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7.1 DP is not a panacea

Here we given an example of a problem where the DP approach is not smart. There are N
jobs waiting for service at a processor, and we have to decide the order in which to serve the
jobs. The objective to minimize is

E[
N∑
i=1

α−tiRi] (7.1)

where α > 0, ti is the time at which job#i gets finished, and Ri is the reward associated with
job#i. Hence (t1, t2, ..., tN) depends on the order of service. Let T1, T2, ..., TN be independent
random variables, where Ti represents the time required to serve job#i. For example, for
N = 3 and service order (1,2,3):

t1 = T1 (7.2)

t2 = T1 + T2 (7.3)

t3 = T1 + T2 + T3 . (7.4)

However, for service order (2,3,1):
t1 = T2 (7.5)

t2 = T2 + T3 (7.6)

t3 = T2 + T3 + T1 . (7.7)

We think of the rewards Ri as being deterministic.
This problem can be solved by Dynamic Programming. Define the state as the identities

of jobs already served and the total time elapsed. Use the DP recursion to find the optimal
order.

However, in this example we observe that using DP is unnecessary complicated. A simple
trick is to use an interchange argument. In this simple example, given the service order

i1, ..., ik−1, i, j, ik+1, ..., iN , (7.8)

let’s consider the service order (switching i and j)

i1, ..., ik−1, j, i, ik+1, ..., iN . (7.9)

The only difference between the two orders is the realized departure times of job#i and
job#j. The difference in net reward between the former and the latter service orders is

α−(T+Ti)Ri + α−(T+Ti+Tj)Rj −
[
α−(T+Tj)Rj + α−(T+Tj+Ti)Ri

]
, (7.10)
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where T is the time at which job#ik−1 departs. We would pick i before j if and only if the
expectation of this difference in rewards is nonnegative. Thus the optimal strategy is to pick
i before j if

E[α−Ti ]Ri

1− E[α−Ti ]
>

E[α−Tj ]Rj

1− E[α−Tj ]
(7.11)

Such a rule is called an index rule.
Message of this example: Dynamic Programming can be the dumb way sometimes.

7.2 Linear Dynamical Systems

In the next few lectures, we introduce some major results with many applications: the
solution of the linear Quadratic (LQ) control problem, the Kalman filter, the separation
principle, etc. A finite horizon discrete time finite dimensional stochastic linear dynamical
system model is given by

xk+1 = Akxk +Bkuk + wk. k = 0, 1, . . . N − 1 . (7.12)

where xk ∈ Rn, uk ∈ Rm, and wk ∈ Rn. xk is the state, uk is the control, and wk is
the randomness, representing uncertainty or noise. Matrices Ak and Bk are deterministic
matrices of appropriate dimensions. In cases where the state xk is not directly available, we
typically model the observations yk by

yk = Ckxk + vk (7.13)

where yk ∈ Rp and vk is random, representing the measurement noise. The noise terms
wk, k = 0, 1, . . . , N − 1, and vk, k = 0, 1, . . . , N − 1, are assumed to be independent.

Now consider the deterministic state evolution equation

xk+1 = Akxk +Bkuk , (7.14)

with some initial condition x0. Then xk can be expressed in terms of x0 and the controls by
writing

x1 = A0x0 +B0u0 (7.15)

x2 = A1x1 +B1u1 = A1A0x0 + A1B0u0 +B1u1 , (7.16)

and so on. An important special case is the time-invariant case, i.e. Ak = A, Bk = B for all
k. Then

xk = Akx0 +
k−1∑
i=0

Ak−i−1Bui . (7.17)

Similarly, for the observations, in the absence of measurement noise, in the time-invariant
case, (Ak = A, Bk = B, Ck = C for all k), we have

yk+1 = Cxk , (7.18)
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and so

yk = CAkx0 +
k−1∑
i=0

CAk−i−1Bui . (7.19)

Recall that every n× n matrix A can be written, as complex matrix, as

A = T−1JAT (7.20)

where JA is block diagonal, with the typical block of JA looking like

J =


λ 1 0 . . . 0
0 λ 1 . . . 0

0 0 λ
. . . 0

...
. . .

0 0 0
. . . λ

 ,

for λ (complex) an eigenvalue of A. Each such component block matrix J has some size
r ≥ 1 and it has diagonal entries the corresponding eigenvalue and each entry just above the
main diagonal equal to 1. Then, for every k ≥ 1 we have

Ak = (T−1JAT )k = T−1JkAT (7.21)

and JkA is the block diagonal matrix with blocks.

Jk =


λk kλk−1

(
k
2

)
λk−2 . . .

(
k
r−1

)
λk−r+1

0 λk kλk−1 . . .
(
k
r−2

)
λk−r+2

...
. . .

0 0 0 ... λk

 .

This fact is called the Jordan decomposition.
The system is stable iff |λ| < 1 for all eigenvalues λ of A. The Jordan decomposition

gives us a conceptual picture of the intrinsic dynamics of the system (i.e. the deterministic
system with the controls are set equal to zero). However, if we want to influence the system
through the control, we have to work through B.

7.3 Definition of Controllability

For the state evolution equation over a large enough horizon (bigger than the dimension of
the state space), the deterministic dynamical system

xk+1 = Akxk +Bkuk (7.22)

is called controllable if for any x0 we can move the state to any xN via appropriate control.
Recall that the eigenvalues of A are the roots of the degree n polynomial in s

det(sI − A), (7.23)
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which is called the characteristic polynomial of A. For example, for

A =

(
2 1
−1 0

)
the characteristic polynomial of A is,

det(sI − A) = det

(
s− 2 1
−1 s− 0

)
= (s− 1)2 .

The Cayley-Hamilton theorem tells us that A satisfies its own characteristic polynomial.
That is, plugging A into its characteristic polynomial gives the zero matrix. In the example
this means that (A− I)2 = 0.

In general, the Cayley-Hamilton theorem implies that An is a linear combination of
I, A,A2, A3, ..., An−1 (where A is an n× n matrix). For the time-invariant linear system,

xN = ANx0 +
N−1∑
i=0

AN−i−1Bui (7.24)

we have

xN − ANx0 = (B AB . . . AN−1B)

 uN−1

...
u0

 (7.25)

On the right-hand side, if N ≥ n, the range of this matrix is all of Rn precisely if the range
space of (B AB . . . An−1B) is all of Rn, which is the necessary and sufficient condition for
controllability.

Now consider only the observations in the time-invariant deterministic linear system
model (with no control term)

xk+1 = Axk (7.26)

yk = Cxk . (7.27)

Therefore,
yk = CAkx0 (7.28)

Given the horizon of the observation is N , can we infer the state sequence from the obser-
vations? If so we call the system observable. We see that

y0 = Cx0, y1 = CAx0, ..., yN = CAN−1x0 . (7.29)

To infer the state sequence from y0, y1, ..., yN is equivalent to inferring x0. So we want
C
CA
...

CAN−1
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to have null space ={0}. If N ≥ n, then by the Cayley-Hamilton theorem, we equivalently
want 

C
CA
...

CAn−1


to have null space ={0}. This is the necessary and sufficient condition for observability.

In the next lecture, we will discuss the finite horizon, fully observed, linear quadratic stochas-
tic control problem. Informally speaking, we want to choose control strategy to minimize

E[
N−1∑
k=0

(XT
k QkXk + UT

k RkUk) +XT
NQNXN ] (7.30)

where Qk is positive semi-definite symmetric matrix, and Rk is positive definite symmetric
matrix. Here the state evolves according to

xk+1 = Akxk +Bkuk + wk, (7.31)

for k = 0, 1, ..., N − 1, starting from some initial condition x0.
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