directed acyclic graph whose nodes are partitioned into disjoint nonempty
subsets called levels, numbered 0 through N . There is unique node at level 0 , called the source, and a
unique node at level N , called the destination. Every edge starting from a node at level k terminates
at a node at level k + 1 . Further, every node must lie on some path from the source to the destination.
The trellis in Figure 1 has N = 4 , source node S and destination node D.

The number on each edge is called its weight. Our goal is to find the minimum weight path from the
source node to the destination node, where the weight of a path is defined as the sum of weights of the
edges along the path. The direct (brute force) way is to enumerate all paths, evaluate their weights, and
then choose the path with the minimum weight. We will now discuss a more intelligent approach to solve
this problem, whose underlying principles will apply to a broader range of problems.

The minimum weight path problem on a trellis is a discrete time control problem (finite horizon, fully
observed) of the general kind introduced in Lecture 1. The underlying dynamical system is:

xk+1 = fk(xk, uk, wk) 0 ≤ k ≤ N − 1

Here wk = 0 for all k , i.e. the system is deterministic. xk denotes the node at level k in the path, uk

specifies the outgoing edge at state xk , its choice then determines the node on the path at level k + 1 .
The aim to minimize a cost, which fits into our general form:

E[

N−1∑

k=0

gk(Xk, Uk, wk) + gN (XN )]← informal expression

where gk(xk, uk, wk) is the weight of the edge corresponding to choosing the control uk at the node xk

at level k and gN(xN ) may be taken to be 0 (note that D is only possibility for xN ). Since wk = 0
for all k , the one step costs are also deterministic.

A simpler approach than brute force to solve the minimum weight path problem becomes apparent if
one recognizes “Bellman’s principle of optimality” (i.e. if a strategy is optimal at time 0 , then for each

1



k ≥ 0 , the portion of the strategy from time k onwards, conditioned on the knowledge of the controller
at time k , must be optimal). So in the minimum weight path problem, we can apply this principle. For
each node, we compute the minimum cost-to-go recursively from the end point, as shown in Figure 2.

Figure 2: Computing the minimum weight path recursively from the end for a weighted trellis

The cost-to-go at any state (node) at time k is expressed as a minimum, over control choices at that
state, of the sum of the one step cost and the remaining cost-to-go after taking that step. Any control that
minimizes in this calculation could be chosen as the control choice at that state in defining an optimum
strategy (going forward).

Note that in the minimum weight path problem any optimal control strategy can be thought of as being
defined in open-loop (i.e. without reference to the states). This is because the underlying dynamical
system is deterministic. In the example above, for instance, an optimal strategy would be to simply
specify, in open loop, the control sequence (A,B,A,A), see Figure 3.

Figure 3: Viewing the minimum weight path as a control problem: A, B, C are names of controls. The
red line is the (unique) minimum weight path in this example

This is not true in the stochastic case (i.e. open loop controls can be strictly worse than closed loop
controls. Let’s see this in a stochastic version of the minimum weight path problem (Figure 4).

In Figure 4 both controls A and B lead from x12 to D, but with different costs (see Table 1). Similarly,
both controls A and B lead from x22 to D, but with different costs (see Table 1). Assume that g(S, A) = 0
and that action A leads from S to x11 . Assume that g(S, B) = 0 and that action B leads from S to x21 .

The cost-to-go at state x12 is min{1, 50} = 1 , and the best control in state x12 is A. The cost-to-go at
state x22 is min{50, 2} = 2 , and the best control in state x22 is B. For convenience these values have
been written on the respective edges from x12 to D and x22 to D; don’t confuse this with edge weights.

The expected cost-to-go at state x11 (see Table 2) is thus:
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Figure 4: Stochastic version of the trellis problem: Two control actions A and B are possible in each
state. Both transitions are possible from each of x11 and x21 under control A and under control B with
some probabilities (say 1

2
, 1
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3
, 1
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for B).

The best control choice in state x11 is B.

The expected cost-to-go at state x21 (see Table 2) is:
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The best control choice in state x21 is B.

Finally, the expected cost-to-go in state S is min{0− 2

3
, 0− 8

3
} = − 8

3
. The best choice of control in state

S is B.

State Control g(x, u)

X12 A 1
B 50

X22 A 50
B 2

Table 1: Stochastic trellis at time 2. Cost g(x, u) is assumed to be deterministic.

State Control g(x, u)

X11 A 3
B −2

X21 A 1
B −4

Table 2: Stochastic trellis at time 1. Cost g(x, u) is assumed to be deterministic.

Note that the optimal strategy has to be closed loop. This is because we cannot decide the last (time 2 )
control action in open loop, since whether we want to make it A or B depends on where the randomness
leads us when we use the control action at time 1 (which in this example is B in either of the states
x11 and x21 at time 1 ). The outcome of this randomness cannot be seen until time 2 , so the optimal
control has to be decided based on this feedback.

For another example of this important conceptual point (relevance of feedback in stochastic control is
deeper than in deterministic control), consider the scalar linear system control problem (fully observed,
finite horizon)

xk+1 = xk + uk + wk
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wk v N(0, σ2) and independent

starting at x0 , we want to minimize E[
∑N

k=0
x2

k
] . Consider the closed loop strategy:

uk = −xk

The state sequence is then x0 = 0, x1 = w1, x2 = w2, . . . , xN = wN . The realized mean total cost is
E[

∑N

k=1
w2

k
] = Nσ2 .

However, for any open loop strategy u0, . . . , uN−1 :

x0 = 0, x1 = u0 + w1, x2 = u0 + u1 + w1 + w2, . . . , xk =

k∑

l=0

ul−1 +

k∑

l=0

wl
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x2
k] ≥ σ2

N∑
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k = σ2 N(N + 1)
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This lower bound on what can be achieved by open loop control strategies is, for large N , dramatically
worse than what the closed loop control strategy can achieve.

Looking ahead to the next lecture, let us introduce some notation. Consider the dynamical system:

xk+1 = fk(xk, uk, wk)

over a finite horizon N and consider the fully observed control problem (in informal notation) of mini-
mizing:

E[

N−1∑

k=0

gk(Xk, Uk, wk) + gN (XN )]

To be precise about what the problem actually is, we define a control strategy Ψ = (ν0, ν1, . . . , νN−1) ,
via a collection of functions, where νk(x1, . . . , xk) for k = 0, . . . , N − 1 is a map from the available
observations (states) up to time k , taking values in the space of possible controls at state xk (at time
k ). Our optimization problem is really one of minimizing the cost over all such Ψ (where the states and
controls at each time in the expression for the expected cost to be minimized are now random variables
that depend not only on the underlying noise, but also on the choice of control strategy Ψ).

A special kind of control strategies is the so called Markov strategies:

π = (µ0, µ1, . . . , µN−1)

defined through functions µk(xk) taking values in the possible control actions at state xk at time k .
Thus, in Markov strategies at each time only the most recent state is used in choosing the control.

To solve the control problem, let us recursively (from the end) define the following functions:

JN (xN ) = gN(xN )

Jk(xk) = inf
u in the set of possible controls at state xk

E[gk(xk, u, wk) + Jk+1(fk(xk, u, wk))]

These equations do not refer to any strategy as such.

The main result in the theory, informally, will be that the optimal control strategies are Markov and
given by the minimizers in these equations (as a function of xk for each k ).
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