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Review

Recall that we are considering the discounted infinite horizon problem with state evolution:

xk+1 = f(xk, uk, wk), k ≥ 0 .

The aim was to minimize (informally):

E

[
∞∑
k=0

αkg(Xk, Uk, wk)

]
, (19.1)

where (wk, k ≥ 0) are i.i.d. random variables.
To solve this problem, we defined a mapping T from functions on X to functions on X

given by:
(TJ)(x) = min

u
E [g(x, u, w) + αJ(f(x, u, w))] (19.2)

The above equation is known as Bellman’s equation. We will look at this mapping in
the special case of a finite state controlled Markov chain with finite control space. There,
we have P (u) = [Pij(u)] and g(i, u, w) = g(i, u), i ∈ X , u ∈ U . Bellman’s equation becomes:

(TJ)(i) = min
u

[
g(i, u) + α

∑
j∈X

Pij(u)J(j)

]
(19.3)

We showed that this mapping has a unique fixed point (we did this under the assumption
of bounded cost: |g(x, u, w)| ≤ M ∀(x, u, w)). If J∗ denotes the optimal overall cost then
TJ∗ = J∗. Furthermore, any minimizing µ = µ(x) in Bellman’s equation TJ∗ = J∗ defines
an optimal stationary Markov strategy.

Contraction Mapping

Definition 1. A metric space (M,d) is a set M with a notion of distance:

(a) d (x, y) ≥ 0 with d(x, y) = 0 iff x = y

(b) d (x, y) = d (y, x) ∀x, y ∈M

(c) d (x, y) + d (y, z) ≥ d (y, z) ∀x, y, z ∈M
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A metric space (M,d) is called complete if every Cauchy sequence in M has a limit. i.e
if zn ∈M and ∀ε ≥ 0, ∃N(ε) s.t d(zn, zm) < ε ∀n,m ≥ N (ε) then ∃z ∈M with d (zn, z)→ 0
as n→∞.

Definition 2. A mapping T : (M,d) 7→ (M,d) is called a contraction mapping if for some
0 ≤ β < 1 and ∀z1, z2 ∈M :

d(Tz1, T z2) ≤ βd(z1, z2) . (19.4)

The condition (19.4) is called a Lipshitz condition.

Theorem: Every contraction mapping on a complete metric space has a unique fixed
point

To get a feeling for what this theorem says, consider (M,d) = (R, Euclidean), and the
function f(x) = ex as shown in Figure 1. (R, Euclidean) is a complete metric space, but
this function has no fixed point. Note that this function is not a contraction mapping on (R,
Euclidean). Since the values of the function are able to change faster than the change in the
argument, the function is able to “escape”. If there were some β < 1 such that the Lipshitz
condition (19.4) held, then the argument would “catch up with the values” and there would
be a fixed point. The contraction mapping theorem applies much more generally than to real
valued functions on the real line, but this example displays some of the underlying intuition.
We now prove the contraction mapping theorem.

Figure 19.1. Exponential Function

Proof. Take any z ∈M . Consider the sequence (T kz, k ≥ 0). We have d(T k+1z, T kz) ≤
βd(T kz, T k−1z) ∀k ≥ 1. Since β < 1, this implies that (T kz, k ≥ 0) is Cauchy. Hence it has
a limit (by the completeness assumption). Call the limit z∗. Since limk→∞ T

kz is also z∗, we
have Tz∗ = z∗.
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If z̃ were any other fixed point i.e T z̃ = z̃, then

d(z∗, z̃) = d(Tz∗, T z̃) ≤ βd(z∗, z̃) .

This is only possible if d(z∗, z̃) = 0 i.e z∗ = z̃.
From the contraction mapping theorem, it follows that Bellman’s equation has a unique

fixed point. This is because Bellman’s equation defines a contraction mapping on the metric
space comprised of all bounded functions on X with the L∞ norm. To see that T is a con-
traction mapping, take two bounded functions J1 and J2 on X . Let u∗2 achieve the minimum
in the definition of TJ2(x) (it is not really necessary to assume that such a minimizer exists,
since we could be more careful via the use of an approximation argument, but we prefer to
make this assumption for simplicity). We have:

TJ1(x)− TJ2(x) = min
u
E[g(x, u, w) + αJ1(f(x, u, w))]− E[g(x, u∗2, w) + αJ2(f(x, u∗2, w))]

(19.5)

≤ E[g(x, u∗2, w) + αJ1(f(x, u∗2, w))]− E[g(x, u∗2, w) + αJ2(f(x, u∗2, w))]

= αE[J1(f(x, u∗2, w))− J2(f(x, u∗2, w))]

≤ α ‖J1 − J2‖∞

where ‖J1 − J2‖∞ = supx∈X |J1(x) − J2(x)|. A similar argument in the other direction
gives TJ2(x)− TJ1(x) ≤ α ‖J1 − J2‖∞.

Value Iteration

Value Iteration can be used to solve Bellman’s equation.

(a) Start with some 
J(1)
J(2)
.
.
.

J(d)


(b) Find 

TJ(1)
TJ(2)
.
.
.

TJ(d)


where TJ(i) = minu

{
g(i, u) + α

∑
j Pij(u)J(j)

}
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(c) If TJ = J , then J = J∗ and µ for which TJ = TµJ is an optimal stationary Markov
strategy. If TJ 6= J , then replace J by TJ and repeat.

Note. Let µ : X 7→ U be s.t TJ = TµJ
4
= gµ + αPµJ , where

Tµ
4
=


TµJ(1)
TµJ(2)

.

.

.
TµJ(d)



gµ
4
=


g(1, µ(1))
g(2, µ(2))

.

.

.
g(d, µ(d))


Pµ

4
=
[
Pij(µ(i))

]
So (TµJ)(i) is defined as g(i, µ(i)) + α

∑
j Pij(µ(i))J(j)

Let µ(k), k ≥ 0 be s.t µ(k) is a minimizer at the kth step. For example:

current step next step minimizer
J = J (0) TJ (0) µ(0)

TJ (0) = J (1) T 2J (0) µ(1)

T 2J (0) = J (2) T 3J (0) µ(2)

. . .

. . .

. . .
T kJ (0) = J (k) T (k+1)J (0) µ(k)

Then (proved last time), there is a finite K s.t µ(k) is an optimal strategy ∀k ≥ K.
But µ(k) may oscillate infinitely often between optimal strategies as shown in the following
example.
Let X = {1, 2, 3}, µ = {a, b},

Pij(a) =

 0 1
2

1
2

1 0 0
1
2

1
2

0

 .
Pij(b) =

 0 1
2

1
2

0 0 1
1
2

1
2

0

 .
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Note that the transition probabilities from states 1 and 3 do not depend on the control
choice. Define costs:

g(1, a) = g(1, b) = 10 (19.6)

g(2, a) = g(2, b) = 0

g(3, a) = g(3, b) = 10

Let 0 < α < 1 be the discount factor. It follows that

TJ(1) = 10 +
1

2
αJ(2) +

1

2
αJ(3) (19.7)

TJ(2) = min {αJ(1), αJ(2)}

TJ(3) = 10 +
1

2
αJ(2) +

1

2
αJ(1)

If J(1) > J(3), then TJ(1) < TJ(3). So if we started with J (0) where J (0)(1) 6= J (0)(3),
then during value iteration, the control choice will flip flop at state 2 infinitely often.

Policy Iteration

(This relies on the fact that there are only finitely many stationary strategies since X and
U are finite).

(a) Start with a stationary policy µ(0) and solve Tµ(0)J∗
µ(0) = J∗

µ(0) .

(b) Check if J∗
µ(0) is a fixed point of Bellman’s equation, i.e whether TJ∗

µ(0) = J∗
µ(0) . If so,

then J∗
µ(0) = J∗ (overall optimal cost) and µ(0) defines an optimal stationary Markov

strategy. If not, then the process of checking gives µ(1) where:

TJ∗µ(0) = Tµ(1)J∗µ(0) < Tµ(0)J∗µ(0) = J∗µ(0) , (19.8)

(where the strictness of inequality is in least at one coordinate and ≤ everywhere).

(c) Replace µ(0) by µ(1) and iterate.

Note that applying T k
µ(1) to the inequality Tµ(1)J∗

µ(0) < J∗
µ(0) we conclude, via monotonicity

of Tµ(1) , that J∗
µ(1) < J∗

µ(0) (strictness at least one coordinate and ≤ everywhere). This process

will therefore find an optimal strategy within |X ||U| steps, because there are only this many
stationary strategies.

Aside: For a stationary Markov strategy µ, J∗µ is the unique fixed point of the mapping
Tµ (which exists and is unique because Tµ is a contraction mapping). Recall that

(TµJ)(i) = g(i, µ(i)) + α
∑
j

Pij(u(i))J(j) . (19.9)
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In vector notation, this reads:
TµJ = gµ + αPµJ . (19.10)

So
J∗µ = (I − αPµ)−1gµ . (19.11)
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