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In the Inventory Control problem,

xk+1 = xk + uk − wk, k = 0, 1, · · · , N − 1, uk ≥ 0,

where xk is the inventory at time k, uk is the amount restocked and wk is the random
demand. We want to minimize

E[
N−1∑
k=0

(cuk + r(xk)) + r(xN)].

Assume that r(x) is piecewise linear with slope h > 0 when x > 0 and slope −p < 0
when x < 0, and r(0) = 0. Here, negative inventory means borrowing. We also assume
that p > c, otherwise an optimal strategy will be to set the restocking amount to zero
at each time.

Since E[r(x0)] cannot be influenced, we can subtract it and rewrite the cost mod-
ified as

E[
N−1∑
k=0

(cuk + r(xk + uk − wk))].

Then we take gk(xk, uk, wk) to be cuk + r(xk + uk − wk) and gN(xN) = 0 to fit this
problem into our general set-up.

We can write the DP recursion as follows:

JN(xN) = 0;

Jk(xk) = min
uk≥0
{cuk +E[r(xk + uk − wk) + Jk+1(xk + uk − wk)]}, k = N − 1, · · · , 0.

Write E[r(xk + uk − wk)] as Hk(xk + uk), where Hk(y) = E[r(y − wk)].

Observe that since r(x) is a convex function, so it Hk(x). Further the slope of
Hk(x) approaches h as x→∞ and approaches −p as x→ −∞.

Recall: A function f(x) is called convex if for x0, x1 and λ ∈ [0, 1],

f(λx1 + (1− λ)x0) ≤ λf(x1) + (1− λ)f(x0),

and strictly convex if the inequality is strict for all x0 6= x1 and λ 6= 0, 1.
Fact: (easy) If f1 and f0 are convex function and λ ∈ [0, 1], then λf1 + (1 − λ)f0 is
convex.
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Jk(xk) can be written as

Jk(xk) = min
uk≥0
{cuk +Hk(xk + uk) +E[Jk+1(xk + uk − wk)]}.

Let yk denote xk + uk. Then the constraint for the minimization uk ≥ 0 becomes
yk ≥ xk, and we may write cuk as cyk − cxk. Define

Gk(y) = cy +Hk(y) +E[Jk+1(y − wk)].

Then,
Jk(xk) = min

yk≥xk
[Gk(yk)− cxk] = min

yk≥xk
[Gk(yk)]− cxk.

Suppose we could show Gk(yk) is convex with strictly positive slope as yk →∞ and
strictly negative slope as yk → −∞. Let’s define sk = argminyk [Gk(yk)], where sk can
be any minimizer. Then Jk(xk) = Gk(y

∗
k)− cxk, where

y∗k =

{
sk, if sk ≥ xk
xk, else

We will show that Jk(xk) is convex with positive slope as xk →∞, and negative slope
approaching −c as xk → −∞ for k = 0, 1, · · · , N − 1.

First of all, GN−1(y) = cy + HN−1(y) is convex because HN−1(y) is convex, and
its slope approaches h + c > 0 as y → ∞, and approaches −p + c < 0 as y → −∞.
So, JN−1(xN−1) = c(sN−1 − xN−1)+ + HN−1(max(sN−1, xN−1)) where z+ denotes
max{z, 0} for a real number z. This function is convex with slope > 0 as xN−1 →∞
and slope approaching −c < 0 as xN−1 → −∞. Suppose that we have shown this
for Jk+1(xk+1) (i.e., convexity with these slope properties), then the same is true for
y 7→ E[Jk+1(y−wk)], then y 7→ Gk(y) has the property that it is convex with strictly
positive slope as y →∞ and strictly negative slope as y → −∞, hence xk 7→ Jk(xk)
has the same convexity and slope properties as xk+1 7→ Jk+1(xk+1), so the induction
propagates backwards. QED.

Why is this interesting?
Reason 1: This methodology (finding some properties of the cost-to-go function that
propagate under backwards induction and using these properties to conclude proper-
ties about the optimal Markov strategies) underlies a large number of papers in the
technical literature and often provides nice engineering insights.
Reason 2: We learn in this specific example that restocking should be done according
to a time varying threshold policy (i.e. restock to sk iff xk ≤ sk), which is quite nice
and appealing. This can be seen from the minimizers in the DP recursion above.

Looking ahead we will be discussing some of the literature on estimation and
identification for both Markov chains and linear systems.
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Soon we will discuss partially observed stochastic control problems. In this kind
of situation the controller needs to run an estimator for the states. Another issue is
that the system model may be uncertain (e.g. parameters within the model may be
unknown). ”Identification” of the system may need to be done (estimating the under-
lying parameters). Identification of system parameters is often combined with control
strategies based on the estimated system parameters (adaptive control). Then con-
trol plays a dual role: it is being used both to elicit information about the underlying
model parameters and to achieve the performance objective.

The DP approach has a very big role to play in practice for problems of estimation
and identification.

Example [Estimating the States of a Hidden Markov Model based on
observations]

(Applications in communications/speech processing/artificial intelligence/expert
systems, etc.)

Suppose a system is modeled as evolving as a Markov chain, with x0, x1, · · · , xN
the state sequence, but this is hidden. We get to observe functions of the states
y1, y2, · · · , yN . Let’s assume the joint distribution of the state of observation is

p(x0)
N−1∏
k=0

p(xk+1, yk+1|xk).

We’d like to estimate the underlying state sequence given the observations (we seek
the maximum a posteriori probability estimate). We want to find

(x̂0, · · · , x̂N) = argmaxx0,··· ,xNP (x0, · · · , xN | y1, · · · , yN)

i.e.,

min {−logP (x0)−
N∑
k=0

logP (xk+1, yk+1|yk)}

over all state sequences x0, . . . , xN . This is a minimum weight path problem on the
trellis associated to the transition matrix of the underlying Markov chain with weight
−logP (xk+1, yk+1|xk) given to the edge from xk to xk+1 (the weight depends on the
actual value of the corresponding observation yk+1). We already saw that finding
the minimum weight path on a trellis can be done using a DP based algorithm. In
communications applications where we are estimating an input sequence to a channel
(or a code) described by a finite state machine, based on noisy observations at the
output, the corresponding DP based algorithm is called the Viterbi algorithm.
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