
Analysis of Absorbing Sets and Fully Absorbing Sets of

Array-Based LDPC Codes

Lara Dolecek, Zhengya Zhang, Venkat Anantharam, Martin J. Wainwright, and Borivoje Nikolić∗

dolecek@mit.edu; {zyzhang,ananth,wainwrig,bora}@eecs.berkeley.edu
January 28, 2008

Abstract

The class of low-density parity-check (LDPC) codes is attractive, since such codes can be decoded
using practical message-passing algorithms, and their performance is known to approach the Shannon
limits for suitably large blocklengths. For the intermediate blocklengths relevant in applications, how-
ever, many LDPC codes exhibit a so-called “error floor”, corresponding to a significant flattening in
the curve that relates signal-to-noise ratio (SNR) to the bit error rate (BER) level. Previous work has
linked this behavior to combinatorial substructures within the Tanner graph associated with an LDPC
code, known as (fully) absorbing sets. These fully absorbing sets correspond to a particular type of near-
codewords or trapping sets that are stable under bit-flipping operations, and exert the dominant effect on
the low BER behavior of structured LDPC codes. This paper provides a detailed theoretical analysis of
these (fully) absorbing sets for the class of Cp,γ array-based LDPC codes, including the characterization
of all minimal (fully) absorbing sets for the array-based LDPC codes for γ = 2, 3, 4, and moreover,
it provides the development of techniques to enumerate them exactly. Theoretical results of this type
provide a foundation for predicting and extrapolating the error floor behavior of LDPC codes.

Keywords: LDPC codes; message passing decoding; bit-flipping; error floor; near-codeword; trapping set;

absorbing set

1 Introduction

Low-density parity-check (LDPC) codes are a class of error-correcting codes based on sparse graphs. Their

chief appeal is their excellent performance under practical decoding algorithms based on message passing,

especially for moderate bit error rates (BER), say 10−6 and above [2, 18, 20]. As a consequence, LDPC

codes have been adopted into several recent standards including Ethernet [25], digital video broadcast-

ing [26], and broadband wireless [27].

∗Work done while L. Dolecek was with the Department of Electrical Engineering and Computer Sciences, University of Cali-
fornia, Berkeley, Berkeley, CA, 94720. She is now with the Department of Electrical Engineering and Computer Sciences, Massa-
chusetts Institute of Technology, Cambridge, MA, 02139. Z. Zhang, V. Anantharam, M. J. Wainwright and B. Nikolić are with the
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, 94720.

1

However, several researchers [12, 16] have observed that LDPC codes often exhibit an error floor, mean-

ing that beyond a certain signal-to-noise ratio (SNR), there is a significant change in slope in the plot of bit

error rate (BER) versus SNR. For suitably designed codes, these error floors only occur at relatively low bit

error rates (e.g. below 10−6), and do not pose problems for applications requiring only moderately low BER,

such as wireless communications. For other applications with low BER requirements, such as computer hard

drives and optical channels, these error floors are extremely troublesome. An on-going line of research has

shown that these error floors are closely related to the suboptimality of practical message-passing decoders.

In early work, Mackay and Postol [12] recognized that certain classes of non-codewords, which they referred

to as near-codewords, can cause the decoder to fail; in particular, an (a, b) near-codeword is a binary string

of weight a whose syndrome has weight b. From simulation of a rate 1/2 LDPC code with blocklength

2640 based on the Margulis construction, they found that (12, 4) and (14, 4) near-codewords are the main

contributors to the error floor of this code when used for the transmission over an additive white Gaussian

noise (AWGN) channel. They also postulated that the minimum distance of this code is significantly higher

than the size of the observed near-codewords. Di et al. [1] defined a closely related concept of a stopping set,

which governs the performance limits of iterative decoding for LDPC codes over the binary erasure channel

(BEC). Subsequent work [14] has provided analytical characterization of the stopping set enumerator for

different ensembles of LDPC codes. Although very useful for determining the performance over a BEC,

stopping sets cannot be used directly to determine LDPC performance for other channels, such as AWGN

channels, since the nature of errors in non-erasure channels is more subtle. For more general channels,

pioneering work by Richardson [16] introduced the operationally-defined notion of a trapping set in order

to address the error floor of LDPC codes, and developed a fast numerical method for estimating the error

probability in the low BER region. Other researchers have studied closely related notions of elementary trap-

ping sets [11], pseudocodewords for iterative decoding [8, 9], and pseudocodewords for linear-programming

decoding [6].

In previous experimental work [23], we used a hardware emulator to explore the low BER regime of

various classes of structured LDPC codes. On the basis of these experiments, we isolated a set of graph

substructures, referred to as absorbing sets, that cause various message-passing decoders to fail by converg-

ing to these non-codeword states. Like stopping sets, these objects have a purely combinatorial definition

in terms of the parity check matrix of a given LDPC code. They can be viewed as a special type of a

near-codeword or a trapping set, in particular one that is guaranteed to be stable under a bit-flipping de-

coder. These absorbing sets represent the dominant contribution to the error floor for iterative sum-product

decoding.

Under maximum likelihood decoding, it is well-known that the minimum distance and the weight enu-

merator of a code are key factors that determine its error-correcting performance. Given that absorbing sets

(as opposed to neighboring codewords) are the dominant error event for iterative decoders, it is natural to

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 2

consider the analogs of minimum distance and weight enumerator for absorbing sets. Herein lies the main

contribution of this paper: in particular, we provide a detailed and systematic theoretical analysis of the

absorbing sets of high rate array-based LDPC codes [5]. This class of codes is an exemplar of a structured

LDPC code with excellent performance in the moderate BER region, but whose low BER performance

is governed by the minimal absorbing sets. For this class of structured LDPC codes, we prove the non-

existence of various possible candidate absorbing sets, and having thereby explicitly constructed minimal

absorbing sets, we characterize their combinatorial structure and cardinalities. As described elsewhere [3],

this explicit enumeration of absorbing sets is a key ingredient in an importance-sampling-based method for

estimating error floor probabilities. In our concurrent work [24], the notion of absorbing sets has also been

shown to be an extremely important component in the novel designs of practical implementations of high-

throughput LDPC decoders. While the focus of this paper is on the theoretical description of the absorbing

sets of high rate array-based LDPC codes, the complementary work [24] considers the AWGN transmission,

and it contains numerous experimental hardware-based results which consistently support the claim that the

absorbing sets dominate the error floor under a variety of iterative decoding algorithms.

The remainder of this paper is organized as follows. We begin in Section 2 with a brief overview of

the class of array-based LDPC codes [5], and then formally introduce the definition of absorbing sets. In

Section 3, we provide a detailed study of the absorbing sets for column weights γ = 2, 3 and 4 for the

standard parity check matrices Hp,γ of such codes, and enumerate all such sets of smallest size. All of the

theoretical results are stated in this section, with some of the more technical proofs deferred to the Appendix.

Section 4 concludes the paper.

2 Background

We begin with background on array-based LDPC codes, and then provide a precise definition of absorbing

sets.

2.1 Array-based LDPC codes

Array-based LDPC codes [5] are regular LDPC codes parameterized by a pair of integers (p, γ), such that

γ ≤ p, and p is an odd prime. Given a p × p permutation matrix σ of the form

σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 1

1 0 . . . 0 0

0 1 . . . 0 0
...

... . . .
...

...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 3

we form the pγ × p2 parity check matrix Hp,γ

Hp,γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I I I . . . I

I σ σ2 . . . σp−1

I σ2 σ4 . . . σ2(p−1)

...
...

... . . .
...

I σγ−1 σ(γ−1)2 . . . σ(γ−1)(p−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

We use Cp,γ to denote the binary linear code defined by this parity check matrix (2). The rate1 of this code is

R = 1− γp−γ+1
p2 [13]. Fan [5] first demonstrated that array-based LDPC codes have very good performance,

and they have subsequently been proposed for a number of applications, including digital subscriber lines [4]

and magnetic recording [21].

2.2 Absorbing Sets

A convenient representation of a m×n parity check matrix H of a binary linear code is in terms of its factor

or Tanner graph [7, 10, 19]. In particular, let GH = (V, F, E) denote a bipartite graph, in which the set of

vertices V is associated with n bits in the code (columns of H), and the set F is associated with m checks

of the code (rows of H). The edge set E is defined by the structure of H: in particular, there exists an edge

e(i, j) ∈ E if and only if i ∈ V and j ∈ F . Elements of V are called “bit nodes” and elements of F are

called “check nodes”.

For the array-based LDPC codes defined previously, the factor graph associated with Hp,γ does not have

any cycles of length four, and thus the girth is at least six (see [5]). For any subset D of V we let ND denote

the subset of check nodes neighboring the elements of D. For any subset D of V , let E(D) (resp. O(D))

be the set of neighboring vertices of D in F in the graph G with even (resp. odd) degree with respect to D.

With this set-up, we have the following:

Definition 1 Given an integer pair (a, b), an (a, b) absorbing set is a subset D ⊆ V of size a, with O(D) of

size b and with the property that each element of D has strictly fewer neighbors in O(D) than in F\O(D).

We say that an (a, b) absorbing set D is an (a, b) fully absorbing set, if in addition, all bit nodes in V \D
have strictly more neighbors in F\O(D) than in O(D).

An example of a (4, 4) absorbing set is given in Figure 1, where dark circles represent bits in the set D,

dark squares constitute the set O(D), white squares constitute the set E(D), E(D, O(D)) is given by solid

lines, and E(D, E(D)) is given by dashed lines. Observe that each element in D has more neighbors with

even degree than odd degree. All check nodes not in the picture are denoted by empty squares. For this set

1Note that the parity check matrix Hp,γ is not full rank, hence the slight increase in rate over 1 − γ/p.

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 4

Figure 1: An example of a (4, 4) absorbing set.

to be a fully absorbing set, every bit node not in the figure should also have strictly more empty squares than

full squares as neighbors.

Note that D ⊆ V is a fully absorbing set if and only if for all v ∈ V , wt(HxDΔv) > wt(HxD) = b,

where DΔv denotes the symmetric difference between D and {v}, wt(y) is the Hamming weight of a binary

string y, and xD is a binary string with support D.

For the special case of a bit flipping algorithm [17], the configuration described as a fully absorbing set

is stable, since each bit node receives strictly more messages from the neighboring checks that reinforce its

value than messages that suggest the opposite bit value. However, as shown in previous hardware-based

emulation [23], and concurrent work [24], absorbing sets also control the error floor behavior of more

sophisticated message-passing decoders, such as the sum-product algorithm.

3 Theoretical Results

Our goal is to describe minimal absorbing sets and minimal fully absorbing sets (a, b) of the factor graph

of the parity check matrix Hp,γ , for γ = 2, 3, 4, where the minimality refers to the smallest possible a, and

where b is the smallest possible for the given a.

We use the following notation throughout the paper. Recall that Hp,γ is a γp × p2 matrix of 0’s and 1’s.

It is convenient to view Hp,γ as a two-dimensional array of component p× p submatrices with the rows i in

the range 0 ≤ i ≤ γ − 1 (also referred to as row groups) and the columns j in the range 0 ≤ j ≤ p− 1 (also

referred to as column groups). Each column of Hp,γ is uniquely described by a pair (j, k) where j denotes

the column index of the submatrix this column belongs to, and k, 0 ≤ k ≤ p − 1, denotes the index of this

column within the submatrix.

Let Gp,γ be the factor graph associated with Hp,γ , so bit nodes and check nodes in Gp,γ represent

columns and rows in Hp,γ , respectively. In the graph Gp,γ , bit nodes have degree γ and check nodes have

degree p. There is a total of p2 bit nodes and γp check nodes. Each bit node in Gp,γ receives the unique

label (j, k) that describes the corresponding column of Hp,γ . Each check node in Gp,γ receives a label i

if the corresponding row of Hp,γ belongs to the row group i. Multiple bit nodes can have the same j or k

label, but not both. Multiple check nodes can have the same i label.

We note that the structure of the parity check matrix imposes the following conditions on the neighboring

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 5

bit nodes and check nodes:

Bit Consistency: For a bit node, all its incident check nodes, labelled is1 through isγ , must have distinct

labels, i.e. these check nodes are in distinct row groups.

Check Consistency: All bit nodes, say (j1, k1) through (jp, kp), participating in the same check node

must have distinct j� values, i.e. they are all in distinct column groups.

Both conditions follow from the fact that the parity check matrix Hp,γ of Cp,γ consists of a 2-dimensional

array of permutation matrices of equal size. �
We begin with elementary lemmas that play a central role throughout the paper.

Lemma 1 (Pattern Consistency): The permutation submatrix σ has the following properties:

(a) the (r, k) entry of σi is 1 if and only if r − k ≡ i mod p.

(b) Let σij1 and σij2 be in the same row group of Hp,γ . If entry (r, k1) of σij1 is non-zero, then so is entry

(r, k2) of σij2 where k1 + ij1 ≡ k2 + ij2 ≡ r mod p.

We will refer to the constraints of the type described in Lemma 1 as pattern consistency constraints.

Lemma 2 (Cycle consistency:) Consider a cycle in Gp,γ of length 2t, involving t bit nodes, with labels

(j1, k1) through (jt, kt) and t check nodes, with labels i1 through it, such that bit nodes (j1, k1) and (j2, k2)

participate in the check labelled i1, (j2, k2) and (j3, k3) participate in the check labelled i2, and so on, until

check labelled it in which (jt, kt) and (j1, k1) participate. Then

i1(j2 − j1) + i2(j3 − j2) + · · · + it−2(jt−1 − jt−2) + it−1(jt − jt−1) + it(j1 − jt) ≡ 0 mod p. (3)

Proof: The pattern consistency constraints of Lemma 1(b) give:

k1 + i1j1 ≡ k2 + i1j2 mod p,

k2 + i2j2 ≡ k3 + i2j3 mod p,
...

kt−1 + it−1jt−1 ≡ kt + it−1jt mod p,

kt + itjt ≡ k1 + itj1 mod p.

(4)

Expand k1 − k2 into (k1 − kt) − (kt−1 − kt) − (kt−2 − kt−1) − · · · − (k2 − k3). Hence,

i1(j2 − j1) ≡ it(jt − j1) − it−1(jt − jt−1) − it−2(jt−1 − jt−2) − · · · − i2(j3 − j2) mod p. (5)

By rearranging the terms, relation (3) follows. �

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 6

Constraints of the type (3) will subsequently be referred to as cycle consistency constraints. Note that

the cycle consistency constraints are a consequence of the pattern consistency constraints.

Our main results can be summarized as follows: Let Gp,γ be the factor graph associated with the parity

check matrix Hp,γ of the array-based LDPC code Cp,γ .

Theorem 1 (Minimality) (a) For the Gp,2 family, all minimal absorbing sets are minimal fully absorbing

sets, and are of size (4, 0).

(b) For the Gp,3 family, the minimal absorbing sets are of size (3, 3), and the minimal fully absorbing sets

are of size (4, 2).

(c) For the Gp,4 family, and for p > 19, the minimal absorbing sets and the minimal fully absorbing sets

are of size (6, 4).

Our next result deals with the scaling behavior of the number of absorbing sets. Recall the standard as-

ymptotic notation Θ: we say that some positive function f(n) grows as Θ(n�) if there exist constants

0 < c ≤ c′ < +∞ such that c n� ≤ f(n) ≤ c′ n�, for n sufficiently large.

Theorem 2 (Scaling) Recalling that the blocklength n = p2 of the Cp,γ code corresponds to the number of

columns in the parity check matrix Hp,γ , we have:

(a) For γ = 2, the number of minimal (fully) absorbing sets in Gp,γ grows as Θ(n2).

(b) For γ = 3, the number of minimal absorbing sets as well as the number of minimal fully absorbing

sets grows as Θ(n3/2).

(c) For γ = 4 and for all blocklengths n > 192 the number of minimal absorbing sets as well as the

number of minimal fully absorbing sets grows as Θ(n3/2).

In the following three subsections, we provide proofs of these claims, where we treat each of the values of γ

separately. Although Theorem 2 states the result in terms of the Θ-scaling behavior, our techniques in fact

provide an exact count of the number of minimal (fully) absorbing sets. Note that Theorem 1(a) implies that

for γ = 2, the smallest (fully) absorbing sets are codewords; in fact, for this code, these absorbing sets are

the minimum distance codewords. This result should be contrasted with the assertions of Theorem 1(b) and

(c), for γ = 3 and γ = 4 respectively, which establish the existence of (fully) absorbing sets strictly smaller

than the minimum distance of the code. In particular, for γ = 3, the minimum distance is six [22, 13],

whereas for γ = 4 and p > 7, the minimum distance is between eight and ten [22, 13]. Therefore, for both

γ = 3 and γ = 4, the minimal absorbing sets and minimal fully absorbing sets are strictly smaller than the

minimum distance of the code.

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 7

1 1 2 2 3 3 4 4

1 2 3 4

Figure 2: (Labelled) candidate (4, 0) absorbing set.

3.1 Proof of Theorem 1(a) and 2(a)

We start by proving Theorem 1(a). The code Cγ,2 has uniform bit degree two, and is thus a cycle code. Even

though such codes are known to be poor [15], we include the analysis for the sake of completeness.

Let Gp,2 = (V, F, E) denote the factor graph of Hp,2. Let D be an (a, b) absorbing set in Gp,2. Each bit

node in D has degree 2 in Gp,2 and is required to have strictly more neighbors in E(D) than in O(D). This

implies that O(D) is empty. The absorbing set is of type (a, 0). It is thus a fully absorbing set, and is in fact

a codeword.

Since the matrix Hp,2 has the top row consisting of identity matrices, the codewords of Cp,2 are of even

weight. Moreover, since the bottom row of Hp,2 consists of distinct component submatrices, no two columns

of Hp,2 sum to zero. Therefore a > 2 and even and there are no cycles of length 4 in this code.

We now consider a = 4. Let (j1, k1), (j2, k2), (j3, k3) and (j4, k4) be the bit nodes participating in a

candidate (4, 0) absorbing set. These nodes must necessarily be arranged as in Figure 2.

The following result proves Theorem 1(a).

Lemma 3 There is a total of p2(p − 1)2 (4, 0) (fully) absorbing sets in the code described by Hp,2.

Proof: The bit consistency conditions are automatically satisfied by the numbering of the row groups in

Figure 2. The check consistency constraints give:

j1 �= j4, j1 �= j2, j2 �= j3, and j3 �= j4, (6)

whereas the pattern consistency constraints of Lemma 1(b) give:

k1 = k2, and k3 = k4, and (7a)

k2 + j2 ≡ k3 + j3 mod p, and k4 + j4 ≡ k1 + j1 mod p. (7b)

There are p ways of choosing k2, which also determines k1. Since j2 �= j3, we must have k3 �= k2, so

we have (p−1) ways of choosing k3, which also determines k4. We then have p ways of choosing j2, which

also determines j3. Since j1 �= j2, we have (p−1) ways of choosing j1, which also determines j4. To verify

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 8

Figure 3: Candidate (2, b) absorbing sets.

that every one of these choices satisfies all the equations it only remains to verify that j3 �= j4. This holds

because

j3 − j4 ≡ (k2 − k3 + j2) − (k1 − k4 + j1) ≡ j2 − j1 �= 0 mod p . (8)

Now, for any choice of row group labels for the checks, and column labels for the bits that satisfy the

bit and check consistency constraints and the pattern consistency constraints of Lemma 1(b), there is a

unique way to choose the row index in the individual row groups so that the pattern consistency constraint

of Lemma 1 are satisfied. This completes the proof of Lemma 3. �
From Lemma 3 (and recalling that the blocklength n = p2), we conclude that the number of (4, 0)

(fully) absorbing sets for the code described by Hp,2 is Θ(n2), thereby establishing Theorem 2(a).

3.2 Proof of Theorem 1(b) and 2(b)

In our preceding analysis with γ = 2, note that (4, 0) absorbing sets are actually codewords, so the perfor-

mance of the cycle code under iterative decoding is dominated by low weight codewords. We now turn to

the case γ > 2, which leads to more interesting results. In particular, our proof of Theorem 1(b) establishes

the existence of minimal absorbing sets and minimal fully absorbing sets, for which the number of bit nodes

a is strictly smaller than the minimum distance dmin of the code.

Let Gp,3 = (V, F, E) denote the factor graph of Hp,3. Let D be an (a, b) absorbing set in Gp,3. Each bit

node in D has degree 3 in Gp,3 and is required to have strictly more neighbors in E(D) than in O(D).

Suppose a = 2. In the graph Gp,3, an even number of edges from D terminates in E(D). Thus, either

b = 0 or b = 2 corresponding to the situations in Figure 3. In either case there would be a cycle of length 4

in Gp,3, which cannot hold [5], implying that a ≥ 3.

Suppose a = 3. In the graph Gp,3, an even number of edges from D terminates in E(D). Thus, either

b = 1 or b = 3. Suppose b = 1. This must correspond to the left form in Figure 4, or the right form in

Figure 4, which again involves a cycle of length 4 in Gp,3, a contradiction [5].

Still with a = 3, the remaining case to consider is b = 3. In this case, each bit node in D would

then connect to exactly one check node in O(D) implying the unlabelled form of Figure 5. Note that

there is a cycle of length 6. Suppose that these 3 bit nodes are indexed as (j1, k1), (j2, k2) and (j3, k3),

respectively, where j1, j2 and j3 are distinct (by the check consistency) and 0 ≤ j1, j2, j3 ≤ p − 1. Without

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 9

Figure 4: Candidate (3, 1) absorbing sets.

1 1 2 2 3 3

4 5 6 3 1 2

Figure 5: (Labelled) candidate (3, 3) absorbing set.

loss of generality, assume that (j1, k1) and (j2, k2) share a check in the row group i1, (j2, k2) and (j3, k3)

share a check in the row group i2, and that (j1, k1) and (j3, k3) share a check in the row group i3, where

i1, i2, i3 ∈ {0, 1, 2} and are distinct by the bit consistency condition. We may assume without loss of

generality that i1 = 0, i2 = 1 and i3 = 2. Note that the bit consistency constraints force the values of i4, i5

and i6 to be as given in Figure 5.

In the remainder of the discussion we first prove the existence of a (3, 3) absorbing set. We then show

that these (3, 3) absorbing sets are not fully absorbing sets. This result will in turn imply the existence of

(4, 2) fully absorbing sets, which are thus minimal fully absorbing sets for γ = 3.

The bit consistency constraints are automatically satisfied by our labelling of the row groups in Figure 5.

The check consistency constraints reduce to the distinctness of j1, j2 and j3. The pattern consistency

constraints of Lemma 1(b) give:

k1 + 2j1 ≡ k3 + 2j3 mod p, (9)

k1 ≡ k2 mod p, (10)

k2 + j2 ≡ k3 + j3 mod p. (11)

The existence of a solution and hence of a (3, 3) absorbing set is given in the proof of Lemma 4 below,

which counts the number of such sets.

Even though a (3, 3) fully absorbing set seems plausible, care must be taken with respect to bit nodes

outside a candidate fully absorbing set, that also participate in the unsatisfied checks. As we now show, a

(3, 3) fully absorbing set cannot exist, though the existence of a (3, 3) absorbing set implies a (4, 2) fully

absorbing set.

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 10

1 1 2 2 3 3

4 5 6 3 1 2

1 4

7

Figure 6: Candidate (3, 3) absorbing set (solid circles), with an adjacent bit node (empty circle).

Suppose first that a (3, 3) fully absorbing set were to exist. Since γ = 3, it is then necessary that no

bit node outside of the absorbing set participates in more than one unsatisfied check adjacent to a (3, 3)

absorbing set. Since (j1, k1) and (j3, k3) share a check, j1 �= j3. Consider the bit node labelled (j1, k4) that

connects to i6, as in Figure 6. Since i6 = 0, it follows from Lemma 1(b) that k3 = k4. Equations (9)-(11)

imply that k3 + 2j1 ≡ k2 + 2j2 mod p so that (j1, k4) (= (j1, k3)) bit node also connects to the check

labelled i5, as shown in Figure 6. This eliminates the possibility of a (3, 3) fully absorbing set.

A (4, 0) absorbing set (i.e. a codeword of weight 4) cannot exist since the minimum distance of the code

is 6 [22]. The next candidate size for the smallest fully absorbing set is (4, 2). Each of the unsatisfied checks

in any such configuration would necessarily connect to only one of the bit nodes, else we would have a cycle

of length 4, a contradiction [5]. Given this, no satisfied check node can connect to all four bit nodes, else

we would have a cycle of length 4, a contradiction [5]. Since there are 10 edges from the bit nodes that go to

satisfied checks we now see that there must be 5 satisfied checks in any candidate (4, 2) fully absorbing set.

The two bit nodes that each have all their three edges going to satisfied check nodes must then share exactly

one satisfied check (they have to share at least one, and cannot share more than one [5]). We have therefore

concluded that any candidate (4, 2) fully absorbing set must look like (an unlabelled version of) Figure 6.

The existence of such (4, 2) fully absorbing sets is proved in Lemma 4, which also counts the number of

such sets.

Lemma 4 The total number of (3, 3) absorbing sets and (4, 2) fully absorbing sets in the factor graph Gp,3

is p2(p − 1), and 3p2(p − 1)/2, respectively.

Proof: Referring to Figure 5, the bit consistency and the check consistency constraints are satisfied for the

given labels of row groups and since j1, j2 and j3 are distinct. Then j1 and k1 can each be chosen in p ways,

and then j3 can be chosen in p − 1 ways. This fixes k3 by equation (9), k2 by equation (10) and then j2 by

equation (11). There is then a unique way to choose the row indices in the individual row groups so that the

pattern consistency conditions of Lemma 1 are satisfied. Thus the total number of (3, 3) absorbing sets is

p2(p − 1).

Turning to counting (4, 2) fully absorbing sets, every such set must look like an unlabelled version

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 11

of Figure 6, and so it contains exactly two distinct (3, 3) absorbing sets (corresponding respectively to

removing one of the bit nodes that connects to an unsatisfied check). From Figure 5 one can see that every

(3, 3) absorbing set is contained in three distinct (4, 2) fully absorbing sets (for each pair of unsatisfied

checks in Figure 5 one can find a bit node that these checks connect to, which when appended to the (3, 3)

absorbing set gives a (4, 2) fully absorbing set). The total number of (4, 2) fully absorbing sets is therefore

3p2(p − 1)/2. �
Observe that Lemma 4 immediately implies Theorem 1(b).

3.3 Proof of Theorem 1(c) and 2(c)

In order to establish that (6, 4) (fully) absorbing sets are minimal for Hp,4 and p > 19, we will first show

that (a, b) absorbing sets for a < 6 do not exist. This section contains the following auxiliary results on

the non-existence of certain candidate absorbing sets, which hold for sufficiently large code parameter p

(specifically p > 19 will be sufficient for all auxiliary results) . In particular:

-Lemma 5 proves that (4, 4) absorbing sets do not exist,

-Lemma 6 proves that (5, b) absorbing sets do not exist, and

-Lemma 7 proves that (6, 2) absorbing sets do not exist.

Lastly, Lemma 8 provides an in-depth analysis of the (6, 4) absorbing sets.

Let D denote an (a, b) absorbing set in Gp,4 = (V, F, E), the factor graph of Hp,4. If a = 2 (respectively

3) then at least 6 (respectively 9) edges from D in Gp,4 terminate in E(D), which implies the existence of a

cycle of length 4 in Gp,4, which is false [5]. Thus, a ≥ 4.

Suppose a = 4 and note that b must be even. We cannot have b = 0, since this would imply the existence

of a codeword of weight 4, which is false [22]. If b = 2, one can conclude that there must be a cycle of length

4 in the code (whether the number of edges going into unsatisfied checks is 2 or 4), and this is false, [5].

Thus we must have b = 4 and, since each bit node must have at least three edges going to satisfied checks,

the impossibility of a cycle of length 4 [5] implies that the absorbing set can be described as in Figure 7.

In this figure, each vertex represents a distinct bit node of the candidate (4, 4) absorbing set and each edge

represents a satisfied check node that connects to the bit nodes in the absorbing set, that correspond to its

end points in the figure. The following lemma establishes that such sets do not exist if the prime p is large

enough.

Lemma 5 For p > 7, the factor graph family Gp,4 does not contain any (4, 4) absorbing sets.

Proof: Without loss of generality we may let i1 = x, i4 = y and i5 = z, where x, y, z ∈ {0, 1, 2, 3}
and distinct by the vertex consistency conditions. Then, by propagating the vertex consistency conditions

at each remaining vertex, and exploiting the symmetry, it suffices to consider (i1, i2, i3, i4, i5, i6) either

(x, y, x, y, z, z) or (x, y, x, y, z, w) where x, y, z, w ∈ {0, 1, 2, 3} and are distinct.

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 12

1 1 2 2

3 34 4

1

24

3

6

5

Figure 7: Depiction of the candidate (4, 4) absorbing set.

For the case (i1, i2, i3, i4, i5, i6) = (x, y, x, y, z, z), we establish the following cycle consistency condi-

tions based on the cycles within the graph in Figure 7:

x(j2 − j1) + y(j3 − j2) + z(j1 − j3) ≡ 0 mod p,

x(j2 − j1) + z(j4 − j2) + y(j1 − j4) ≡ 0 mod p, and

x(j4 − j3) + y(j1 − j4) + z(j3 − j1) ≡ 0 mod p.

(12)

By adding and subtracting the conditions in (12), it follows that

(y − z)(j3 + j4 − j1 − j2) ≡ 0 mod p,

(x − z)(j2 + j3 − j1 − j4) ≡ 0 mod p, and

(x − y)(j2 + j4 − j1 − j3) ≡ 0 mod p.

(13)

Since x, y, z are distinct, relation (13) implies that j’s would have to be all the same, which contradicts

the check consistency constraint.

For the case (i1, i2, i3, i4, i5, i6) = (x, y, x, y, z, w), again based on the cycle structure in Figure 7, we

obtain the cycle consistency conditions

x(j2 − j1) + y(j3 − j2) + z(j1 − j3) ≡ 0 mod p,

x(j2 − j1) + w(j4 − j2) + y(j1 − j4) ≡ 0 mod p, and

x(j4 − j3) + y(j1 − j4) + z(j3 − j1) ≡ 0 mod p.

(14)

We let u1 : = j2 − j1, u2 : = j3 − j1, and u3 : = j4 − j1. By the check consistency condition, all of u1,

u2, and u3 are non-zero. Substituting u1, u2 and u3 in (14) and then expressing u2 and u3 in terms of u1,

one arrives at the condition

(z − x)(w − y) + (z − y)(w − x) ≡ 0 mod p. (15)

It can be verified that this condition cannot hold for any choice of x, y, z, w, where x, y, z, w ∈ {0, 1, 2, 3}

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 13

1 1

2 2 5 5

4 43 3

1 4

2 3

6 7

5 8

Figure 8: Depiction of the candidate (5, 4) absorbing set.

and are distinct for p > 7. There are 4! = 24 ways of assigning numerical values to (x, y, z, w). Substituting

each numerical assignment (x, y, z, w) yields possible choices of prime p for which the expression in (15)

becomes zero mod p. The condition (15) holds for p ∈ {2, 5, 7}. Therefore, for p > 7, Gp,γ does not

contain (4, 4) absorbing sets. �
We next show that (5, b) absorbing sets do not exist for the parameter p large enough. In particular we

establish a congruential constraint involving the labels of the edges emanating from the bits in the absorbing

set that cannot hold for p large enough.

Lemma 6 For p > 19, the factor graph family Gp,4 does not contain any (5, b) absorbing sets.

Proof: Since each bit node in the absorbing set has at most one neighboring unsatisfied check node, it

follows that b ≤ 5. Observe that the number of bit nodes with 3 satisfied and 1 unsatisfied check nodes is

even, and thus b is even. First b > 0 by the minimum distance, dmin ≥ 8 of the code, [22]. If b = 2, since

we have at most five edges going to unsatisfied checks, there are two cases: (a) either three of them go to

one unsatisfied check and one to another, or (b) one edge goes to each unsatisfied check. In case (a), because

the girth of the factor graph is bigger than 4 [5], none of the three bit nodes that share an unsatisfied check

can share a satisfied check. Further, no two bit nodes can share a satisfied check for the same reason. By

counting, this eliminates case (a). In case (b), if we drop one of the bit nodes that has an unsatisfied check

we would have a (4, 4) absorbing set which we have argued in Lemma 5 does not exist for p > 7.

Thus for p > 7 we are left with considering the case b = 4 since at most five edges go into unsatisfied

checks. This means the candidate absorbing set contains 1 bit node with all checks satisfied and 4 bit nodes

each with 3 satisfied and 1 unsatisfied check. The only way that such an absorbing set could exist is if one

has the configuration shown in Figure 8, where the vertices represent bit nodes and edges represent their

satisfied check nodes.

Since i1, i2, i3 and i4 are all distinct elements of the set {0, 1, 2, 3}, by the bit consistency condition, and

by the symmetry of the candidate configuration in Figure 8, we may assume that i1 = 0. We let x : = i2,

y : = i3 and z : = i4, where x, y, z ∈ {1, 2, 3} and distinct. By propagating possible values of the labels for

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 14

remaining edges, while maintaining vertex consistency conditions, it follows that (i1, i2, i3, i4, i5, i6, i7, i8)

is either (0, x, y, z, y, z, 0, x) or (0, x, y, z, z, x, y, 0).

For (i1, i2, i3, i4, i5, i6, i7, i8) = (0, x, y, z, y, z, 0, x), and for each edge and its endpoints in Figure 8,

we write the pattern consistency constraints of Lemma 1(b), in terms of x, y and z,

k1 ≡ k2 mod p, (16a)

k3 ≡ k5 mod p, (16b)

k1 + xj1 ≡ k3 + xj3 mod p, (16c)

k1 + yj1 ≡ k4 + yj4 mod p, (16d)

k1 + zj1 ≡ k5 + zj5 mod p, (16e)

k2 + yj2 ≡ k3 + yj3 mod p, (16f)

k2 + zj2 ≡ k4 + zj4 mod p, and (16g)

k4 + xj4 ≡ k5 + xj5 mod p. (16h)

This last system simplifies to

k1 + xj1 ≡ k3 + xj3 mod p, (from (16c))

k1 + yj1 ≡ k4 + yj4 mod p, (from (16d))

k1 + zj1 ≡ k3 + zj5 mod p, (from (16b) and (16e))

k1 + yj2 ≡ k3 + yj3 mod p, (from (16a) and (16f))

k1 + zj2 ≡ k4 + zj4 mod p, and (from (16a) and (16g))

k4 + xj4 ≡ k3 + xj5 mod p. (from (16b) and (16h))

(17)

Thus

k1 − k3 ≡ x(j3 − j1) ≡ z(j5 − j1) ≡ y(j3 − j2) mod p (18a)

k1 − k4 ≡ y(j4 − j1) ≡ z(j4 − j2) mod p (18b)

k3 − k4 ≡ x(j4 − j5) mod p. (18c)

We let u1 : = j3 − j1, u2 : = j4 − j1, u3 : = j5 − j1, and u4 : = j3 − j2. Note that by the check

consistency condition, all of u1, u2, u3, and u4 are non-zero.

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 15

We then obtain

xu1 ≡ zu3 mod p, (from (18a))

xu1 ≡ yu4 mod p, (from (18a))

yu2 ≡ z(u2 − u1 + u4) mod p, (from (18b))

x(u2 − u3) ≡ yu2 − xu1 mod p, from k3 − k4 = (k1 − k4) − (k1 − k3) and

substituting from (18c), (18b), and (18a)), resp.

(19)

This last system can be rewritten as

⎡
⎢⎢⎢⎢⎢⎣

x 0 0 −y

x 0 −z 0

−z z − y 0 z

−x y − x x 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎥⎥⎥⎦
≡

⎡
⎢⎢⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎦

mod p . (20)

Therefore, the determinant of the matrix multiplying the (non-zero) vector [u1 u2 u3 u4]
T in (20) is

itself zero, which simplifies to

xy(z − x)(z − y) − z2(x − y)2 ≡ 0 mod p, (21)

Since x, y, z ∈ {1, 2, 3} and distinct, we consider all 3! = 6 assignments for (x, y, z), and for each we

evaluate the left hand side expression in (21). Note that for distinct x, y, z ∈ {1, 2, 3}, this expression is

at most 19 in absolute value, and therefore the constraint in (21) does not have a solution for p > 19 for

distinct x, y, z ∈ {1, 2, 3}. (Solutions exist for p = 5, 11 and 19, which can be verified by direct numerical

substitution).

For (i1, i2, i3, i4, i5, i6, i7, i8) = (0, x, y, z, z, z, y, 0) we likewise establish the constraints as in (16) and

(17). We again let u1 : = j3 − j1, u2 : = j4 − j1, u3 : = j5 − j1, and u4 : = j3 − j2, and obtain

⎡
⎢⎢⎢⎢⎢⎣

0 y −z 0

x y − x 0 −x

x 0 0 −z

y − x y −y 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎥⎥⎥⎦
≡

⎡
⎢⎢⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎦

mod p . (22)

Since the entries in [u1 u2 u3 u4]
T are all non-zero, it follows that the determinant of the matrix in (22)

is zero. Simplifying the expression for the determinant yields again the condition in (21). Therefore for

p > 19, (5, 4) absorbing sets do not exist. �
We can now proceed with the analysis of (6, b) absorbing sets. Since the number of bit nodes with 3

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 16

1 1 2 2

3 3
4 4

5 5 6 6

1
2

3 4

5 6

7

9

8

10

11

1 1 2 2

3 3 4 4 5 5 6 6

1

2 3 4 5

6 7

9

8

10

11

Figure 9: Depiction of the candidate (6, 2) absorbing sets.

satisfied and 1 unsatisfied check node is even, b is even. First, b = 0 is not possible since dmin ≥ 8 [22].

The following lemma addresses the case of b = 2.

Lemma 7 For p > 19, the factor graph family Gp,4 does not contain any (6, 2) absorbing sets.

Proof: We first claim that there is no check node of degree at least 3 with respect to the bit nodes in the

absorbing set. Let us first suppose that there exists one such check node and that it has an even degree

with respect to the bit nodes in the absorbing set. Since we are considering an absorbing set with 6 bit

nodes, such a check node would have degree either 4 or 6 with respect to the bit nodes in the absorbing

set. If this satisfied check is of degree 6, there would exist 2 bit nodes in the absorbing set which would

share an additional satisfied check. This situation would imply the existence of a cycle of length 4, which is

impossible by the girth condition [5].

Suppose now that this satisfied check has degree 4. Each bit node that participates in this check has at

least 2 more neighboring satisfied checks, which it then necessarily must share with the remaining two bit

nodes in the absorbing set that themselves do not participate in this degree-4 check by the girth condition [5].

If there exists a bit node that participates in this degree-4 check and has all checks satisfied, it then shares its

remaining neighboring check with one of the bit nodes with which it already shares a check. This situation

violates the girth constraint [5]. If all bit nodes in the absorbing set that participate in this degree-4 check

have 3 satisfied and 1 unsatisfied check, three of them would have to participate in the same unsatisfied

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 17

check to make the total number of unsatisfied checks be 2. This again violates the girth condition [5].

Therefore, all satisfied checks with respect to the bit nodes in the absorbing set have degree 2. Suppose

there exists a check node that is unsatisfied with respect to the bits in the absorbing set and that has degree

bigger than 1. If such a check node has degree 5, there would necessarily exist 2 bit nodes in the absorbing

set that share this degree-5 check and another satisfied check, which is impossible by the girth condition [5].

Suppose that there exist two degree-3 checks incident to the bit nodes in the absorbing set. First, these

degree-3 checks do not have any neighboring bit nodes in common since we require that each bit node has at

most 1 unsatisfied check. We can then group the bit nodes in the absorbing set into two disjoint groups, each

of size 3, such that the bits in the same group share the same degree-3 check. Consider a bit node in, say, the

first group. It shares its remaining 3 (satisfied) checks with each one of the bit nodes in the second group.

The same is true with the other two bit nodes in the first group, namely they too share their remaining 3

(satisfied) checks with the bit nodes in the second group, and these satisfied checks connect to two bit nodes

in the absorbing set. Therefore, there exist two bit nodes in the first group and two bit nodes in the second

group such that any two share a distinct check. This configuration is not possible by Lemma 5 for p > 7.

Suppose now that there exists one unsatisfied check of degree 3 with respect to the bit nodes in the ab-

sorbing set. The remaining unsatisfied check then has degree 1 with respect to the bit nodes in the absorbing

set, and the neighboring bit nodes in the absorbing set of these two unsatisfied checks are different. There

are two bit nodes in the absorbing set that have all checks satisfied. Partition the bit nodes in the absorbing

set into three groups: the first group contains the three bit nodes that share a degree-3 unsatisfied check, the

second group contains the one bit node that has one unsatisfied check, and the third group contains the two

bit nodes that have all four checks satisfied. Each of the three bit nodes in the first group has one unsatisfied

and three satisfied checks and thus it shares a satisfied check with each of the bit nodes in the second and

third group since it cannot share a satisfied check with another bit node in the first group by the girth condi-

tion [5]. The bit node in the second group also has one unsatisfied and three satisfied checks, and the latter

are shared then with the bit nodes in the first group. The two bit nodes in the third group have all four checks

satisfied, the three of which they each share with each of the bit nodes in the first group. Since all three

satisfied checks of the bit node in the second group are used up with the checks it shares with the bit nodes

in the first group, the two bit nodes in the third group share a satisfied check with each other. Therefore,

there exist two bit nodes in the first group and two bit nodes in the third group such that any two share a

distinct check. This configuration is not possible by Lemma 5 for p > 7.

We conclude that no check incident to the bit nodes in the absorbing set has degree larger than 2, namely

that all neighboring satisfied (respectively unsatisfied) checks have degree 2 (respectively 1). By requiring

that each vertex corresponding to a bit node in the absorbing set has either 3 or 4 outgoing edges, and that

there are no parallel edges, it follows that there are 2 possible configurations, as shown in Figure 9, that

relate bit nodes in the absorbing set (vertices) and their shared satisfied checks (edges).

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 18

Observe that the bottom configuration in Figure 9 contains a (4, 4) absorbing set which consists of

(j3, k3), (j4, k4), (j5, k5), and (j6, k6). By Lemma 5 such configuration is not possible for p > 7. The

analysis of the topmost configuration is considerably more involved and its technical details are deferred

to Appendix 5.1, in which we derive a congruency constraint that cannot hold for prime p > 19 under all

possible configuration labellings. With that result, the proof of Lemma 7 is complete. �
Having eliminated smaller candidate absorbing sets, we now prove the following result.

Lemma 8 For all p > 5, the factor graph family Gp,4 has (6, 4) (fully) absorbing sets.

Proof: We will first show that all satisfied checks neighboring bit nodes in one such absorbing set must have

degree 2. Note that there cannot be a degree-6 check with respect to the bits in the absorbing set as then some

of these bits would have to share another satisfied check which is not possible by the girth condition [5].

Suppose that there exists a check node of degree 4 with respect to a (6, 4) absorbing set. Let t1, t2, t3, t4 be

the bit nodes in the absorbing set participating in this degree-4 check node, and let t5 and t6 be the remaining

two bit nodes in the absorbing set. By the girth condition there can be at most one degree-4 check incident

to the bit nodes in the absorbing set. If at least one of t1, t2, t3, t4 had all check nodes satisfied, it would

be necessary that such a bit node shares another distinct check node with some other bit node participating

in the degree-4 check node, which is impossible by the girth constraint [5]. Thus, all of t1, t2, t3, t4 are

each connected to 3 satisfied and 1 unsatisfied check node, and all unsatisfied checks are distinct. Then t5

and t6 are each connected to 4 satisfied check nodes each of degree 2 with respect to the bit nodes in the

absorbing set. Since t1 through t4 have 3 satisfied neighboring checks (one of which is a degree-4 check by

assumption), they each share a check with t5 and with t6. Therefore, t5 and t6 do not share a check. Let ij

for 1 ≤ j ≤ 4 be the labels of the four check nodes connecting tj and t5. By the bit consistency condition

at t5, they are all different. By the bit consistency condition at each of tj for 1 ≤ j ≤ 4, the label of their

shared degree-4 check node must be different from all ij for 1 ≤ j ≤ 4, which is impossible as there are

only 4 distinct labels available. Therefore, all satisfied check nodes neighboring bit nodes in the absorbing

set have degree 2.

We first consider the case where there exists an unsatisfied check of degree 3 with respect to the bit

nodes in the absorbing set (an unsatisfied check of degree larger than 3 is not possible by the girth condition).

Consider a candidate (6, 4) absorbing set in which three bit nodes, call them t1, t2, t3 connect to the same

unsatisfied check, and the remaining three bit nodes, call them t4, t5, t6, each have a distinct unsatisfied

check. Since there are no cycles of length 4, each of the t1, t2, t3 shares a distinct satisfied check with each

of t4, t5, t6. Appendix 5.2 contains the proof that in fact for prime p, where p > 13, such a configuration is

not possible.

We now continue with the analysis of the candidate configurations in which each satisfied check has

degree 2 with respect to the bit nodes in the absorbing set, and each unsatisfied check has degree 1 with

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 19

respect to the bits in the absorbing set. By separately considering the cases when the two bit nodes that

1 1 2 2

4 4 5 5

1
3

4

5 6

7

9

8 10

2

6 6

3 3

Figure 10: Depiction of the first candidate (6, 4) set.

have all neighboring checks satisfied also have a satisfied check in common, and the cases when they do not,

one can show that there are 3 possible non isomorphic configurations, as shown in Figure 10, 11, and 12. By

ensuring the bit consistency, it further follows that for each configuration there are 8 distinct edge labellings

(as we show below). Let us consider the configuration in Figure 10 first. The other two configurations are

analyzed subsequently.

(a) First candidate (6,4) configuration, given in Figure 10.

We first determine all possible edge labellings. For convenience, we assign (i1, i2, i3, i4) : = (x, y, z, w),

where x, y, z, w ∈ {0, 1, 2, 3} and distinct by the bit consistency condition at (j1, k1). Then, by imposing

the bit consistency conditions at remaining vertices, the possible assignments for the remaining edge labels

are as follows,

(i5, i6, i7, i8, i9, i10) ∈ {(y, z, x, z, x, y), (z, x, y, y, z, x), (y, z, x, z, w, y), (y, z, x, w, x, y),

(y, z, x, z, x, w), (z, x, y, y, z, w)(z, x, y, y, w, x), (z, x, y, w, z, x)}.
(23)

We first observe that the assignments (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10) =(x, y, z, w, y, z, x, z, x, y) and

(i1, i2, i3, i4, i5, i6, i7, i8, i9, i10) =(x, y, z, w, z, x, y, y, z, x) are in fact symmetric (exchange y and z) and

is thus sufficient to analyze only one of them. Likewise, by appealing to symmetry and after appropriate

1 1 2 2

4 4 5 5

1

3

4 5

6

7

9

8

10

2

6 63 3

Figure 11: Depiction of the second candidate (6, 4) set.

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 20

1 1 2 2

4 4
5 5

1
3

4

5

6

7

98

10

2

3 3 6 6

Figure 12: Depiction of the third candidate (6, 4) set.

renamings, the remaining six assignments also represent the same labelled configuration. In particular,

third and sixth assignments in (23) are symmetric, as are fourth and seventh, and as are fifth and eighth

assignments. Fourth assignment follows from the third by exchanging the labels x and z, and the fifth

assignment follows from the third by exchanging the labels x and y. It is thus sufficient to consider only

(i1, i2, i3, i4, i5, i6, i7, i8, i9, i10)= (x, y, z, w, y, z, x, z, x, y) or (x, y, z, w, y, z, x, z, w, y).

I. Consider the labelling (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10)= (x, y, z, w, y, z, x, z, x, y).

By applying the pattern consistency for each edge and its end points in Figure 10 we obtain

k1 + xj1 ≡ k3 + xj3 mod p,

k1 + yj1 ≡ k4 + yj4 mod p,

k1 + zj1 ≡ k5 + zj5 mod p,

k1 + wj1 ≡ k2 + wj2 mod p,

k2 + yj2 ≡ k3 + yj3 mod p,

k2 + zj2 ≡ k4 + zj4 mod p,

k2 + xj2 ≡ k5 + xj5 mod p,

k3 + zj3 ≡ k6 + zj6 mod p,

k4 + xj4 ≡ k6 + xj6 mod p, and

k5 + yj5 ≡ k6 + yj6 mod p.

(24)

Using the cycle consistency conditions for each of five cycles that span the cycle space of the graph in

Figure 10 we also write

w(j2 − j1) + y(j3 − j2) + x(j1 − j3) ≡ 0 mod p,

w(j2 − j1) + z(j4 − j2) + y(j1 − j4) ≡ 0 mod p,

w(j2 − j1) + x(j5 − j2) + z(j1 − j5) ≡ 0 mod p,

y(j4 − j1) + x(j6 − j4) + z(j3 − j6) + x(j1 − j3) ≡ 0 mod p, and

x(j5 − j2) + y(j6 − j5) + x(j4 − j6) + z(j2 − j4) ≡ 0 mod p.

(25)

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 21

We will use the relationships in (25) to express j3 through j6 in terms of j1 and (j2 − j1), and then in

turn use (24) to express k2 through k6 in terms of k1, j1 and (j2 − j1).

By symmetry of the configuration (see Figure 10), for the current labelling it is sufficient to consider

x = 0 and w = 0. Specifically, letting y = 0 or z = 0 reduces to the x = 0 case.

We let a : = j2 − j1, b : = j3 − j1, c : = j4 − j1, d : = j5 − j1, and e : = j6 − j1. Note that in particular

by the check consistency constraint, a �= 0.

1. Case x = 0

The system in (25) reduces to

a(w − y) + by ≡ 0 mod p,

a(z − w) + c(y − z) ≡ 0 mod p,

aw − dz ≡ 0 mod p,

bz + yc − ze ≡ 0 mod p, and

az − cz − dy + ey ≡ 0 mod p .

(26)

Using (26) we express b, c , d and e in terms of a. In particular, the last constraint in (26) is redundant as

it follows from the previous four, as we now show. Express b, c and d of a using top three equations in (26)

so that

b ≡ a
y − w

y
mod p, c ≡ a

w − z

y − z
mod p and d ≡ a

w

z
mod p . (27)

Substitute for b, c, d in terms of a in the fourth equation of the system (26) to obtain

e ≡ a

(
y − w

y
+

w − z

y − z

y

z

)
mod p . (28)

Likewise, substitute for b, c, d in terms of a in the fifth equation of the system (26) to obtain

a

(
z − z

w − z

y − z
− wy

z

)
+ ey ≡ 0 mod p . (29)

From (28) it follows that

(y − z)yze ≡ a
(
z(y − w)(y − z) + y2(w − z)

)
mod p, (30)

and from (29) it follows that

a
(
z2(y − z) − z2(w − z) − wy(y − z)

)
+ (y − z)yze ≡ 0 mod p . (31)

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 22

Rewrite (31) as

(y − z)yze ≡ a
(−z2(y − z) + z2(w − z) + wy(y − z)

)
mod p . (32)

We expand the terms that multiply a in both (30) and (32). They both reduce to (−wyz−yz2 +wz2 +y2w),

which makes the last equation in the system (26) redundant.

Therefore, for q : = j1 and t : = j2 − j1, all of the remaining values of j3, j4, j5, j6 follow for each of

the 3! = 6 choices of (y, z, w).

From (24) we have that k1 = k3, k2 = k5, k4 = k6 as well as k4 ≡ k1 − y(j4 − j1) mod p, and

k5 ≡ k1 − z(j5 − j1) mod p. We can thus express k2 through k6 in terms of s : = k1, q and t. The results

for all choices of (y, z, w) are summarized in Table 1, where the indices are taken mod p.

y, z, w j1 j2 j3 j4 j5 j6 k1 k2 k3 k4 k5 k6

3, 2, 1 q q + t q + 2t/3 q − t q + t/2 q − 5t/6 s s − t s s + 3t s − t s + 3t
3, 1, 2 q q + t q + t/3 q + t/2 q + 2t q + 11t/6 s s − 2t s s − 3t/2 s − 2t s − 3t/2
2, 3, 1 q q + t q + t/2 q + 2t q + t/3 q + 11t/6 s s − t s s − 4t s − t s − 4t
2, 1, 3 q q + t q − t/2 q + 2t q + 3t q + 7t/2 s s − 3t s s − 4t s − 3t s − 8t
1, 2, 3 q q + t q − 2t q − t q + 3t/2 q − 5t/2 s s − 3t s s + t s − 3t s + t
1, 3, 2 q q + t q − t q + t/2 q + 2t/3 q − 5t/6 s s − 2t s s − t/2 s − 2t s − t/2

Table 1: Several solutions for a (6, 4) fully absorbing set.

Furthermore, under the current configuration, the bit nodes in one such (6, 4) absorbing set that have

3 satisfied and 1 unsatisfied check, all have unsatisfied checks in the row group labelled w. By the bit

consistency condition, no bit node can connect to more than one such check. Therefore, this configuration is

in fact a (6, 4) fully absorbing set. In particular, the solution set in row 1 holds for all p > 5 and t a multiple

of 6.

We complete the analysis of this label assignment by considering w = 0.

2. Case w = 0

In this case the system in (25) reduces to:

ay + b(x − y) ≡ 0 mod p,

az + c(y − z) ≡ 0 mod p,

ax + d(z − x) ≡ 0 mod p,

b(z − x) + c(y − x) + e(x − z) ≡ 0 mod p, and

a(z − x) + c(x − z) + d(x − y) + e(y − x) ≡ 0 mod p .

(33)

Note that the last relation follows from the previous four. We again express b, c, d and e in terms of a,

so that by setting j1 : = q and a : = t, all of j2 through j6 follow as a function of q and t. Then, by

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 23

letting k1 : = s, the remaining k2 through k6 follow from q, t and s from (25). The solution set for various

numerical assignments of (x, y, z) is given in Table 2, where the indices are taken mod p.

x, y, z j1 j2 j3 j4 j5 j6 k1 k2 k3 k4 k5 k6

3, 2, 1 q q + t q − 2t q − t q + 3t/2 q − 5t/2 s s s + 6t s + 2t s − 3t/2 s + 13t/2
3, 1, 2 q q + t q − t/2 q + 2t q + 3t q + 7t/2 s s s + 3t/2 s − 2t s − 6t s − 13t/2
2, 3, 1 q q + t q + 3t q − t/2 q + 2t q + 7t/2 s s s − 6t s + 3t/2 s − 2t s − 13t/2
2, 1, 3 q q + t q − t q + 3t/2 q − 2t q − 5t/2 s s s + 2t s − 3t/2 s + 6t s + 13t/2
1, 2, 3 q q + t q + 2t q + 3t q − t/2 q + 7t/2 s s s − 2t s − 6t s + 3t/2 s − 13t/2
1, 3, 2 q q + t q + 3t/2 q − 2t q − t q − 5t/2 s s s − 3t/2 s + 6t s + 2t s + 13t/2

Table 2: Several solutions for a (6, 4) fully absorbing set.

As in the x = 0 case, the unsatisfied checks all belong in the row group labelled w. By the bit consistency

condition, no bit node can connect to more than one such check. Therefore, this configuration is also in fact

a (6, 4) fully absorbing set. In particular, the solution set in row 1 of Table 2 holds for all p > 5 and t even.

We now consider the remaining labelled configuration of Figure 10.

II. Consider the labelling (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10) = (x, y, z, w, y, z, x, z, w, y).

We again let a : = j2 − j1, b : = j3 − j1, c : = j4 − j1, d : = j5 − j1, and e : = j6 − j1. Note that in

particular by the check consistency constraint, a �= 0.

Based on the cycle consistency condition for the five cycles in Figure 10 we establish

a(w − y) + b(y − x) ≡ 0 mod p,

a(w − z) + c(z − y) ≡ 0 mod p,

a(w − x) + d(x − z) ≡ 0 mod p,

c(y − w) + b(z − x) + e(w − z) ≡ 0 mod p, and

d(x − y) + a(z − x) + c(w − z) + e(y − w) ≡ 0 mod p .

(34)

By expressing b, c and d in terms of a, from this system we obtain

a

(
(y − w)(w − z)

y − z
+

(z − x)(w − y)
x − y

)
+ e(w − z) ≡ 0 mod p (35)

a

(
(x − y)(w − x)

z − x
+ (z − x) +

(w − z)2

y − z

)
+ e(y − w) ≡ 0 mod p, (36)

where {x, y, z, w} = {0, 1, 2, 3} and are distinct. For all 4! = 24 distinct ways of assigning numerical

values to x, y, z and w, the system (35)–(36) produces the unique solution a = 0, e = 0, provided that

p > 3. Since a �= 0 by the edge consistency condition, we conclude that this configuration is not possible.

We now analyze possible solutions for the next candidate (6, 4) configuration, for which we show that

there exist (6, 4) absorbing sets which are not fully absorbing sets.

(b) Second candidate (6,4) configuration, given in Figure 11.

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 24

We first determine all possible edge labellings. For convenience, let (i1, i2, i3, i4) : = (x, y, z, w), where

x, y, z, w ∈ {0, 1, 2, 3} and are distinct by the bit consistency condition at (j1, k1). Then, by imposing the

bit consistency conditions at remaining vertices, the assignments for the remaining edge labels are given by

the following set

(i5, i6, i7, i8, i9, i10) ∈ {(y, x, w, z, z, x), (w, x, y, z, z, x), (y, x, w, z, z, y), (y, w, x, z, z, y),

(y, x, w, z, w, x), (z, x, w, y, w, x), (y, z, w, x, w, y), (y, x, w, z, w, y)} .
(37)

Out of these 8 possible labelled configurations by appealing to symmetry and label renaming it is sufficient

to consider only 2 of these as we now show. Note that the eighth labelling is the same as the first labelling

after we exchange (j3, k3) and (j4, k4), (j5, k5) and (j6, k6), and labels y with x and w with z. Likewise,

the second labelling is the same as the seventh labelling after we exchange (j3, k3) and (j4, k4), (j5, k5)

and (j6, k6), and labels y with x and w with z. The sixth labelling is the same as the fourth labelling after

we exchange labels z with x, y with w, and nodes (j1, k1) with (j2, k2), (j3, k3) with (j4, k4), and (j5, k5)

with (j6, k6), and take the mirror image of the resulting configuration. Fifth labelling is the same as the

third after we exchange labels z with x and y with w and take the mirror image of the whole configuration.

Fourth (respectively first) labelling is the same as the second (respectively third) after we exchange (j3, k3)

and (j4, k4) and labels x and y.

It is thus sufficient to consider only two different labellings, namely (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10)=

(x, y, z, w, y, x, w, z, z, y) (third labelling) and (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10) = (x, y, z, w, y, z, w, x, w, y)

(seventh labelling). The analysis utilizes the same tools as the ones developed for the previous candidate

configuration, and its technical details are deferred to Appendix 5.3. The outcome of the analysis gives the

solution sets listed in Tables 3 and 4, again the entries are taken mod p, which are absorbing but not fully

absorbing sets, as further argued in Appendix 5.3.

x, y, w j1 j2 j3 j4 j5 j6 k1 k2 k3 k4 k5 k6

1, 3, 2 q q + 4t q + 3t q + t q + t q + 3t s s − 6t s − 3t s − 3t s s − 6t

Table 3: A solution for a (6, 4) absorbing set.

y, z, w j1 j2 j3 j4 j5 j6 k1 k2 k3 k4 k5 k6

2, 1, 3 q q q − t q + t q − t q + t s s − 2t s s − 2t s + t s − 3t

Table 4: A solution for a (6, 4) absorbing set.

Lastly, we consider the third and final unlabelled candidate (6, 4) absorbing set, for which we show that

in fact does not yield (6, 4) absorbing sets for the prime p large enough.

(c) Third candidate (6,4) configuration, given in Figure 12.

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 25

We first determine all possible edge labellings. As before we let (i1, i2, i3, i4) : = (x, y, z, w), where

x, y, z, w ∈ {0, 1, 2, 3} and distinct by the bit consistency condition at (j1, k1). Then, by propagating bit

consistency conditions for remaining vertices, the assignments for the remaining edge labels are given by

the following set

(i5, i6, i7, i8, i9, i10) ∈ {(x, y, z, z, x, y), (x, y, z, z, x, w), (x, y, z, z, w, y), (x, y, z, w, x, y),

(x, y, z, w, w, y), (z, x, y, w, w, z), (z, y, x, w, w, y), (z, y, x, w, w, z)} .

By exploiting the symmetry, one can show that after renaming the labelling (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10)=

(x, y, z, w, x, y, z, z, w, y) and (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10)= (x, y, z, w, x, y, z, w, x, y) reduce to the

same case (by exchanging z and x). We are thus left with analyzing the remaining seven cases. As before,

we let a : = j2 − j1, b : = j3 − j1, c : = j4 − j1, d : = j5 − j1, and e : = j6 − j1. Note that in particular by

the check consistency constraint, a �= 0.

Consider the labelling (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10) = (x, y, z, w, x, y, z, z, x, y). We apply the cycle

consistency conditions to five cycles spanning the cycle space of the graph in Figure 12 and obtain:

xb + z(c − b) − yc ≡ 0 mod p,

yc + x(a − c) − wa ≡ 0 mod p,

−wa + zd + y(a − d) ≡ 0 mod p,

y(d − a) + x(e − d) + z(a − e) ≡ 0 mod p, and

xb + y(e − b) + x(d − e) − zd ≡ 0 mod p .

(38)

By expressing b, c and d in terms of a, and substituting in the bottom two constraints of (38) we obtain

a

(
z − y +

(y − w)(y − x)
y − z

)
+ e(x − z) ≡ 0 mod p, and (39)

a

(
(y − z)(x − w)

x − z
+

(y − w)(x − z)
y − z

)
+ e(y − x) ≡ 0 mod p, (40)

where {x, y, z, w} = {0, 1, 2, 3} and are distinct. For all 4! = 24 distinct ways of assigning numerical

values to x, y, z and w, the system (39) – (40) produces the unique solution a = 0, e = 0, provided that

p > 3. Since a �= 0 by the check consistency condition, we conclude that this configuration is not possible.

One can likewise establish the constraints of the (38) type for the remaining six cases, from which the

two equations (as in (39) and (40)) relating a and e will follow. In all five cases, the unique solution for p

large enough is (a, e) = (0, 0). In particular, p > 13 is sufficient for all cases considered.

Having exhaustively considered all possible configurations of a (6, 4) absorbing sets, the proof of the

lemma is complete. �

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 26

Using these results the proof of Theorem 1(c) now follows. We complete our analysis of γ = 4 by

proving the claim in Theorem 2: The number of (6, 4) (fully) absorbing sets scales as Θ(n3/2), where n is

the codeword length.

Proof: Recall that for the configuration in Figure 10 we identified two sets of labellings given in Tables 1

and 2 that determine (6, 4) fully absorbing sets. For each such assignment there are three parameters that

determine all of j’s and k’s, and each parameter is chosen independently in at most p ways (to ensure the

all j’s and k’s have integer values), yielding an upper bound which grows as Θ(p3). A lower bound on the

cardinality of the (6, 4) fully absorbing sets is given by one solution set in Table 1, which also grows as

Θ(p3). Note that the number of solutions of absorbing sets in Table 3 and Table 4 grows as Θ(p3) as well 2.

Since n = p2, the result follows. �
We have thus proven Theorem 2 for γ = 4.

4 Conclusion

Absorbing sets are a substructure of the factor graphs defining LDPC codes that cause error floors in itera-

tive decoding. The main contribution of this paper was to develop algebraic techniques for analyzing and

enumerating minimal fully absorbing sets for the class of array-based LDPC codes.We provided an explicit

description of these minimal (fully) absorbing sets and showed the non-existence of certain candidate con-

figurations. We also enumerated minimal (fully) absorbing sets and showed how their number scales with

the codeword length. In concurrent work [3], we have used these theoretical results to develop a fast sim-

ulation method, based on importance sampling, for computing estimates of the error floor of LDPC codes.

Although the current paper has focused on a particular subclass of LDPC codes, we suspect that the tech-

niques and analysis performed in the current work can be fruitfully extended to a larger class of structured

LDPC codes.

5 Appendix

5.1 Non-existence of (6, 2) absorbing sets

By ensuring the bit consistency, it follows that the topmost configuration in Figure 9 has 2 distinct edge

labellings. In particular, by the vertex consistency at (j3, k3) we may let x : = i1, y : = i7, z : = i11 and

w : = i10, where x, y, z, w ∈ {0, 1, 2, 3} and distinct. By propagating the labels while making sure that the

bit consistency constraints are satisfied we conclude that either

• x = i1 = i5 = i8, y = i7 = i9, z = i2 = i6 = i11, w = i3 = i4 = i10 or

2For p = 37, Remark 1 and Remark 2 in Appendix 5.3 also show that the number of additional solution sets also scales as 373.

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 27

• x = i1 = i4 = i9, y = i3 = i6 = i7, z = i8 = i11, w = i2 = i5 = i10

where throughout x, y, z, w are distinct and belong to the set {0, 1, 2, 3}.

I. Consider the labelling (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11) = (x, z, w, w, x, z, y, x, y, w, z).

Using the pattern consistency constraint (see Lemma 1(b)) for each edge in Figure 9 for the current

labelling we obtain

k1 + xj1 ≡ k3 + xj3 mod p, (41a)

k1 + zj1 ≡ k4 + zj4 mod p, (41b)

k1 + wj1 ≡ k5 + wj5 mod p, (41c)

k2 + wj2 ≡ k4 + wj4 mod p, (41d)

k2 + xj2 ≡ k5 + xj5 mod p, (41e)

k2 + zj2 ≡ k6 + zj6 mod p, (41f)

k3 + yj3 ≡ k4 + yj4 mod p, (41g)

k4 + xj4 ≡ k6 + xj6 mod p, (41h)

k5 + yj5 ≡ k6 + yj6 mod p, (41i)

k3 + wj3 ≡ k6 + wj6 mod p, and (41j)

k3 + zj3 ≡ k5 + zj5 mod p . (41k)

We now separately consider x = 0, y = 0, z = 0, and w = 0.

1. For x = 0, the set of constraints (41a)-(41k) reduces to

k1 − k3 ≡ 0 mod p (from (41a))

k2 − k5 ≡ 0 mod p (from (41e))

k4 − k6 ≡ 0 mod p (from (41h))

k1 − k4 ≡ z(j4 − j1) ≡ y(j4 − j3) ≡ w(j6 − j3) mod p (from (41b),

(41a) and (41g), and(41h), (41a) and (41j) respectively.)

k2 − k4 ≡ w(j4 − j2) ≡ z(j6 − j2) ≡ y(j6 − j5) mod p (from (41d) ,

(41h) and (41f), and (41e), (41h) and (41i) respectively.)

k1 − k2 ≡ w(j5 − j1) ≡ z(j5 − j3) mod p . (from (41c) and (41e)

and (41a), (41e) and (41k) respectively.)
(42)

Since j1 �= j4, j2 �= j4 and j1 �= j5 by the check consistency conditions, we have that k1 �= k4, k2 �= k4

and k1 �= k2.

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 28

Since {y, z, w} = {1, 2, 3} and p > 19 is prime, we may let

k1 − k4 ≡ ywzt mod p,

k2 − k4 ≡ ywzu mod p, and

k1 − k2 ≡ wzs mod p,

(43)

for some integers t, s and u which are themselves nonzero. From k1 − k2 = (k1 − k4) − (k2 − k4),

j5 − j3 = −(j6 − j5)+ (j6 − j3), and j5 − j1 = −(j6 − j5)+ (j6 − j2)− (j4 − j2)+ (j4 − j1), respectively,

it follows that
wzs ≡ yzwt − ywzu mod p,

ws ≡ −wzu + yzt mod p, and

zs ≡ −wzu + ywu − yzu + ywt mod p .

(44)

From (44), by equating the expressions for ws and zs, it follows that

wu(y − z) ≡ yt(w − z) mod p and

wu(y − z) ≡ yt(z − w) mod p .
(45)

The last set of constraints implies w ≡ z mod p, which is a contradiction.

2. For y = 0 the set of constraints (41a)-(41k) reduces to

k3 − k4 ≡ 0 mod p,

k5 − k6 ≡ 0 mod p,

k1 − k3 ≡ x(j3 − j1) ≡ z(j4 − j1) mod p,

k2 − k5 ≡ x(j5 − j2) ≡ z(j6 − j2) mod p,

k3 − k5 ≡ x(j6 − j4) ≡ w(j6 − j3) ≡ z(j5 − j3) mod p, and

k1 − k5 ≡ w(j5 − j1) mod p .

(46)

Note that j1 �= j3, j2 �= j5, j4 �= j6 and j1 �= j5 by the check consistency conditions, so that k1 �= k3,

k2 �= k5, k3 �= k5 and k1 �= k5. Since {x, z, w} = {1, 2, 3}, we may let

k1 − k3 ≡ xzs mod p,

k1 − k5 ≡ wv mod p,

k2 − k5 ≡ xzu mod p, and

k3 − k5 ≡ xwzt mod p

(47)

for some integers s, u, v and t, which are themselves nonzero. The identities k1−k3 = (k1−k5)−(k3−k5),

j5 − j1 = (j5 − j3) + (j3 − j1) and j4 − j1 = −(j6 − j4) + (j6 − j3) + (j3 − j1) respectively, yield the

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 29

following constraints,

xzs ≡ wv − xwzt mod p,

v ≡ xwt + zs mod p, and

xs ≡ −wzt + xzt + zs mod p .

(48)

Eliminating v from the top two constraints in (48) implies zs(x − w) ≡ xwt(w − z) mod p, which

combined with the bottom constraint in (48) yields

z2(x − w)2 ≡ xw(w − z)(x − z) mod p . (49)

Since {x, y, w} = {1, 2, 3}, this cannot hold for p > 19.

3. For z = 0 we obtain

k1 − k4 ≡ 0 mod p,

k2 − k6 ≡ 0 mod p,

k3 − k5 ≡ 0 mod p,

k1 − k3 ≡ x(j3 − j1) ≡ w(j5 − j1) ≡ y(j3 − j4) mod p,

k2 − k3 ≡ x(j5 − j2) ≡ y(j5 − j6) ≡ w(j3 − j6) mod p, and

k1 − k2 ≡ w(j2 − j4) ≡ x(j6 − j4) mod p .

(50)

As before, some algebra yields x ≡ w mod p, a contradiction.

4. For w = 0 we obtain

k1 − k5 ≡ 0 mod p,

k2 − k4 ≡ 0 mod p,

k3 − k6 ≡ 0 mod p,

k1 − k3 ≡ x(j3 − j1) ≡ y(j6 − j5) ≡ z(j3 − j5) mod p,

k2 − k3 ≡ z(j6 − j2) ≡ y(j3 − j4) ≡ x(j6 − j4) mod p, and

k1 − k2 ≡ z(j4 − j1) ≡ x(j2 − j5) mod p .

(51)

After some algebra, we obtain the following condition

xz(z − y)(x − y) ≡ −y2(x − z)2 mod p, (52)

which, because {x, y, z} = {1, 2, 3} has no solution for p > 19.

II. For the labelling (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11) = (x, w, y, x, w, y, y, z, x, w, z) we separately

consider x = 0, y = 0, z = 0, and w = 0, and proceed along the lines of the previous case. For x = 0,

resp. y = 0, it follows after some algebra that y ≡ w mod p, resp. x ≡ w mod p, a contradiction in each

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 30

case. For z = 0, resp. w = 0, it follows similarly that xw(w − y)(x − y) ≡ y2(x − w)2 mod p, resp.

xy(y − z)(x − z) ≡ −z2(x − y)2 mod p, neither of which can hold for p > 19.

This completes the proof of Lemma 7. �

5.2 Non-existence of (6, 4) absorbing sets with an unsatisfied check of degree 3

Recall that we are considering the case where there exists an unsatisfied check of degree 3 with respect to

the bit nodes in a candidate (6, 4) absorbing set. In this absorbing set bit nodes t1, t2, t3 connect to the same

unsatisfied check, and the remaining three bit nodes, t4, t5, t6, each have a distinct unsatisfied check. Since

there are no cycles of length 4, each of t1, t2, t3 shares a distinct satisfied check with each of t4, t5, t6.

Let the check incident to t1, t2, and t3 have label x, where x ∈ {0, 1, 2, 3}. Using the bit consistency

condition, we let y be the label of the satisfied check incident to t1 and t4, z be the label of the satisfied

check incident to t1 and t5, and w be the label of the satisfied check incident to t1 and t6, where y, z, w ∈
{0, 1, 2, 3} are distinct and are different from x.

By propagating remaining edge labels while ensuring that the bit consistency is satisfied, we obtain that

the labels of the checks connecting t2 with t4, t5 and t6, respectively, are z, w and y and the labels of the

checks connecting t3 with t4, t5 and t6, respectively, are w, y and z.

Let (jl, kl) for 1 ≤ l ≤ 6 be the labels of the bit nodes tl. Using the pattern consistency (see Lemma 1(b))

we write one equation for each pair of the bit nodes in the absorbing set that share a satisfied check as

follows:
k1 + yj1 ≡ k4 + yj4 mod p,

k1 + zj1 ≡ k5 + zj5 mod p,

k1 + wj1 ≡ k6 + wj6 mod p,

k2 + zj2 ≡ k4 + zj4 mod p,

k2 + wj2 ≡ k5 + wj5 mod p,

k2 + yj2 ≡ k6 + yj6 mod p,

k3 + wj3 ≡ k4 + wj4 mod p,

k3 + yj3 ≡ k5 + yj5 mod p, and

k3 + zj3 ≡ k6 + zj6 mod p .

(53)

In addition we may also write

k1 + xj1 ≡ k2 + xj2 ≡ k3 + xj3 mod p, (54)

since the bit nodes (j1, k1), (j2, k2) and (j3, k3), all participate in the same (unsatisfied) check with label x.

Since x, y, z, w ∈ {0, 1, 2, 3} and are distinct we now consider different numerical assignments of these

labels. In particular, it is sufficient to consider x = 0 and y = 0, since by the symmetry of the configuration

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 31

both z = 0 and w = 0 reduce to the y = 0 case.

1. Case x = 0

Equation (54) reduces to k1 = k2 = k3 which combined with (53) gives

k1 − k4 ≡ y(j4 − j1) ≡ z(j4 − j2) ≡ w(j4 − j3) mod p,

k1 − k5 ≡ z(j5 − j1) ≡ w(j5 − j2) ≡ y(j5 − j3) mod p, and

k1 − k6 ≡ w(j6 − j1) ≡ y(j6 − j2) ≡ z(j6 − j3) mod p .

(55)

Since y, z, w do not have any non trivial factors and by the check consistency conditions, we may let

yzwt ≡ k1−k4 mod p, yzwv ≡ k1−k5 mod p and yzws ≡ k1−k6 mod p for some non-zero integers

t, v and s. Using the identity j5 − j4 = (j5 − j1)− (j4 − j1) = (j5 − j2)− (j4 − j2) = (j5 − j3)− (j4 − j3)

we obtain (using (j5 − j1) ≡ ywv mod p, (j4 − j1) ≡ zwt mod p, and so on),

ywv − zwt ≡ yzv − ywt ≡ zwv − yzt mod p . (56)

The last expression implies

y2(w − z)2 ≡ wz(z − y)(y − w) mod p . (57)

Likewise, expression (56) implies

z2(y − w)2 ≡ yw(z − y)(w − z) mod p , (58)

and

w2(z − y)2 ≡ zy(w − z)(y − w) mod p . (59)

Since {y, z, w} = {1, 2, 3}, the equations (57), (58) and (59) hold only for prime p = 13.

2. Case y = 0

In this case equation (53) implies k1 = k4, k3 = k5 and k2 = k6. Combined with (54), we further obtain

k1 − k3 ≡ z(j5 − j1) ≡ w(j3 − j4) ≡ x(j3 − j1) mod p,

k1 − k2 ≡ w(j6 − j1) ≡ z(j2 − j4) ≡ x(j2 − j1) mod p, and

k2 − k3 ≡ w(j5 − j2) ≡ z(j3 − j6) ≡ x(j3 − j2) mod p .

(60)

We let xzwt ≡ k1 − k3 mod p, xzwv ≡ k1 − k2 mod p, and xzws ≡ k2 − k3 mod p, for some

non-zero integers t, v and s. From k1 − k3 = (k1 − k2) + (k2 − k3), we have

t ≡ v + s mod p. (61)

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 32

Substituting t, v and s in (60) and using the identities j6 − j1 = −(j3 − j6) + (j3 − j1), j5 − j1 =

(j5 − j2) + (j2 − j1) and j3 − j4 = (j3 − j2) + (j2 − j4), respectively, we obtain

zxv ≡ −wxs + zwt mod p (62)

xwt ≡ xzs + zwv mod p, and (63)

xzt ≡ zws + xwv mod p, (64)

respectively. From (61) and (62) by equating the expressions for zwt we obtain

zv(x − w) ≡ ws(z − x) mod p. (65)

Likewise, from (61) and (63) by equating the expressions for xwt we obtain

wv(z − x) ≡ xs(w − z) mod p, (66)

and from (61) and (64) by equating the expressions for xzt we obtain

xv(z − w) ≡ zs(w − x) mod p . (67)

From (65), (66) and (67), it follows that

w2(z − x)2 ≡ xz(w − z)(x − w) mod p,

−z2(x − w)2 ≡ xw(z − x)(z − w) mod p, and

−x2(w − z)2 ≡ wz(w − x)(z − x) mod p ,

(68)

Since the constraints in (68) also only hold for p = 13 we conclude that for prime p, p > 13 this

candidate configuration does not exist.

5.3 Analysis of the candidate (6, 4) absorbing sets given in Figure 11

Recall that it is sufficient to consider only two different labellings, namely (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10)=

(x, y, z, w, y, x, w, z, z, y) and (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10) = (x, y, z, w, y, z, w, x, w, y). For the first

case, by symmetry, it is sufficient to consider x = 0 and z = 0 as w = 0 and y = 0 reduce to the x = 0 and

z = 0 case respectively. Likewise, for the second case it is sufficient to consider x = 0 and y = 0, as z = 0

and w = 0 each reduce to the x = 0 and y = 0 cases, respectively.

I. Consider (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10)= (x, y, z, w, y, x, w, z, z, y)

We start with the z = 0 analysis.

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 33

1. Case z = 0

From Figure 11 and under the current edge label assignment using the pattern consistency constraints of

Lemma 1(b) we write

k1 ≡ k5 mod p,

k2 ≡ k6 mod p,

k3 ≡ k4 mod p,

k1 + xj1 ≡ k3 + xj3 mod p,

k1 + yj1 ≡ k4 + yj4 mod p,

k1 + wj1 ≡ k6 + wj6 mod p,

k2 + yj2 ≡ k3 + yj3 mod p,

k2 + xj2 ≡ k4 + xj4 mod p,

k2 + wj2 ≡ k5 + wj5 mod p, and

k5 + yj5 ≡ k6 + yj6 mod p .

(69)

Let a : = j2 − j1, b : = j3 − j1, c : = j4 − j1, d : = j5 − j1 and e : = j6 − j1. Using the cycle

constraint for four cycles spanning the cycle space of the configuration in Figure 11 and under the current

edge labelling we have

xb + y(−c) ≡ 0 mod p,

y(b − a) + x(a − c) ≡ 0 mod p,

y(e − d) + w(−e) ≡ 0 mod p, and

w(d − a) + y(e − d) ≡ 0 mod p.

(70)

From the systems (69) and (70) we write

k1 − k2 ≡ k1 − k6 ≡ w(j6 − j1) ≡ we mod p,

k1 − k3 ≡ k1 − k4 ≡ y(j4 − j1) ≡ yc mod p, and

k2 − k3 ≡ y(j3 − j2) ≡ y(b − a) mod p.

(71)

Using the identity (k1 − k2) = (k1 − k3) − (k2 − k3), and (71) we obtain

we ≡ y(c − b + a) mod p. (72)

There are six possible assignments for (x, y, w), as permutations of the set {1, 2, 3}. In the remainder

we will show that in fact only (x, y, w) = (1, 3, 2) gives rise to absorbing sets. In all other cases, we will

reach a contradiction.

From (70) we have

xb ≡ yc mod p, and

yd ≡ (y − w)e mod p.
(73)

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 34

We also have
xa − (y + x)c ≡ 0 mod p, and

(2y − w)e ≡ ya mod p,
(74)

where the top expression in (74) follows from substituting top expression in (73) into the second expression

of (70) and some algebra, and the bottom expression in (74) follows from substituting bottom expression in

(73) into the fourth expression of (70).

For (y, w, x) = (1, 2, 3), the bottom expression in (74) gives a ≡ 0 mod p, which then implies c ≡ 0

mod p, by the top expression in (74). Since c = j4 − j1, and (j1, k1) and (j4, k4) share a check, c must be

non-zero, implying a contradiction.

For (y, w, x) ∈ {(1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2)} we express b, c, d, e in terms of a using (73) and

(74) and obtain,

– for (y, w, x) = (1, 3, 2): b ≡ a/3 mod p, c ≡ 2a/3 mod p, d ≡ 2a mod p, e ≡ −a mod p,

– for (y, w, x) = (2, 1, 3): b ≡ 2a/5 mod p, c ≡ 3a/5 mod p, d ≡ a/3 mod p, e ≡ 2a/3 mod p,

– for (y, w, x) = (2, 3, 1): b ≡ 2a/3 mod p, c ≡ a/3 mod p, d ≡ −a mod p, e ≡ 2a mod p, and

– for (y, w, x) = (3, 1, 2): b ≡ 3a/5 mod p, c ≡ 2a/5 mod p, d ≡ 2a/5 mod p, e ≡ 3a/5 mod p.

In all four cases, when b, c and e are substituted in (72) it follows that a ≡ 0 mod p (we get −3a ≡
4a/3 mod p, 2a/3 ≡ 12a/5 mod p, 6a ≡ 4a/3 mod p, and 3a/5 ≡ 12a/5 mod p, respectively).

Since b is a multiple of a in all four cases, if a ≡ 0 mod p, then b ≡ 0 mod p as well. Since b = j3 − j1

and nodes (j1, k1) and (j3, k3) share a check, b must be non-zero, thus implying a contradiction.

For (y, w, x) = (3, 2, 1) we obtain b ≡ 3a/4 mod p, c ≡ a/4 mod p, d ≡ a/4 mod p, e ≡ 3a/4

mod p. When b, c and e are substituted in (72), we obtain the identity 3a/2 ≡ 3a/2 mod p. Since c ≡ d

mod p, we have that j4 = j5 and since b ≡ e mod p, we have that j3 = j6. Note that neither of these

two conditions on j’s violates the check consistency constraint since the respective bit nodes do not share a

check in Figure 11. Let q = j1 and t = j4 − j1. Then j4 = q + t mod p and j5 = q + t mod p. Since

b = 3c, and b = j3 − j1 and c = j4 − j1, we have that j3 = q + 3t mod p. Since j3 = j6, j6 = q + 3t

mod p as well. Likewise, since a = 4c, and a = j2 − j1 and c = j4 − j1, we have that j2 = q + 4t mod p.

We have thus expressed all of j1 through j6 in terms of q and t. Now the system (69) reduces to

k1 = k5, k2 = k6, k3 = k4, (75a)

k1 − k3 ≡ 3t mod p, k1 − k2 ≡ 6t mod p, k2 − k3 ≡ −3t mod p. (75b)

Thus, with s = k1 and using (75a)–(75b) we can express all of k1 through k6 in terms of s and t. This

solution set for j1 through j6 and k1 through k6 is listed in Table 3, where the entries are taken mod p.

Note that the result in Table 3 establishes the existence of a (6, 4) absorbing set. Even though j3 = j6

and j4 = j5, the check consistency constraints are not violated as (j3, k3) and (j6, k6) do not share an edge,

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 35

and neither do (j4, k4) and (j5, k5), see Figure 11.

We now discuss whether this set is also a (6, 4) fully absorbing set. Suppose there exists a bit node

(j7, k7) outside this absorbing set that is incident to some of the unsatisfied checks. By the bit consistency

constraint, both (j3, k3) and (j4, k4) each have a neighboring unsatisfied check whose label is w. These

two checks must be distinct by the girth condition [5]. Likewise, both (j5, k5) and (j6, k6) each have a

neighboring unsatisfied check whose label is x, and these are also distinct by the girth condition. By the

bit consistency condition, the bit node (j7, k7) can then share at most 2 of these checks with the bit nodes

(j3, k3) through (j7, k7). Suppose that the bit node (j7, k7) shares a check labelled w with (j3, k3) and a

check labelled x with (j5, k5). From the cycles relating bit nodes (j7, k7), (j3, k3), (j5, k5), (j1, k1), and

(j2, k2), we obtain

x(j7 − j5) + w(j3 − j7) + x(j1 − j3) ≡ 0 mod p, and

w(j5 − j2) + x(j7 − j5) + w(j3 − j7) + y(j2 − j3) ≡ 0 mod p .

For (x, y, z, w) = (1, 3, 0, 2) of present interest, we obtain that j7 ≡ q + 2t mod p using the result in

Table 3. Since we further have

k3 + 2j3 ≡ k7 + 2j7 mod p, and k5 + j5 ≡ k7 + j7 mod p,

it follows that k7 ≡ s − t mod p. Therefore by the existence of this bit node (j7, k7), the current (6, 4)

absorbing set is not a (6, 4) fully absorbing set.

2. Case x = 0

As before, using the pattern consistency constraints we establish:

k1 ≡ k3 mod p,

k2 ≡ k4 mod p,

k1 + yj1 ≡ k4 + yj4 mod p,

k1 + zj1 ≡ k5 + zj5 mod p,

k1 + wj1 ≡ k6 + wj6 mod p,

k2 + yj2 ≡ k3 + yj3 mod p,

k2 + wj2 ≡ k5 + wj5 mod p,

k2 + zj2 ≡ k6 + zj6 mod p,

k3 + zj3 ≡ k4 + zj4 mod p, and

k5 + yj5 ≡ k6 + yj6 mod p, .

(76)

Let a : = j2− j1, b : = j3− j1, c : = j4− j1, d : = j5− j1, and e : = j6− j1. Using the cycle constraints

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 36

for four cycles spanning the cycle space of the configuration in Figure 11 we may also write

z(c − b) + y(−c) ≡ 0 mod p,

y(b − a) + z(c − b) ≡ 0 mod p,

zd + y(e − d) + w(−e) ≡ 0 mod p, and

w(d − a) + y(e − d) + z(a − e) ≡ 0 mod p .

(77)

There are 6 possible assignments for (y, z, w) as permutations of the set {1, 2, 3}. We will show that

in fact the only possible assignment is (y, z, w) = (2, 1, 3), whereas a contradiction will be reached in all

other cases.

Consider first the assignment (y, z, w) = (1, 2, 3). Using (77) we express a, b, c and d in terms of e so

that
a ≡ 3e mod p, b ≡ e mod p,

c ≡ 2e mod p, d ≡ 2e mod p .
(78)

Note that since c ≡ d mod p and b ≡ e mod p the above implies that j4 = j5 and j3 = j6. Even though

now some vertices have the same j components, the check consistency condition is not violated as (j4, k4)

and (j5, k5) do not share an edge, and neither do (j3, k3) and (j6, k6) (see Figure 11).

From (76) and by substituting for a, c and d in terms of e using (78) we note that

k1 − k2 ≡ 1(2e) mod p,

k1 − k5 ≡ 2(2e) mod p, and

k2 − k5 ≡ 3(2e − 3e) mod p .

(79)

The system (79) implies that e ≡ 0 mod p for p > 5. Since e = j6 − j1 and (j1, k1) and (j6, k6) do share

an edge, the condition e ≡ 0 mod p violates the check consistency constraint. We thus conclude that the

current numerical assignment for (y, z, w) is not possible.

By expressing a, b, c and d in terms of e as in (78) and then using (76) to express the differences k1−k2,

k1 − k5, and k2 − k5 as in (79) we conclude that e ≡ 0 mod p for all primes p > 13 when (y, z, w) =

(1, 3, 2), (3, 1, 2) or (3, 2, 1).

Consider now the assignment (y, z, w) = (2, 3, 1). Using (77) it follows after substituting for d in

terms of e in the last expression that a ≡ 0 mod p. By substituting for b in terms of c in the second

expression in (77) it also follows that c ≡ 0 mod p, which violates the check consistency constraint for

the edge connecting bit nodes (j1, k1) and (j4, k4). (The condition a ≡ 0 mod p by itself does not yield a

contradiction as the nodes (j1, k1) and (j2, k2) do not have any edges in common.)

Finally, we consider the remaining assignment (y, z, w) = (2, 1, 3). First, by substituting for d in terms

of e in the last expression of (77), it follows that a ≡ 0 mod p, which implies j1 = j2. By substituting for

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 37

b in terms of c in the second expression in (77), it follows that 1a ≡ (2 − 2)c mod p, which unfortunately

does not tell us anything about the actual value of c. We express b, c and d in terms of e, using (76) and

(77), and obtain

b ≡ d ≡ −e mod p, and c ≡ e mod p . (80)

Since b ≡ d mod p, j3 = j5, and since c ≡ e mod p, j4 = j6. Neither of these conditions on j’s violates

the check consistency constraints as the respective bit nodes do not share edges (see Figure 11). Thus, with

q : = j1 and t : = e we can express all of j1 through j6 in terms of q and t. Having verified that all constraints

given by (76) are in fact consistent for s : = k1 we obtain the solution set given in Table 4, in terms of q, t

and s.

From Figure 11 and under current labelling, note that the bit nodes (j3, k3) and (j4, k4) both have

an unsatisfied check whose label is w, and that likewise the bit nodes (j5, k5) and (j6, k6) both have an

unsatisfied check whose label is x. Therefore there could exist a bit node that connects to 2 satisfied and

2 unsatisfied check nodes. Consider a bit node (j7, k7) that shares a check labelled w with (j3, k3) and a

check labelled x with (j5, k5). By the parity check constraint

k7 + wj7 ≡ k3 + wj3 mod p, and k7 + xj7 ≡ k5 + xj5 mod p ,

for (x, y, z, w) = (0, 2, 1, 3), it follows that k7 = k5 ≡ s + t mod p and j7 ≡ q − 4t/3 mod p. Thus,

the existence of this (j7, k7) bit node for t a multiple of 3, makes the candidate configuration be a (6, 4)

absorbing set but not a (6, 4) fully absorbing set. We will now show that in fact the remaining labelling is

not possible for p large enough.

II. Consider the labelling (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10)= (x, y, z, w, y, z, w, x, w, y).

Applying the cycle consistency condition to the four cycles in Figure 11 for a : = j2 − j1, b : = j3 − j1,

c : = j4 − j1, d : = j5 − j1, and e : = j6 − j1 we obtain

b(x − w) + c(w − y) ≡ 0 mod p,

e(w − y) + d(y − z) ≡ 0 mod p,

a(x − w) + d(w − y) + e(y − x) ≡ 0 mod p, and

a(z − y) + b(y − w) + c(w − z) ≡ 0 mod p .

(81)

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 38

Using the pattern consistency conditions we may also write:

k1 + xj1 ≡ k3 + xj3 mod p,

k1 + yj1 ≡ k4 + yj4 mod p,

k1 + zj1 ≡ k5 + zj5 mod p,

k1 + wj1 ≡ k6 + wj6 mod p,

k2 + yj2 ≡ k3 + yj3 mod p,

k2 + zj2 ≡ k4 + zj4 mod p,

k2 + wj2 ≡ k5 + wj5 mod p,

k2 + xj2 ≡ k6 + xj6 mod p,

k3 + wj3 ≡ k4 + wj4 mod p, and

k5 + yj5 ≡ k6 + yj6 mod p .

(82)

Recall that it is sufficient to only consider x = 0 and y = 0.

1. Case x = 0

With x = 0, (82) yields k1 ≡ k3 mod p and k2 ≡ k6 mod p so that

k1 − k2 ≡ we ≡ y(a − b) mod p . (83)

From (81) we then have

a(z − y)(y − w) + b[(−w)(w − z) + (y − w)2] ≡ 0 mod p, and

aw(y − z) + e[(w − y)2 + y(z − y)] ≡ 0 mod p .
(84)

From (83), and (84) it follows that a ≡ 0 mod p for all 3! = 6 numerical assignments of y, z and

w, for p /∈ {2, 3, 5, 7, 37} and consequently b ≡ 0 mod p. Since (j1, k1) and (j3, k3) share an edge in

Figure 11, the b ≡ 0 mod p condition violates the check consistency constraint for all but a small finite

number of values of p.

Remark 1 Since Theorem 2(c) is concerned with counting (6, 4) absorbing sets for p > 19, note that for

p = 37 and the assignment (x, y, z, w) either (0, 2, 1, 3) or (0, 3, 1, 2), from the equations (83) and (84)

we may express b, c, d and e in terms of a (itself non-zero). Combined with (82), we may then express all of

(jl, kl), 1 ≤ l ≤ 6 indices of bits in this absorbing set in terms of three independent parameters: q : = j1,

t : = j2 − j − 1 and s : = k1.

2. Case y = 0

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 39

We now have k1 ≡ k4 mod p, k2 ≡ k3 mod p and k5 ≡ k6 mod p and

xb ≡ zd − w(d − a) mod p , (85)

which follows from k1 − k2 = (k1 − k5) − (k2 − k5) and k2 = k3. From (81) we also have

a(−wz) + b[w2 + (w − z)(x − w)] ≡ 0 mod p,

a(x − w)w + d(w2 − xz) ≡ 0 mod p .
(86)

Combining (85) and (86) it again follows that a ≡ 0 mod p for all 3! = 6 numerical assignments of x, z

and w for p /∈ {2, 3, 5, 7, 37}. This in turn implies that b ≡ 0 mod p, which violates the check consistency

condition.

Remark 2 Since Theorem 2(c) is concerned with counting (6, 4) absorbing sets for p > 19, note that for

p = 37 and the assignment (x, y, z, w) either (3, 0, 2, 1) or (2, 0, 3, 1), from the equations (85) and (86)

we may express b, c, d and e in terms of a (itself non-zero). Combined with (82), we may then express all of

(jl, kl), 1 ≤ l ≤ 6 indices of bits in this absorbing set in terms of three independent parameters: q : = j1,

t : = j2 − j − 1 and s : = k1.

Acknowledgment

This research was supported in part by NSF grant CCF-0635372, and by Marvell Semiconductor and Intel

Corp. through the UC MICRO program. The work of the first author was also supported by the University

of California Dissertation Year Fellowship. Portions of this work were presented at the IEEE International

Conference on Communications in Glasgow, Scotland in July 2007.

References

[1] C. Di, D. Proietti, T. Richardson, E. Telatar, and R. Urbanke, “Finite length analysis of low-density
parity-check codes on the binary erasure channel,” IEEE Transactions on Information Theory, vol. 48
(6), pp. 1570–1579, June 2002.

[2] I. Djurdjevic, J. Xu, K. Abdel-Ghaffar, and S. Lin, “A class of low-density parity-check codes con-
structed based on Reed-Solomon codes with two information symbols,” IEEE Communications Letters,
vol. 7, pp. 317–319, July 2003.

[3] L. Dolecek, Z. Zhang, M. Wainwright, V. Anantharam, and B. Nikolic, “Evaluation of the low frame
error rate performance of LDPC codes using importance sampling,” Proceedings of IEEE Information
Theory Workshop, ITW07, Lake Tahoe, CA, Sept. 2007, pp. 202–207.

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 40

[4] E. Eleftheriou and S. Ölçer, “Low density parity check codes for digital subscriber lines,” Proceedings
of the IEEE International Conference on Communications, New York, NY, April-May 2002, pp. 1752–
1757.

[5] J. L. Fan, “Array-codes as low-density parity-check codes,” Second International Symposium on Turbo
Codes, Brest, France, Sept. 2000, pp. 543–546.

[6] J. Feldman, M. J. Wainwright and D. R. Karger, “Using linear programming to decode binary linear
codes,” IEEE Transactions on Information Theory, vol. 51 (3), pp. 954–972, March 2005.

[7] G. D. Forney, “Codes on graphs: normal realizations,” IEEE Transactions on Information Theory, vol.
47 (2), pp. 520–548, Feb. 2001.

[8] G. D. Forney, Jr., R. Koetter, F. R. Kschischang and A. Reznick, “On the effective weights of
pseudocodewords for codes defined on graphs with cycles,” Codes, Systems and Graphical Models,
Springer, pp.101–112, 2001.

[9] R. Koetter and P. Vontobel, “Graph covers and iterative decoding of finite-length codes,” Proceedings
of the 3rd International Conference on Turbo Codes and Related Topics, Brest, France, Sept. 2003, pp.
75–82.

[10] F. R. Kschischang, B. J. Frey and H.-A. Loeliger, “Factor graphs and the sum-product algorithm,”
IEEE Transactions on Information Theory, vol. 42 (2), pp. 498–519, Feb. 2001.

[11] S. Laendner and O. Milenkovic, “Algorithmic and combinatorial analysis of trapping sets in structured
LDPC codes,” Wireless Comm, Hawaii, USA, June 2005, pp. 630–635.

[12] D. MacKay and M. Postol, “Weaknesses of Margulis and Ramanujan-Margulis low-density parity-
check codes,” Electronic Notes in Theoretical Computer Science, vol. 74, 2003.

[13] T. Mittelholzer, “Efficient encoding and minimum distance bounds of Reed-Solomon-type array
codes,” International Symposium on Information Theory, Lausanne, Switzerland, July 2002, p. 282.

[14] A. Orlitsky, K. Viswanathan, J. Zhang, “Stopping set distribution of LDPC code ensembles,” IEEE
Transactions on Information Theory, vol. 51 (3), pp. 929–953, March 2005.

[15] W. W. Peterson and E. J. Weldon, Error Correcting Codes, MIT Press 1972.

[16] T. Richardson, “Error-floors of LDPC codes,” Proceedings of the 41st Annual Allerton Conference,
Monticello, Ill., Oct. 2003, pp. 1426–1435.

[17] M. Sipser and D. A. Spielman, “Expander codes,” IEEE Transactions on Information Theory, vol.
42 (6) pp. 1710–22, Nov. 1996.

[18] Y. Y. Tai, L. Lan, L. Zeng, S. Lin, and K. Abdel-Ghaffar, “Algebraic construction of quasi-cyclic LDPC
codes for the AWGN and erasure channels,” IEEE Transactions on Information Theory, vol. 54 (10),
pp. 1765 – 1774, Oct. 2006.

[19] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Transactions on Information
Theory, vol. 27, pp. 533–547, Sept. 1980.

[20] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, D. J. Costello, “LDPC block and convolutional
codes based on circulant matrices,” IEEE Transactions on Information Theory, vol. 50 (12), pp. 2966–
2984, Dec. 2004.

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 41

[21] B. Vasic and E. Kurtas, Coding and Signal Processing for Magnetic Recording Systems, CRC press,
2005.

[22] K. Yang and T. Helleseth, “On the minimum distance of array codes as LDPC codes,” IEEE Transac-
tions on Information Theory, vol. 49 (12), pp. 3268–3271, Dec. 2003.

[23] Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam and M. J. Wainwright, “Investigation of error floors
of structured low-density parity-check codes via hardware simulation,” Procedings of GLOBECOM
2006, San Francisco, CA, Oct.-Nov. 2006, pp. 1–6.

[24] Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam, and M. J. Wainwright, “Design of LDPC decoders
for low bit error rate performance,” preprint, 2008.

[25] IEEE Standard 802.3an-2006, Sept. 2006. Available at http://ieeexplore.ieee.org/servlet/opac?punumber=4039890

[26] Digital Video Broadcasting Project. Available at http://www.dvb.org

[27] The IEEE 802.16 Working Group on Broadband Wireless Access Standards. Available at
http://www.ieee802.org/16/

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, JAN. 2008. 42

