
EE 223: Stochastic Estimation and Control Spring 2007

Lecture 3 — January 23

Lecturer: Venkat Anantharam Scribe: Nikhil Shetty

3.1 Outline

In this lecture, we argue that the optimal strategy in the finite horizon fully observed stochas-
tic control problem we have been considering so far is a Markov strategy. In addition, we
define the optimal cost-to-go functions associated to the problem and sketch a proof of the
theorem that says that optimal Markov strategies must be defined in terms of the minimizers
in the equations defining these optimal cost-to-go functions. We do not concern ourselves
with the question of existence of optimal strategies, rather, we discuss their nature, assuming
they exist.

3.2 Assumptions and Definitions

The evolution equation of our dynamical system is:

xk+1 = fk(xk, uk, wk) k = 0, . . . , N − 1

where xk is the state of the system at time k, uk is the input applied at time k and wk is
a random variable. The functions fk determine the system transition at time k. x0 may be
fixed or random.
At time k the controller has access to the state trajectory up to time k, i.e. (x0, . . . , xk). The
aim of the controller is to choose the controls causally to minimize the objective function,
written informally as:

E[
N−1∑

k=0

gk(Xk, Uk, wk) + gN(XN)]

where gk(xk, uk, wk), 0 ≤ k ≤ N − 1, and gN(xN) are some prescribed cost functions.

Formally, a strategy Ψ = (ν0, ν1, . . . , νN−1) is comprised of functions νk(x0, x1, . . . , xk)
which take values in the allowed set of controls at state xk for 0 ≤ k ≤ N − 1. Our aim is
to minimize the following objective function over all strategies Ψ,

E[

N−1∑

k=0

gk(X
Ψ
k
, νk(X

Ψ
0 , XΨ

1 , . . . , XΨ
k

), wk) + gN(XΨ
N

)]

where XΨ
k+1 = fk(X

Ψ
k
, νk(X

Ψ
0 , XΨ

1 , . . . , XΨ
k

), wk) k = 0, . . . , N − 1.
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We have X0 = XΨ
0 for all Ψ. The w′

i
s are assumed to be independent of each other and

of X0. The νk could also be randomized but we do not consider that here.

Markov strategy: A Markov strategy π = (µ0, . . . , µN−1) is prescribed by functions
µk(xk) taking values in the set of allowed controls at state xk, k = 0, . . . , N − 1..

Define functions J0, J1, . . . , JN by backwards recursion as follows with JN(xN) = gN(xN )
and

Jk(xk) =
inf
u E[gk(xk, u, wk) + Jk+1(fk(xk, u, wk))]

where in the infimum u ranges over the allowed control choices at state xk. These are called
the optimal cost-to-go functions. Note that these equations are defining functions. Jk is a
function on the set of possible states at time k, defined in terms of the function Jk+1, which
has already been defined in the backwards recursion procedure.

3.3 Theorems

1. Let µk(xk) be any minimizer in the equation defining Jk(xk). (Note that this sentence
is talking about a function µk(xk), i.e. we want the control µk(xk) to minimize in
the expression defining Jk(xk) for each xk.) Then consider the Markov strategy π =
(µ0, . . . , µN−1). This is an optimal strategy.

2. For any Markov strategy π = (µ0, . . . , µN−1) that is optimal, µk(X
π

k
) must be a mini-

mizer in the definition of Jk(X
π

k
), almost surely, for each k = 0, . . . , N − 1.

3.3.1 Cost-to-go function

Given any strategy Ψ = (ν0, ν1, . . . , νN−1), we define for each k = 0, . . . , N − 1, the cost-to-
go function of the strategy at time k, denoted ΓΨ

k
. This is a random variable depending on

(XΨ
0 , XΨ

1 , . . . , XΨ
k

). It is defined via:

ΓΨ
N

= gN(XΨ
N

) = E[gN(XΨ
N

)|XΨ
0 , XΨ

1 , . . . , XΨ
k

] ,

and

ΓΨ
k

= E[

N−1∑

l=k

gl(X
Ψ
l

, νl(X
Ψ
0 , XΨ

1 , . . . , XΨ
l

), wl) + gN(XΨ
N

)|XΨ
0 , XΨ

1 , . . . , XΨ
k

]

The expected total cost of the strategy Ψ is thus seen to be given by E[ΓΨ
0 ]. (Note that

ΓΨ
0 is a random variable depending upon X0.)
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3.3.2 Comparison Principle

The main theorem is actually a consequence of the following “comparison principle” which
says

Let Vk(xk), k = 0, . . . , N , be any functions satisfying VN (xN) ≤ gN(xN) and

Vk(xk) ≤
inf
u E[gk(xk, u, wk) + Vk+1(fk(xk, u, wk))]

where the infimum is taken over u ranging over the allowed control values at
state xk. Then, for any strategy Ψ, for every k = 0, . . . , N , Vk(X

Ψ
k

) ≤ ΓΨ
k
,

almost surely.

Proof (by backward induction)

By definition of VN(xN),
VN(XΨ

N
) ≤ gN(XΨ

N
) = ΓΨ

N

Thus, the claim is true at time N . Assuming it is true at time k + 1, we need to show that
it is true at time k. By the definition of Vk(xk),

Vk(X
Ψ
k

) ≤ E[gk(X
Ψ
k

, νk(X
Ψ
0 , XΨ

1 , . . . , XΨ
k

), wk)+

Vk+1(fk(X
Ψ
k

, νk(X
Ψ
0 , XΨ

1 , . . . , XΨ
k

), wk))|X
Ψ
0 , XΨ

1 , . . . , XΨ
k

]

Understanding this equation requires some thought. On the right hand side of this equa-
tion, we have an expression conditioned on (XΨ

0 , XΨ
1 , . . . , XΨ

k
). The conditioning determines

both the state XΨ
k

and the control νk(X
Ψ
0 , XΨ

1 , . . . , XΨ
k

) that appear in the expression that
is being conditioned. Now, appealing to the independence of wk from the random variables
that are being conditioned on, and appealing to the definition of Vk(xk) (taking XΨ

k
for xk

and noting that this definition involves an infimum over all allowed controls at this state)
the truth of this equation becomes apparent.

Also, Vk+1(fk(X
Ψ
k

, νk(X
Ψ
0 , XΨ

1 , . . . , XΨ
k

), wk)) ≤ ΓΨ
k+1 by the inductive hypothesis.

Hence, Vk(X
Ψ
k

) ≤ E[gk(X
Ψ
k

, νk(X
Ψ
0 , XΨ

1 , . . . , XΨ
k

), wk)+E[E[
∑

N−1

l=k+1
gl(X

Ψ
l

, νl(X
Ψ
0 , XΨ

1 , . . . , XΨ
l

), wl)+
gN(XΨ

N
)|XΨ

0 , XΨ
1 , . . . , XΨ

k+1]|X
Ψ
0 , XΨ

1 , . . . , XΨ
k

] = ΓΨ
k

3.3.3 Proof of Part 1 of theorem

We observe that Jk(xk) for k = 0, . . . , N satisfy the inequalities that apply to the Vk(xk)
for k = 0, . . . , N in the comparison principle (in fact with equality). So Jk(X

Ψ
k

) ≤ ΓΨ
k

almost surely for all Ψ and all k = 0, . . . , N . In particular, J0(X0) = J0(X
Ψ
k

) ≤ ΓΨ
0 almost

surely for all Ψ. Taking expectations in this equation we get E[J0(X0)] ≤ E[ΓΨ
0 ] for all Ψ.

Thus we have found a universal lower bound on the expected total cost achievable by any
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strategy. Thus, any strategy whose expected total cost equals this universal lower bound
would be an optimal strategy.

To prove part 1 of the main theorem, let µ0(x0), . . . , µN−1(xN−1) be minimizers in the
definition of Jk(xk) and let π = (µ0(x0), . . . , µN−1(xN−1)) be the corresponding Markov
strategy. If you trace through the proof of comparison principle (replacing Ψ by π and each
Vk by Jk), all inequalities become equalities. Let us do this explicitly. At time N we have
JN(Xπ

N
) = gN(Xπ

N
) = Γπ

N
, where both equalities are by definition. Assuming it is true that

Jk+1(X
π

k+1) = Γπ

k+1 almost surely. we will show that Jk(X
π

k
) = Γπ

k
almost surely. Because

µk(X
π

k
) is a minimizer in the definition of Jk(X

π

k
) we have

Jk(X
π

k
) = E[gk(X

π

k
, µk(X

π

k
), wk) + Jk+1(fk(X

π

k
, µk(X

π

k
), wk))|X

π

0 , Xπ

1 , . . . , Xπ

k
]

Since Xπ

k+1 = fk(X
π

k
, µk(X

π

k
), wk) and we have the inductive hypothesis, this equation can

be written as

Jk(X
π

k
) = E[gk(X

π

k
, µk(X

π

k
), wk) + Γπ

k+1|X
π

0 , Xπ

1 , . . . , Xπ

k
] .

However, the right hand side is just the definition of Γπ

k
, which completes the proof. ( Note

that in the case of Markov strategies the cost-to-go at any time is just a function of the
current state, and this is also the case for the specific π that is being considered here.)

In particular, Γπ

0 = J0(X
π

0 ) = J0(X0) almost surely, and taking expectations we get
E[Γπ

0 ] = E[J0(X0)], i.e. this Markov strategy π achieves the universal lower bound on the
total expected cost, so it is an optimal strategy.

Please note that in this proof the existence of π was hypothesized and not proved. In-
deed, such π may not exist, unless suitable technical assumptions are made. There is a rich
literature full of existence theorems under various sorts of conditions.

3.3.4 Sketch of proof of Part 2 of theorem

Suppose π = (µ0(x0), . . . , µN−1(xN−1)) is an optimal Markov strategy. We prove by backward
induction that µk(X

π

k
) is a minimizer in the definition of Jk(X

π

k
) (almost surely).

Consider k = N −1. Suppose there is some function µ
′

N−1(xN−1) different from the function
µN−1(xN−1) such that

E[gN−1(X
π

N−1, µN−1(X
π

N−1), wN−1) + JN(fN−1(X
π

N−1, µN−1(X
π

N−1), wN−1))|X
π

N−1] ≥

E[gN−1(X
π

N−1, µ
′

N−1(X
π

N−1), wN−1) + JN(fN−1(X
π

N−1, µ
′

N−1(X
π

N−1), wN−1))|X
π

N−1]

and that this inequality holds strictly with positive probability. (If µN−1(X
π

N−1) is not almost
surely a minimizer in the definition of JN−1(X

π

N−1) then such µ
′

N−1(xN−1) must exist.) Now
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consider the Markov strategy π
′

= (µ0, . . . , µN−2, µ
′

N−1). We will argue that the expected
total cost achieved by this strategy is strictly better than that achieved by the strategy
π, thus arriving at a contradiction. Since JN (xN) = gN(xN ) by definition, the preceding
inequality can also be written as

E[gN−1(X
π

N−1, µN−1(X
π

N−1), wN−1) + gN(Xπ

N
)|Xπ

N−1] ≥

E[gN−1(X
π

N−1, µ
′

N−1(X
π

N−1), wN−1) + gN(Xπ
′

N
)|Xπ

N−1]

with the inequality being strict with positive probability. Both strategies result in exactly

the same state evolution up to and including time N − 1, i.e. Xπ

k
= Xπ

′

k
almost surely for

k = 0, . . . , N − 1. Thus the difference between the total expected cost of the strategy π and
that of the strategy π

′

is precisely the difference between the expectation of the left hand
side and the expectation of the right hand side of the preceding inequality, and this is strictly
positive, which is the sought for contradiction.

For the cases k < N − 1, we will assume, for simplicity, that minimizers exist in the
definitions for Jl(xl) for l = k +1, . . . , N − 1 (this is only to avoid the need to go through an
approximation argument). Suppose there is some function µ

′

k
(xk) different from the function

µk(xk) such that

E[gk(X
π

k
, µk(X

π

k
), wk) + Jk+1(fk(X

π

k
, µk(X

π

k
), wk))|X

π

k
] ≥

E[gk(X
π

k
, µ

′

k
(Xπ

k
), wk) + Jk+1(fk(X

π

k
, µ

′

k
(Xπ

k
), wk))|X

π

k
]

and that this inequality holds strictly with positive probability. (If µk(X
π

k
) is not almost

surely a minimizer in the definition of Jk(X
π

k
) then such µ

′

k
(xk) must exist.) Now consider the

Markov strategy π
′

= (µ0, . . . , µk−1, µ
′

k
, µ̃k+1, . . . , µ̃N−1), where µ̃l(xl), l = k + 1, . . . , N − 1

are respectively minimizers in the definitions for Jl(xl) for l = k + 1, . . . , N − 1, which are
assumed to exist. We will argue that the expected total cost achieved by this strategy is
strictly better than that achieved by the strategy π, thus arriving at a contradiction.

We consider as an intermediate the Markov strategy π̃ = (µ0, . . . , µk−1, µk, µ̃k+1, . . . , µ̃N−1).
We have Xπ

l
= X π̃

l
for l = 0, . . . , k+1. Considering the restricted optimization problem over

the interval of time k + 1 ≤ l ≤ n (i.e. with the original one step and terminal costs, but
thinking of the state at time k + 1 as an initial condition) and appealing to the assumption
that µ̃l(xl), l = k + 1, . . . , N − 1 are respectively minimizers in the definitions for Jl(xl) for
l = k + 1, . . . , N − 1, and the first part of the theorem we get Γπ̃

k+1 = Jk+1(X
π̃

k+1). From this
we learn that the Markov strategy π̃ is also an optimal strategy for the original problem.
Thus, if we can show that the expected total cost achieved by the Markov strategy π

′

is
strictly better than that achieved by the Markov strategy π̃, we would arrive at a contradic-
tion.
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Since the Markov strategy π
′

uses the minimizers µ̃l(xl), l = k + 1, . . . , N − 1 from time

k+1 onwards, we have Γπ
′

k+1 = Jk+1(X
π
′

k+1) (again, this comes from considering the restricted
optimization problem over the interval of time k+1 ≤ l ≤ n). Now, the presumed inequality
with which we started the discussion can be written as

E[gk(X
π

k
, µk(X

π

k
), wk) + Jk+1(X

π

k+1)|X
π

k
] ≥

E[gk(X
π

k
, µ

′

k
(Xπ

k
), wk) + Jk+1(X

π
′

k+1)|X
π

k
] ,

with the inequality holding strictly with positive probability. This can be further written as

E[gk(X
π̃

k
, µk(X

π̃

k
), wk) + Jk+1(X

π̃

k+1)|X
π̃

k
] ≥

E[gk(X
π̃

k
, µ

′

k
(X π̃

k
), wk) + Jk+1(X

π
′

k+1)|X
π̃

k
] ,

with the inequality holding strictly with positive probability, and again as

E[gk(X
π̃

k
, µk(X

π̃

k
), wk) + Γπ̃

k+1|X
π̃

k
] ≥

E[gk(X
π̃

k
, µ

′

k
(X π̃

k
), wk) + Γπ

′

k+1|X
π̃

k
] ,

with the inequality holding strictly with positive probability. Since X π̃

l
= Xπ

′

l
for l = 0, . . . , k,

throwing in the costs incurred before time k and taking expectations in this inequality shows
that the total expected cost of π̃ is strictly bigger than that for π

′

, which is the sought for
contradiction.
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