
EE 223: Stochastic Estimation and Control Spring 2007

Lecture 10 — February 15

Lecturer: Venkat Anantharam Scribe: Assane Gueye

So far we have considered dynamical systems where the controller directly observes the
states and chooses the control causally, i.e. the control to use at time k is determined as a
function of the sequence of states up to and including time k.

In most problems, however, the controller only has access to partial information about
the states. In this lecture, we will study how the controller can optimally causally choose
its controls in those cases where only partial information about the state is available (we
will name it partially observed stochastic control). As before we limit ourselves to the finite
horizon case.

We assume the same dynamical system and the same objective (written informally) as
in the fully observed case:

xk+1 = fk(xk, uk, wk) , k = 0, 1, . . . , N − 1 ; (10.1)

Aim : MinimizeE

[
N−1∑
k=0

gk(Xk, Uk, wk) + gN(XN)

]
. (10.2)

However, the set of strategies over which the minimization of the objective is to be done is
different from the fully observed case. The controller observes a function of the state at each
time:

y0 = h0(x0, v0) ,

yk = hk(xk, uk−1, vk) , k = 1, 2, . . . , N, (10.3)

where vk may be thought of as observation noise. The random variables

w0, . . . , wN−1, v0, . . . , vN , x0 ,

are assumed to be mutually independent. The difference now is that we are allowed to choose
the control uk at each time k = 0, 1, . . . , N − 1 based only on the observation y0, . . . , yk up
to and including that time.

Remark 1. For notational convenience later, we have assumed that there is an observation
also at time N . You may think of this observation as being trivial (always equal to some fixed
value) if you wish. However, our discussion remains valid whether or not this observation is
trivial.

Remark 2. A more general formulation of the problem would allow the control uk to be
chosen as a random function of the observations y0, . . . , yk at each time k, but for the sake
of simplicity we will consider only deterministic controls.
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Formally we would like to solve the problem

MinΨE

[
N−1∑
k=0

gk(X
Ψ
k , U

Ψ
k , wk) + gN(XΨ

N)

]
,

where the minimization is over the set of all possible strategies Ψ. Here, a strategy Ψ is
comprised of functions νk(y0, . . . , yk), k = 0, 1, . . . , N − 1.

Remark 3. We could have dropped the wk terms in the cost functions. In fact we can always
reduce the problem to one with new cost functions defined as:

g̃k(xk, uk) = Ewk [gk(xk, uk, wk)] .

This is because wk is independent of the states, observations, and controls up to and including
time k.

The main insight is that we can convert the partially observed problem into a fully ob-
served problem for another stochastic system whose state at any time is the conditional law
of the current state of the original system given the knowledge of the controller up to an
including that time. What does this law look like?

We will use the notation ηk for (y0, . . . , yk, u0, . . . , uk−1), k = 0, 1 . . . , N . If the strategy Ψ
is in effect, the information available to the controller at time k is given by (Y Ψ

0 , . . . , Y
Ψ
k , U

Ψ
0 , . . . , U

Ψ
k−1),

k = 0, 1 . . . , N . (Note that there is no control action at time N .) In fact, under our assump-
tion that the controls are chosen deterministically as a function of the available informa-
tion, the information available in (Y Ψ

0 , . . . , Y
Ψ
k , U

Ψ
0 , . . . , U

Ψ
k−1) is identical to that available

in (Y Ψ
0 , . . . , Y

Ψ
k ), k = 0, 1 . . . , N . However, we find it convenient to use the more extended

description. We will use that notation

IΨ
k = (Y Ψ

0 , . . . , Y
Ψ
k , U

Ψ
0 , . . . , U

Ψ
k−1) , k = 0, 1, . . . , N .

Let us compute the probability distribution of XΨ
k given (Y Ψ

0 , . . . , Y
Ψ
k , U

Ψ
0 , . . . , U

Ψ
k−1).

First notice that this this should be thought of as a probability distribution valued random
variable. It takes values in probability distribution on Xk (the state space at time k) and
is a deterministic function of the random variable IΨ

k . It is also often called the conditional
law of XΨ

k given IΨ
k . It can be thought of as the mapping

A 7→ P (XΨ
k ∈ A|Y Ψ

0 , . . . , Y
Ψ
k , U

Ψ
0 , . . . , U

Ψ
k−1), ∀A ⊂ Xk

because this is indeed how one would describe the distribution of XΨ
k given the information

IΨ
k = (Y Ψ

0 , . . . , Y
Ψ
k , U

Ψ
0 , . . . , U

Ψ
k−1). For notational convenience we will sometimes write this

conditional law as if it has a density. Thus we might write:

P (XΨ
k ∈ A|IΨ

k ) =

∫
A

pΨ(xk|IΨ
k )dxk

Occasionally we will use the notation λΨ
k for this conditional law. Occasionally we will write

it as P (XΨ
k ∈ · | IΨ

k ).
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Claim 1. Using density notation for convenience, there is a sequence of pk|k(xk|ηk), k =
0, 1, . . . , N , that does not depend on Ψ, such that pΨ(xk|IΨ

k ) equals pk|k(xk|IΨ
k ) for all k =

0, 1, . . . , N .

The mapping xk 7→ pk|k(xk|IΨ
k ) (in density notation), or λΨ

k or P (XΨ
k ∈ · | IΨ

k ) in general
notation, is called the information state at time k.

To prove the claim, we also need to consider the conditional laws ofXΨ
k+1 given (Y Ψ

0 , . . . , Y
Ψ
k , U

Ψ
0 , . . . , U

Ψ
k )

for k = 0, 1, . . . , N − 1. Again, pretend that these have a density, this is corresponds to con-
sidering the mappings xk+1 7→ pΨ(xk+1|IΨ

k , U
Ψ
k ), k = 0, 1, . . . , N − 1. When we want to use

a more general notation we will write these as P (XΨ
k+1 ∈ · | IΨ

k , U
Ψ
k ), k = 0, 1, . . . , N − 1.

Claim 2. Using density notation for convenience, there is a sequence of functions pk+1|k(xk+1|ηk, uk),
k = 0, 1, . . . , N−1, which do not depend upon Ψ such that pΨ(xk+1|IΨ

k , U
Ψ
k ) equals pk+1|k(xk+1|IΨ

k , U
Ψ
k ),

k = 0, 1, . . . , N − 1.

Remark 4. It is also convenient to write pΨ(x0), which equals the initial distribution p(x0)
and does not depend on Ψ, as p0|−1(x0). This is consistent with our notational system.

We now proceed to prove these claims. We have, for k = 0, 1, . . . , N − 1,

pΨ(xk+1|ηk+1) =
pΨ(yk+1|xk+1, ηk, uk)p

Ψ(xk+1|ηk, uk)pΨ(ηk, uk)

pΨ(ηk+1)

=
p(yk+1|xk+1, uk)p

Ψ(xk+1|ηk, uk)
pΨ(yk+1|ηk, uk)

(10.4)

where in equation (10.4) the first term of the numerator is completely determined by the
observation function (10.3). Another important observation is that the denominator is just
a normalization term: it is equal to the integral of the numerator over Xk+1. This may not
be obvious when you look at the right hand side of equation (10.4), but it has to be true
because the left hand side of this equation integrates to 1 over Xk+1 and the denominator
on the right hand side of this equation does not depend on xk+1. This is just an instance of
Bayes’s rule. We may thus write equation (10.4) as

pΨ(xk+1|ηk+1) =
p(yk+1|xk+1, uk)p

Ψ(xk+1|ηk, uk)∫
p(yk+1|xk+1, uk)pΨ(xk+1|ηk, uk)dxk+1

. (10.5)

Next, for k = 0, 1, . . . , N − 1, we may write

pΨ(xk+1|ηk, uk) =

∫
pΨ(xk+1, xk|ηk, uk)dxk

=

∫
pΨ(xk+1|xk, ηk, uk)pΨ(xk|ηk, uk)dxk

=

∫
p(xk+1|xk, uk)pΨ(xk|ηk, uk)dxk (10.6)
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where in equation (10.6), p(xk+1 | xk, uk), which appears in the last step, is given by the
dynamical equation (10.1). We now notice that

pΨ(xk|ηk, uk) = pΨ(xk|ηk) ,

because uk = νk(y0, . . . yk) is a deterministic function of ηk. Thus we may rewrite equation
(10.6) as

pΨ(xk+1|ηk, uk) =

∫
p(xk+1|xk, uk)pΨ(xk|ηk)dxk

To start with, we have

pΨ(x0|y0) =
p(y0|x0)p(x0)∫
p(y0 | x0)p(x0)dx0

.

The right hand side of this equation can be thought of as defining a function p0|0(x0 | η0) that
does not depend on the strategy Ψ. Indeed, this can itself be thought of as defined in terms
of the initial distribution, denoted p0|−1(x0) in our notational system, in a manner consistent
with equation (10.5). By induction over the k, starting from this observation at k = 0, we
conclude that pΨ(xk|ηk) can be written as pk|k(xk|ηk) for a function pk|k(xk|ηk) which does
not depend on Ψ, for k = 0, 1 . . . , N , and also that we conclude that pΨ(xk+1|ηk, uk) can be
written as pk+1|k(xk+1|ηk, uk) for a function pk+1|k(xk+1|ηk, uk) which does not depend on Ψ,
for k = 0, 1 . . . , N − 1. These functions satisfy the update equations:

pk+1|k(xk+1|ηk, uk) =

∫
p(xk+1|xk, uk)pk|k(xk|ηk)dxk (10.7)

pk+1|k+1(xk+1|ηk+1) ∝ p(yk+1|xk+1, uk)pk+1|k(xk+1|ηk, uk) (10.8)

The equations above (10.7 and 10.8) define the state and the dynamic model of the new
dynamical system in terms of which the original partially observed control problem will be
converted into a fully observed control problem. Next time we will see that the original cost
function can be expressed as a cost function for the new fully observed dynamical system, in
terms of its own states, i.e the information states. We will also need to argue that the evo-
lution of the dynamical system above can be thought of, at each time step, as being driven
by a random variable, such that these random variables and the (new) observation noise
random variables are mutually independent and independent of the (new) initial condition.

To make the discussion in this lecture more concrete, consider a finite state time-invariant
Markov Chain with d states and probability transition matrix [pi,j(a)] = P(a). We observe
the chain through a time-invariant channel with input-output relation q(y|i) for y ∈ Y . Here
Y denotes the set of channel outputs, and 1 ≤ i ≤ d.
The information state can be organized as a row matrix

πk|k(ηk) =
[
pk|k(1|ηk), . . . , pk|k(d|ηk)

]
The updates are as follows:

πk+1|k+1(ηk+1) ∝ πk|k(ηk)P(uk)D(uk, yk+1)
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where D(uk, yk+1) is a diagonal matrix with entries p(yk+1|i, uk), 1 ≤ i ≤ d.
Later we will see that the optimal strategy at time k depends only on πk|k(I

Ψ
k ) (where IΨ

k

itself comes from the application of the optimal strategy at preceding times).
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