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18.1 Discounted Dynamic Programming

Consider a fully observed dynamical system, with time-invariant state transition function f :

xk+1 = f(xk, uk, wk), k ≥ 0, (18.1)

where (wk, k ≥ 0) is an i.i.d. sequence of random variables. Let 0 < α < 1, and try to
minimize (informally):

minE[
∞∑
k=0

αkg(Xk, Uk, wk)] (18.2)

where g(·) is some given time-invariant one step cost function.
Let us fix a function J(x) on the state space X and consider the finite horizon problem

for N steps followed by paying αNJ(x) at time N . To solve this finite horizon problem, we
would set:

J
(N)
N (x) = αNJ(x), (18.3)

J
(N)
k (x) = minuE[αkg(x, u, w) + J

(N)
k+1(f(x, u, w))] , 0 ≤ k ≤ N − 1, (18.4)

where the expectation is over the random variable w having the distribution of the system
noise random variables. If we consider 1

αk
J

(N)
k (x), then the DP recursion looks like:

1

αk
J

(N)
k (x) = minuE[g(x, u, w) + α

J
(N)
k+1(f(x, u, w))

αk+1
] , 0 ≤ k ≤ N − 1, (18.5)

where the expectation is over the random variable w having the distribution of the system
noise random variables. We are thus led to consider the mapping T from functions on X to
functions on X :

(TJ)(x) = minuE[g(x, u, w) + αJ(f(x, u, w))]. (18.6)

For example, if the evolution is governed by a finite state controlled Markov chain with
controlled transition probability matrix P(u) = [Pij(u)] and costs g(i, u), then

(TJ)(i) = minu[g(i, u) + α
∑
j

Pij(u)J(j))]. (18.7)

Given any stationary strategy, µ : X 7→ U , we can similarly define a map Tµ, from
functions on X to functions on X :

TµJ(x) = E[g(x, µ(x), w) + αJ(f(x, µ(x), w))]. (18.8)

18-1



EE 223 Lecture 18 — March 20 Spring 2007

We make the basic observation that T and each Tµ are monotone, i.e. if J1(x) ≤ J2(x)
for all x, then (TJ1)(x) ≤ (TJ2)(x) for all x, and (TµJ1)(x) ≤ (TµJ2)(x) for all x.

Let us assume that there is some 0 < M <∞ such that

|g(x, u, w)| ≤M . (18.9)

Theorem: There is a function J∗(x) on X such that for any bounded J(x) on X (say,
|J(x)| ≤ L for all x):

limN→∞|J (N)
0 (x)− J∗(x)| = 0, uniformly on x, (18.10)

(Here we have made the boundedness assumption on g(x, u, w).) J∗(x) is the optimal cost
at the discounted problem. Further, (TJ∗) = J∗ and J∗ is the unique fixed point of the
equation TJ = J .
Proof:
Consider applying the following strategy in the infinite horizon discounted problem: Apply
the optimal strategy for the “horizon N + terminal cost J” problem at the first N steps and
make arbitrary choices of controls from time N onwards. From the initial state x, the cost
associated to this strategy is at most

J
(N)
0 (x) + αNL+

αNM

1− α
. (18.11)

This expression thus serves as an upper bound for J∗(x), where J∗(x) is defined as the
optimal overall cost of the discounted problem from the initial condition x. Conversely, fix
ε > 0 and consider a strategy for the discounted problem achieving cost at most J∗(x) + ε
(initial condition x). Then

J
(N)
0 (x) ≤ J∗(x) + ε+ αNL+

αNM

1− α
, (18.12)

because we could have applied the first N steps of this strategy on the “finite horizon N +
terminal cost J” problem. So for all ε > 0,

limN→∞|J∗(x)− J (N)
0 (x)| < ε, uniformly on x. (18.13)

Hence the limit is 0, uniformly on x. To see that TJ∗ = J∗, observe that

J∗(x)− αNL− αNM

1− α
≤ J

(N)
0 (x) ≤ J∗(x) + ε+ αNL+

αNM

1− α
. (18.14)

Apply T , also noting that

T (H + c)(x) = minuE[g(x, u, w) + α(H + c)(f(x, u, w))] = (TH)(x) + αc, (18.15)

where H is a function on x, and c is a constant. Hence,

(TJ∗)(x)− α(αNL+
αNM

1− α
) ≤ (TJ

(N)
0 )(x) ≤ (TJ∗)(x) + α(ε+ αNL+

αNM

1− α
). (18.16)
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Thus, letting N →∞, we conclude that

TJ∗(x) ≤ J∗(x) ≤ TJ∗(x). (18.17)

Further, the fixed point equation (which we just saw has J∗ as a fixed point),

TJ = J (18.18)

must have a unique fixed point because any fixed point of it is the overall cost in the
discounted problem. Moreover, if µ∗ : X 7→ U is such that

(TJ∗)(x) = (Tµ∗J
∗)(x), (18.19)

i.e. J∗(x) = E[g(x, µ∗(x), w) + αJ∗(f(x, µ∗(x), w))], then µ∗ is a stationary Markov optimal
strategy.

18.2 Bellman’s Equation

The fixed point equation, TJ = J , is called Bellman’s equation. The result can be rephrased
as: The optimal overall cost is the unique fixed point of Bellman’s equation, and any control
choice describing this fixed point in terms of itself defines an optimal strategy. There are
several ways to solve (in principle) Bellman’s equation. We now discuss some of them. Often,
however, the state space of the problem is too large to allow these methods to be considered
practical.

18.2.1 Value Iteration

For the finite state space controlled Markov chain case, start with some

J =


J(1)
J(2)

...
J(d)

 (18.20)

where |X | = d. Here we also assume the control space U is finite. Then find

TJ =


TJ(1)
TJ(2)

...
TJ(d)

 (18.21)

where for each i,

TJ(i) = minu[g(i, u) + α
∑
j

Pij(u)J(j)]. (18.22)
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Let µ(0) denote the minimizer, then iterate this process (replacing J with TJ) until the
successive functions get close enough according to whatever convergence criterion one has.

Claim: The sequence (T kJ, k ≥ 0) converges to J∗, which we already proved. If µ(k)

denotes the minimizer in the step from T kJ to T k+1J , then there is some K such that µ(k)

are always optimal for k ≥ K.
To see the truth of this claim, suppose µ is strictly suboptimal, i.e. there is some 1 ≤ i ≤ d

with TµJ
∗(i) > TJ∗(i) + ∆, for some ∆ > 0. Now let Kµ is so large that,

∥∥T kJ − J∗∥∥∞ <
∆

3
, (18.23)

for all k ≥ Kµ. Suppose now that µ shows up infinitely often as one of the µ(k). For k > Kµ

we can arrive at a contradiction. We write:

(TµT
kJ)(i) > (TµJ

∗)(i)− ∆

3
i > (TJ∗)(i) +

2

3
∆ = J∗(i) +

2

3
∆ (18.24)

But we have TµT
kJ = T k+1J , because µ is a choice for the minimizer µ(k). Hence

(TµT
kJ)(i) = (T k+1J)(i) < J∗(i) +

1

3
∆ , (18.25)

which is the desired contradiction.
Since there are only finitely many ( d|U| many) strategies, and each nonoptimal strategy

can show up only finitely many times as a minimizer by virtue of this argument, it follows
that after a certain stage in value iteration any minimizing strategy is optimal. One could
thus find an optimal strategy by running a side loop that occasionally checks if the currently
chosen minimizing strategy µ is optimal (by checking if the unique fixed point J∗µ of Tµ is
also a fixed point of T ).
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