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Abstract—In this paper, we study the Nair-El Gamal outer
bound and Marton’s inner bound for general two-receiver
broadcast channels. We show that the Nair-El Gamal outer
bound can be made fully computable. For the inner bound,
we show that, unlike in the Gaussian case, for a degraded
broadcast channel even without a common message, Marton’s
coding scheme without a superposition variable is in general
insufficient for obtaining the capacity region. Further, we prove
various results that help to restrict the search space for computing
the sum-rate for Marton’s inner bound. We establish the capacity
region along certain directions and show that it coincides with
Marton’s inner bound. Lastly, we discuss an idea that may lead
to a larger inner bound.

I. INTRODUCTION

In this paper, we consider the general two-receiver broadcast
channel with an input alphabet X , output alphabets Y and
Z , and conditional probability distribution function q(y, z|x).
The capacity region of this channel is defined as the set of
rate triples (R0, R1, R2) such that the sender X can reliably
communicate a common message at rate R0 to both receivers
and two private messages at rates R1 and R2 to receivers Y
and Z respectively, see [1] or [2]. The capacity region of this
channel is known for several special cases but unknown in
general. The best known general inner bound to the capacity
region is due to Marton [3][6]. A long standing outer bound for
the general broadcast channel was due to Körner and Marton.
Recently Nair and El Gamal proposed a new outer bound for
the general broadcast channel and showed that it is strictly
contained in the Körner-Marton outer bound for the binary
skew symmetric broadcast channel (BSSC) [8]. Following
this work, a series of outer bounds on the capacity region of
the general broadcast channel were reported. It is not known
whether any of these outer bounds is strictly contained in the
Nair-El Gamal outer bound.

In this paper, we study the aforementioned inner and outer
bounds. We find bounds on the cardinalities of the auxiliary
random variables appearing in the Nair-El Gamal outer bound,
thus making it fully computable and generalizing an earlier
result by Nair and Zizhou [5] for the case of R0 = 0. We
then consider Marton’s inner bound and show that, unlike
in the Gaussian broadcast channel case, “Marton’s coding
scheme” alone is not sufficient to achieve the capacity region
of the general degraded broadcast channel. Necessity of the

“superposition-coding” aspect of the inner bound had previ-
ously been observed for a non-degraded broadcast channel
[12]. We provide several results that help to restrict the search
space for computing the sum rate in Marton’s inner bound, and
also describe certain directions along which Marton’s inner
bound equals the capacity region. Lastly, we discuss an idea
that may lead to a larger inner bound for the general broadcast
channel.

The rest of the paper is organized as follows. In section
II, we introduce the basic notation and definitions we use.
Section III contains the main results of the paper, and section
IV contains some of the proofs. The rest of the proofs can be
found in [11].

II. NOTATION AND DEFINITIONS

Let C(q(y, z|x)) denote the capacity region of the broadcast
channel q(y, z|x). The notation Xi is used to denote the vector
(X1, X2, ..., Xi), and Xn

i to denote (Xi, Xi+1, ..., Xn). Given
random variables K1,K2 ∈ {0, 1, 2, ..., k − 1} for a natural
number k, K1 ⊕K2 denotes (K1 +K2) mod k.

Definition 1: [3][2][4][6] Let CM (q(y, z|x)) denote Mar-
ton’s inner bound for the channel q(y, z|x), defined as the
set of non-negative rate triples (R0, R1, R2) satisfying

R0 +R1 < I(UW ;Y ), (1)
R0 +R2 < I(VW ;Z), (2)

R0 +R1 +R2 < I(UW ;Y ) + I(V ;Z|W )

− I(U ;V |W ), (3)
R0 +R1 +R2 < I(U ;Y |W ) + I(VW ;Z)

− I(U ;V |W ), (4)
2R0 +R1 +R2 < I(UW ;Y ) + I(VW ;Z)

− I(U ;V |W ) (5)

for some random variables (U, V,W,X, Y, Z) ∼
p(u, v, w, x)q(y, z|x).

Definition 2: [8] Let CNE(q(y, z|x)) denote the Nair-El
Gamal outer bound on the channel q(y, z|x), defined as the



set of non-negative rate triples (R0, R1, R2) satisfying

R0 ≤ min{I(W ;Y ), I(W ;Z)},
R0 +R1 ≤ I(UW ;Y ),

R0 +R2 ≤ I(VW ;Z),

R0 +R1 +R2 ≤ I(UW ;Y ) + I(V ;Z|UW ),

R0 +R1 +R2 ≤ I(VW ;Z) + I(U ;Y |VW )

for some random variables (U, V,W,X, Y, Z) ∼
p(u)p(v)p(w|u, v)p(x|u, v, w)q(y, z|x),

Definition 3: [7] Let Cd1(q(y, z|x)) and Cd2(q(y, z|x)) de-
note the degraded message set capacity regions, i.e. when
R1 = 0 and R2 = 0, respectively. The capacity region
Cd1(q(y, z|x)) is the set of of non-negative rate pairs (R0, R2)
satisfying

R0 ≤ I(W ;Y ),

R2 ≤ I(X;Z|W ),

R0 +R2 ≤ I(X;Z)

for some random variables (W,X, Y, Z) ∼ p(w, x)q(y, z|x).
The capacity region Cd2(q(y, z|x)) is defined similarly.

III. STATEMENT OF THE RESULTS

A. On the Nair-El Gamal outer bound

Theorem 1: For a general broadcast channel q(y, z|x), the
Nair-El Gamal outer bound RNE is the set of non-negative
rate triples (R0, R1, R2) satisfying

R0 ≤ min{I(W ;Y ), I(W ;Z)}, (6)
R0 +R1 ≤ I(UW ;Y ), (7)
R0 +R2 ≤ I(VW ;Z), (8)

R0 +R1 +R2 ≤ min{I(UW ;Y ) + I(X;Z|UW ),

I(VW ;Z) + I(X;Y |VW )} (9)

for some random variables (U, V,W,X, Y, Z) ∼
p(w, x)p(u|w, x)p(v|w, x)q(y, z|x) with |U| ≤ |X |,
|V| ≤ |X |, |W| ≤ |X |+ 6.
Note that the above result makes the Nair-El Gamal outer
bound fully computable.

B. On Marton’s Inner Bound

1) Insufficiency of Marton’s coding scheme without a su-
perposition variable: In Marton’s inner bound the auxiliary
random variable W corresponds to the “superposition-coding”
aspect of the bound, and the random variables U and V
correspond to the “Marton-coding” aspect of the bound. When
R0 = 0 (private messages only) and W = ∅, Marton’s
inner bound reduces to the the set of non-negative rate pairs
(R1, R2) satisfying

R1 ≤ I(U ;Y |Q), (10)
R2 ≤ I(V ;Z|Q), (11)

R1 +R2 ≤ I(U ;Y |Q) + I(V ;Z|Q)− I(U ;V |Q) (12)

for some random variables (Q,U, V,X, Y, Z) ∼
p(q)p(u, v, x|q)q(y, z|x).

It is known that this inner bound is tight for Gaussian
broadcast channels (through dirty paper coding), implying that
W is unnecessary for achieving the capacity region of this
class of degraded broadcast channels. We show through an
example that this is not the case in general.

Lemma 1: There are degraded broadcast channels for which
Marton’s private message inner bound without W is strictly
contained in the capacity region of the channel.

2) Computing the sum-rate for Marton’s Inner Bound: For
any λ ∈ [0, 1], let

T (λ) = maxp(u,v,w,x)
(
λI(W ;Y ) + (1− λ)I(W ;Z) +

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )
)
.

Computing the sum-rate for Marton’s inner bound is closely
related to the following maximization problem for λ ∈ [0, 1]:

Observation 1: The maximum of the sum-rate for Marton’s
inner bound is equal to minλ∈[0,1] T (λ).
The main theorem of this section restricts the search space for
computing T (λ). In this section, we only deal with broadcast
channels q(y, z|x) with strictly positive transition matrices,
i.e. when q(y|x) > 0, q(z|x) > 0 for all x, y, z. In order to
evaluate T (λ) when q(y|x) or q(z|x) become zero for some y
or z, one can use the continuity of T (λ) in q(y, z|x) and take
the limit of T (λ) for a sequence of channels with positive
entries converging to the desired channel. The reason for
dealing with this class of broadcast channels should become
clear by the following lemma.

Lemma 2: Take an arbitrary broadcast channel q(y, z|x)
with strictly positive transition matrices (i.e. q(y|x) >
0, q(z|x) > 0 for all x, y, z). Let p(u, v, w, x) be an arbitrary
joint distribution maximizing T (λ) for some λ ∈ [0, 1]. If
p(u,w) and p(v, w) are positive for some triple (u, v, w), then
it must be the case that p(u, v, w) > 0, p(u,w, y) > 0 and
p(v, w, z) > 0 for all y and z.

Theorem 2: Take an arbitrary broadcast channel q(y, z|x)
with strictly positive transition matrices. In computing T (λ)
for some λ ∈ [0, 1], it suffices to take the maximum over aux-
iliary random variables p(u, v, w, x)q(y, z|x) simultaneously
satisfying the following constraints
• |U| ≤ min(|X |, |Y|), |V| ≤ min(|X |, |Z|), |W| ≤ |X |,
• H(X|UVW ) = 0,
• For arbitrary w such that p(w) > 0, let the functions

fu,w : X → R for every u ∈ U such that p(u|w) > 0,

gv,w : X → R for every v ∈ V such that p(v|w) > 0,

and hw : X → R

be defined by

fu,w(x) =
∑
y q(y|x) log p(uy|w),

gv,w(x) =
∑
z q(z|x) log p(vz|w),

hw(x) = min
u′,v′:p(u′|w)>0,p(v′|w)>0

(
log(p(u′v′|w))

−fu′,w(x)− gv′,w(x)
)
.



These definitions make sense because of Lemma 2. Then,
for any (u, v) where p(u|w) > 0 and p(v|w) > 0, the
following two equations hold

log(p(uv|w)) = maxx fu,w(x) + gv,w(x) + hw(x),

and

p(x0|u, v, w) = 1 for some x0 ∈ X ⇒
x0 ∈ argmaxxfu,w(x) + gv,w(x) + hw(x).

• Given any w, random variables Uw, Vw, Xw, Yw, Zw dis-
tributed according to p(u, v, x, y, z|w) satisfy the follow-
ing:

I(U ;Yw) ≥ I(U ;VwZw) for any U → Uw → VwXwYwZw,

I(V ;Zw) ≥ I(V ;UwYw) for any V → Vw → UwXwYwZw.

Discussion 1: The first constraint imposes cardinality
bounds on |U| and |V| that are better than those reported in [9].
However, we only claim the improved cardinality bounds for
T (λ) and not the whole capacity region. The second constraint
is not new, and can be found in [9]. The other constraints are
useful in restricting the search space due to the constraints im-
posed on p(u, v, w, x). For instance, take arbitrary w, u0, u1,
v0, v1 where p(w) > 0, p(ui|w) > 0, p(vi|w) > 0 for i = 0, 1.
Assume further that p(x0|u0, v0, w) = p(x0|u1, v1, w) = 1 for
some x0. Then the third constraint can be used to show that
p(u0, v0, w)p(u1, v1, w) ≤ p(u1, v0, w)p(u0, v1, w).

C. On the capacity region

Lemma 3: For a broadcast channel q(y, z|x) and real num-
bers λ0, λ1 and λ2 such that λ0 ≥ λ1 + λ2,

max
(R0,R1,R2)∈C(q(y,z|x))

(λ0R0 + λ1R1 + λ2R2) =

max{ max
(R0,R2)∈Cd1 (q(y,z|x))

(λ0R0 + λ2R2),

max
(R0,R1)∈Cd2 (q(y,z|x))

(λ0R0 + λ1R1)},

where Cd1(q(y, z|x)) and Cd2(q(y, z|x)) are the degraded
message set capacity regions for the given channel.

Corollary 1: The above observation essentially says that if
λ0 ≥ λ1+λ2, then a maximum of λ0R0+λ1R1+λ2R2 over
triples (R0, R1, R2) in the capacity region occurs when either
R1 = 0 or R2 = 0.

Remark 1: Since Cd1(q(y, z|x)) ∪ Cd1(q(y, z|x)) ⊂
CM (q(y, z|x)) ⊂ C(q(y, z|x)), the above lemma implies that
Marton’s inner bound is tight along the direction of such
(λ0, λ1, λ2), i.e.

max
(R0,R1,R2)∈C(q(y,z|x))

(λ0R0 + λ1R1 + λ2R2) =

max
(R0,R1,R2)∈CM (q(y,z|x))

(λ0R0 + λ1R1 + λ2R2),

whenever λ0 ≥ λ1 + λ2.

Based on numerical simulations for certain broadcast chan-
nels, we conjecture that the Nair-El Gamal outer bound is also
tight along the direction of any such (λ0, λ1, λ2). However if
this conjecture turns out to be false, it would imply that the
Nair-El Gamal outer bound is not tight.

D. An achievable region

Since capacity is defined in the limit of large block length,
it is natural to expect that it has an invariant structure with
respect to shifts in time. This suggests that it should be
expressed via a formula that has a fixed-point character,
namely it should involve joint distributions that are invariant
under a time shift. The following theorem is a proposed inner
bound along these lines.

Theorem 3: For a broadcast channel q(y, z|x), consider
two i.i.d. copies (U1, V1,W1) and (U2, V2,W2) and a
conditional pmf r(x|u1, v1, w1, u2, v2, w2). Assume that
U1, V1,W1, U2, V2,W2, X1, X2, Y1, Y2, Z1, Z2 are distributed
according to

p(u1, v1, w1, u2, v2, w2, x1, y1, z1, x2, y2, z2) =

r(u1, v1, w1)r(u2, v2, w2)·
r(x2|u1, v1, w1, u2, v2, w2)q(y2, z2|x2)·
r̃(x1|u1, v1, w1)q(y1, z1|x1),

where r̃(x|u, v, w) is defined as∑
u′∈U,v′∈V,w′∈W

r(x|u′, v′, w′, u, v, w)r(u′, v′, w′).

Then a rate triple (R0, R1, R2) is achievable if

R0, R1, R2 ≥ 0,

R0 +R1 < I(U2W2;Y1Y2U1W1),

R0 +R2 < I(V2W2;Z1Z2V1W1),

R0 +R1 +R2 < I(V2;Z1Z2V1W1|W2)

+ I(U2W2;Y1Y2U1W1)− I(U2;V2|W2),

R0 +R1 +R2 < I(U2;Y1Y2U1W1|W2)

+ I(V2W2;Z1Z2V1W1)− I(U2;V2|W2),

2R0 +R1 +R2 < I(U2W2;Y1Y2U1W1)

+ I(V2W2;Z1Z2V1W1)− I(U2;V2|W2)

for some U1, V1,W1, U2, V2,W2, X1, X2 that satisfy the above
conditions.

Remark 2: The above inner bound reduces to
Marton’s inner bound if the conditional distribution
r(x|u1, v1, w1, u2, v2, w2) = r(x|u2, v2, w2), i.e.
U1V1W1 → U2V2W2 → X form a Markov chain.

IV. PROOFS

Proof of Theorem 1: Let R1 denote the region given
in the statement of Theorem 1. We would like to show that
R1 = RNE . Our proof resembles and generalizes the one
provided by Nair and Zizhou [5] for the case of R0 = 0.
We first show that RNE = R2, where R2 consists of the
set of non-negative rate triples (R0, R1, R2) satisfying equa-
tions (6)-(9) for some random variables U, V,W,X, Y, Z ∼
p(u, v, w, x)q(y, z|x). Clearly RNE ⊂ R2, since in R2, we
take the union over all p(u, v, w, x), and I(X;Z|UW ) ≥
I(V ;Z|UW ), I(X;Y |VW ) ≥ I(U ;Y |VW ). In order to



show thatR2 ⊂ RNE , take some arbitrary p(u, v, w, x). With-
out loss of generality assume that U = {0, 1, 2, ..., |U| − 1},
V = {0, 1, 2, ..., |V| − 1} and X = {0, 1, 2, ..., |X | − 1}.

Let Ũ , Ṽ , X̃1, X̃2, X̃3, X̃4 be uniform random variables on
sets U , V , X , X , X , X respectively. We assume that Ũ , Ṽ ,
X̃1, X̃2, X̃3 and X̃4 are mutually independent of each other
and of U, V,W,X, Y, Z. Let us define random variables Û , V̂ ,
Ŵ and X̂ , Ŷ and Ẑ as follows:
• Û = (Ũ ⊕ U,X ⊕ X̃1 ⊕ X̃4, X̃3),
• V̂ = (Ṽ ⊕ V,X ⊕ X̃2 ⊕ X̃3, X̃4),

• Ŵ = (W, Ũ, Ṽ , X̃1, X̃2),
• X̂ = X , Ŷ = Y , Ẑ = Z.

It can be verified that Û is independent of V̂ . Furthermore
• I(W ;Y ) ≤ I(Ŵ ; Ŷ ), I(W ;Z) ≤ I(Ŵ ; Ẑ),

• I(UW ;Y ) ≤ I(ÛŴ ; Ŷ ), I(VW ;Z) ≤ I(V̂ Ŵ ; Ẑ),

• I(UW ;Y )+I(X;Z|UW ) ≤ I(ÛŴ ; Ŷ )+I(V̂ ; Ẑ|ÛŴ ),

• I(VW ;Z)+I(X;Y |VW ) ≤ I(V̂ Ŵ ; Ẑ)+I(Û ; Ŷ |V̂ Ŵ ).

Therefore R2 ⊂ RNE , and R2 = RNE . It remains to show
that R1 = R2. The sketch of the rest of the proof is as follows
(the details can be found [11]): we show that in evaluating
R2 it suffices to take the union over all p(u, v, w, x) of the
form p(w, x)p(u|w, x)p(v|w, x), and then use the strengthened
Carathéodory theorem of Fenchel and Eggleston to establish
cardinality bounds on the auxiliary random variables.

Proof of Lemma 1: Consider the degraded broadcast
channel p(y, z|x) = p(y|x)p(z|y), where the channel from
X to Y is a BSC(0.3) and the channel from Y to Z is as
follows: pZ|Y (0|0) = 0.6, pZ|Y (1|0) = 0.4, pZ|Y (0|1) = 0,
pZ|Y (1|1) = 1. We show that the private message capacity
region for this channel is strictly larger than Marton’s inner
bound without W .

In the following we provide a formal proof; see [11]
for an intuitive discussion of the proof. The maximum of
R1 + 2.4R2 over pairs (R1, R2) in the capacity region, is
equal to maxV→X→Y Z I(X;Y |V ) + 2.4I(V ;Z). Take the
joint pmf of p(v, x) to be as follows: P (V = 0, X = 0) = 0,
P (V = 0, X = 1) = 0.41, P (V = 1, X = 0) =
0.48, P (V = 1, X = 1) = 0.11. For this choice of
p(v, x), I(X;Y |V ) + 2.4I(V ;Z) = 0.1229.... Therefore the
maximum of R1 + 2.4R2 ≥ 0.1229.... The maximum of
R1+2.4R2 over Marton’s inner bound without W is equal to
supUV→X→Y Z I(U ;V ) + 2.4I(V ;Z) − I(U ;V ). Using the
perturbation method of [9], one can show that the supremum
is indeed a minimum, and that the cardinality of U and V
can be bounded from above by |X |. Furthermore X can be
assumed to be a deterministic function of (U, V ). Since X
is a binary random variable, we need to search over binary
random variables U , V . Numerical simulations show that the
maximum is equal to 0.1215... < 0.1229... and occurs when
X = V and U = constant. Therefore Marton’s inner bound
without W is not tight for this broadcast channel.

Proof of Observation 1: This observation was exploited
in section 3.1.1 of [12], but no proof for it was given in [12].
We have provided a proof in [11] for completeness. Here we
sketch the proof. The observation essentially claims that it is

legitimate to exchange the maximum and minimum operators
in maxp(u,v,w,x) minλ∈[0,1] λI(W ;Y ) + (1 − λ)I(W ;Z) +
I(U ;Y |W ) + I(V ;Z|W ) − I(U ;V |W ). The proof begins
by showing that the union over all p(u, v, w, x) of real pairs
(d1, d2) satisfying

d1 ≤ I(W ;Y ) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ),

d2 ≤ I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ).

is convex and closed. Furthermore, the point (Marton’s Sum
Rate, Marton’s Sum Rate) is on the boundary of this region.
Therefore, one can use the supporting hyperplane theorem to
conclude the existence of a supporting hyperplane to the region
at this boundary point. We then show that this supporting
hyperplane must have the equation λ∗d1+(1−λ∗)d2 = T (λ∗)
for some λ∗ ∈ [0, 1]. The next main step is to show that the
maximum sum rate for Marton’s inner bound equals T (λ∗).

Proof of Lemma 2: Take a triple (u, v, w) such that
p(u,w) and p(v, w) are positive. There must exist some x
such that p(u,w, x) > 0. Since the transition matrices have
positive entries and p(u,w, y) ≥ p(u,w, x)q(y|x), p(u,w, y)
will be positive for all y. A similar statement could be proved
for p(v, w, z). Assume that p(u, v, w) = 0. Take some u′, v′

such that p(u′, v′, w) > 0. Let us reduce p(u′, v′, w) by ε and
increase p(u, v, w) by ε. Furthermore, have (u, v, w) mapped
to the same x that (u′, v′, w) was mapped to; this ensures
that the joint distribution of W and X is preserved. One can
then verify that the first derivative of T (λ) with respect to
ε, at ε = 0, will be positive. This is a contradiction since
p(u, v, w, x) was assumed to maximize T (λ).

Proof of Theorem 2: A sketch of the proof follows.
See [11] for the details. From the set of pmfs p(u, v, w, x)
that maximize the expression λI(W ;Y ) + (1− λ)I(W ;Z) +
I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ), let p0(u, v, w, x) be
the one that achieves the largest value of I(W ;Y )+I(W ;Z).
The first step is to show that one can find p(û, v̂, ŵ, x̂)
for which the constraints in the first and second bullets are
satisfied, and furthermore I(Ŵ ; Ŷ ) + I(Ŵ ; Ẑ) is equal to
I(W ;Y ) + I(W ;Z). Next, we show that the third bullet of
Theorem 2 holds for any joint distribution that maximizes
the expression λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W ) +
I(V ;Z|W ) − I(U ;V |W ). The proof for this part considers
the optimization problem of I(U ;Y ) + I(V ;Z) − I(U ;V )
over all p(u, v, x) subject to a fixed marginal distribution
on X . Let p∗(u, v, x) be an answer to this optimization
problem. Fix some x, and consider a function that takes
in a pair (u, v), and outputs the first partial derivative of
I(U ;Y ) + I(V ;Z) − I(U ;V ) with respect to p(u, v, x) at
p∗(u, v, x). It is then proved that this function attains its
maximum at any pair (u, v) where p∗(u, v, x) > 0. This fact
implies the third bullet of Theorem 2.

The last step is to show that the fourth bullet of Theorem 2
holds for any joint distribution that maximizes the expression
λI(W ;Y ) + (1 − λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W ) −
I(U ;V |W ), and at the same time has the largest possible value
of I(W ;Y ) + I(W ;Z).



Proof of Lemma 3: It suffices to show that

max
(R0,R1,R2)∈C(q(y,z|x))

(λ0R0 + λ1R1 + λ2R2) ≤

max{ max
(R0,R2)∈Cd1 (q(y,z|x))

(λ0R0 + λ2R2),

max
(R0,R1)∈Cd2 (q(y,z|x))

(λ0R0 + λ1R1)}.

The key step is to show that if (R0, R1, R2) is in the capacity
region of a broadcast channel, then (R0+min{R1, R2}, R1−
min{R1, R2}, R2 − min{R1, R2}) is also in the capac-
ity region. Since λ0 ≥ λ1 + λ2, we then have that
λ0(R0 +min{R1, R2}) + λ1(R1−min{R1, R2}) + λ2(R2−
min{R1, R2}) ≥ λ0R0 + λ1R1 + λ2R2, so at the maximum
we must have min(R1, R2) = 0. One can prove this property
using the result of Willems [10], which shows that the maximal
probability of error capacity region is equal to the average
probability of error capacity region. Willems’ proof, however,
is rather involved. Instead, we provide a simple direct proof.
Consider an arbitrary code (M0,M1,M2, X

n, ε). We show
that

λ0

n
H(M0) +

λ1

n
H(M1) +

λ2

n
H(M2)−O(ε) ≤

max( max
(R0,R2)∈Cd1 (q(y,z|x))

λ0R0 + λ2R2,

max
(R0,R1)∈Cd2 (q(y,z|x))

λ0R0 + λ1R1)

where O(ε) denotes a constant (depending only on |X |, |Y|,
|Z|) times ε.

Assume without loss of generality that H(M2) ≤ H(M1),
i.e. R2 ≤ R1. Let Ŵ =M0M2, X̂ = Xn, Ŷ = Y n, Ẑ = Zn.
Note that q(ŷ, ẑ|x̂) is the n-fold version of q(y, z|x). Let us
look at Cd1(q(ŷ, ẑ|x̂)), evaluated at the joint pmf p(ŵ, x̂):

R̂0 ≤ I(Ŵ ; Ẑ),

R̂1 ≤ I(X̂; Ŷ |Ŵ ),

R̂0 + R̂1 ≤ I(X̂; Ŷ ).

Note that, by Fano’s inequality,

I(Ŵ ; Ẑ) = I(M0M2;Z
n) = H(M0) +H(M2)−O(nε),

I(X̂; Ŷ |Ŵ ) = I(Xn;Y n|M0M2) = H(M1)−O(nε),

I(X̂; Ŷ ) = I(Xn;Y n) = H(M0) +H(M1)−O(nε).

Therefore R̂0 = H(M0) +H(M2)−O(nε) = n(R0 +R2)−
O(nε) and R̂1 = H(M1) −H(M2) = n(R1 − R2) − O(nε)
is in Cd1(q(ŷ, ẑ|x̂)). Since q(ŷ, ẑ|x̂) is the n-fold version
of q(y, z|x) and Cd1(q(ŷ, ẑ|x̂)) is the degraded message set
capacity region for q(ŷ, ẑ|x̂), we must have: Cd1(q(ŷ, ẑ|x̂)) =
n · Cd1(q(y, z|x)), where the multiplication here is pointwise.
Thus, ( R̂0

n ,
R̂1

n ) ∈ Cd1(q(y, z|x)). We can complete the proof
by letting ε→ 0, and conclude that (R0 +R2, R1 −R2, 0) ∈
Cd1(q(y, z|x)), and thus also in the capacity region.

Proof of Theorem 3: Consider a natural number n,
and define the super symbols X̃ = X1...Xn, Ỹ = Y1...Yn,
Z̃ = Z1...Zn representing n-inputs and n-outputs of the prod-
uct broadcast channel qn(y1y2...yn, z1z2...zn|x1x2...xn) =∏n
i=1 q(yi, zi|xi). Since the capacity region of the prod-

uct channel qn(ỹ, z̃|x̃) is n times the capacity region
of q(y, z|x), one can show that given an arbitrary joint
pmf p(un, vn, wn, xn), the following region is an inner

bound to C(q(y, z|x)) for Un, V n,Wn, Xn, Y n, Zn ∼
p(un, vn, wn, xn)q(yn, zn|xn):

R0, R1, R2 ≥ 0,

R0 +R1 ≤
1

n
I(UnWn;Y n), (13)

R0 +R2 ≤
1

n
I(V nWn;Zn), (14)

R0 +R1 +R2 ≤
1

n

[
I(UnWn;Y n) + I(V n;Zn|Wn)

− I(Un;V n|Wn)
]
, (15)

R0 +R1 +R2 ≤
1

n

[
I(Un;Y n|Wn) + I(V nWn;Zn)

− I(Un;V n|Wn)
]
, (16)

2R0 +R1 +R2 ≤
1

n

[
I(UnWn;Y n) + I(V nWn;Zn)

− I(Un;V n|Wn)
]
. (17)

Assume that

p(un, vn, wn) =

n∏
i=1

r(ui, vi, wi),

p(xn2 |un, vn, wn) =

n∏
i=2

r(xi|ui−1, vi−1, wi−1, ui, vi, wi),

X1 = constant.

We can get the inner bound by evaluating I(UnWn;Y n),
I(V nWn;Zn), etc. and plugging this into equations (13)-(17),
and then letting n→∞. The details can be found in [11].
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