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Abstract—We prove a new outer bound on the rate–distortion
region for the multiterminal source-coding problem. This bound
subsumes the best outer bound in the literature and improves upon
it strictly in some cases. The improved bound enables us to obtain a
new, conclusive result for the binary erasure version of the “CEO
problem.” The bound recovers many of the converse results that
have been established for special cases of the problem, including
the recent one for the Gaussian two-encoder problem.

Index Terms—CEO problem, erasure distortion, multiterminal
source coding, outer bound, rate region, rate–distortion.

I. INTRODUCTION

I N their lauded paper [1], Slepian and Wolf characterize the
information rates needed to losslessly communicate two cor-

related, memoryless information sources when these sources are
encoded separately. Their well-known result states that two dis-
crete sources and can be losslessly reproduced if

where is the rate of the encoder observing and is the
rate of the encoder observing . Conversely, lossless reproduc-
tion is not possible if lies outside the closure of this
region. See Cover and Thomas [2, Sec. 15.4] for a precise state-
ment of the result and a modern proof. This result is naturally
viewed as a multisource generalization of the classical result of
Shannon [3], which says that, loosely speaking, a discrete mem-
oryless source can be losslessly reproduced if and only if the
data rate exceeds the entropy of the source. Shannon also studied
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Fig. 1. Separate encoding of correlated sources.

Fig. 2. A general model.

a generalization of this result, albeit in a different direction. He
studied the problem of reproducing a source imperfectly, subject
to a fidelity constraint, and showed that the required rate is given
by the well-known rate–distortion formula [3], [4]. One of the
central problems of Shannon theory is to understand the limits
of source coding for models that combine the two generaliza-
tions. That is, we seek to determine the rates required to repro-
duce two correlated sources, each subject to a fidelity constraint,
when the sources are encoded separately (see Fig. 1). Deter-
mining the set of achievable rates and distortions for this setup
is often called the multiterminal source-coding problem, even
though this name suggests a more elaborate network topology.
This problem has been unsolved for some time.

The model we consider in this paper is slightly more gen-
eral and is depicted in Fig. 2. Beyond considering an arbitrary
number of encoders , we also allow for a hidden source ,
which is not directly observed by any encoder or the decoder,
and a “side information” source , which is observed by the
decoder but not by any encoder. We also permit arbitrary func-
tions of the sources to be reproduced, in addition to, or in place
of, the sources themselves. We will therefore use , , etc.,
to denote the instantaneous estimates instead of , , etc., as
before. In this paper, we will refer to this more general problem
as the multiterminal source-coding problem.

One might doubt the wisdom of embellishing the model when
even the basic form shown in Fig. 1 is unsolved. But one of the
contributions of this paper is to show that far from obscuring the
problem, the added generality actually illuminates it. Of course,
the more general problem is also unsolved.

Many special cases have been solved, however. For these, the
reader is referred to the classical papers of Slepian and Wolf
[1], mentioned earlier; Wyner [5]; Ahlswede and Körner [6];
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Wyner and Ziv [7]; Körner and Marton [8]; and Gel’fand and
Pinsker [9]; and to the more recent papers of Berger and Yeung
[10]; Zamir and Berger [11]; Gastpar [12]; Oohama [13]; Prab-
hakaran, Tse, and Ramchandran [14]; and Wagner, Tavildar, and
Viswanath [15]. While all of these papers contain conclusive re-
sults, these results are established using coding theorems that
are tailored to the special cases under consideration.

The solutions to these solved special cases suggest a coding
technique for the general model [16], [17]. The idea is this. Each
encoder first quantizes its observation as in single-user rate–dis-
tortion theory. The quantized processes are then losslessly com-
municated to the decoder using the binning scheme of Cover
[18]. The decoder uses the quantized processes to produce the
desired estimates. The set of rate–distortion vectors that can be
achieved using this scheme is described in Section III. This inner
bound to the rate–distortion region is tight in all of the special
cases listed above except that of Körner and Marton [8]. Indeed,
the Körner–Marton problem seems to require a custom coding
technique that relies on the problem’s unique structure. This
suggests that the multiterminal source-coding problem may not
have a classical single-letter solution.

We attack this problem, therefore, by proving single-letter
inner and outer bounds on the rate–distortion region. The best
inner bound in the literature has just been described. The best
outer bound, which is due to Berger [16] and Tung [17], is de-
scribed in Section III. In light of the result of Körner and Marton,
it is clear that the two bounds must not coincide in all cases. This
gap cannot be entirely attributed to the inner bound, however,
as there are instances of the problem that can be solved from
first principles for which the Berger–Tung outer bound is strictly
bigger than the true rate–distortion region (see Section III-A of
this paper).

Our aim is to provide an improved outer bound for the
problem. We prove such a bound in the next section, following
a precise formulation of the problem. We show that our bound
is contained in (i.e., subsumes) the Berger–Tung outer bound
in Section III. In that section, we also provide several examples
for which the containment is strict.

One example is the binary erasure version of the “CEO
problem.” The CEO problem is a special case of the multiter-
minal source-coding problem in which the observed processes

are conditionally independent given the hidden
process and in which the decoder (the CEO) is only inter-
ested in estimating the hidden process.1 Berger, Zhang, and
Viswanathan [19] characterize the tradeoff between sum rate
and Hamming distortion in the high-rate and many-encoder
regime. Gel’fand and Pinsker [9] had earlier found the rate
region in the lossless case. We consider the problem in which

is binary and uniform, and the encoders observe through
independent binary erasure channels. The decoder reproduces

subject to a constraint on the “erasure distortion” (see Sec-
tion III-B or Cover and Thomas [2, p. 338]). For this problem,
we show that our outer bound is tight in the sum rate for any
number of users. In contrast, the Berger–Tung outer bound

1This definition is not as restrictive as it might seem. Indeed, any instance of
the multiterminal source-coding problem with a single distortion constraint can
be transformed into an instance of the CEO problem by lumping Y ; . . . ; Y

into Y and redefining the distortion measure as needed. Nonetheless, it defines
a useful special case.

contains points whose sum rate is strictly smaller than the
optimum.

In our view, this result is of interest in its own right. The
binary erasure CEO problem arises naturally in sensor networks
in which the sensors occasionally “sleep” to conserve energy.
This application is described in Section III-B. The result also
provides an example for which the binning-based coding
scheme mentioned earlier is optimum. Finally, this is one of
relatively few conclusive results for the multiterminal source-
coding problem in general, and the CEO problem in particular.

Two of the other conclusive results available are for Gaussian
versions of the problem. One is the Gaussian CEO problem,
which was first studied by Viswanathan and Berger [20]. Here
the encoders observe a hidden Gaussian source through inde-
pendent Gaussian additive-noise channels. The distortion mea-
sure is squared error. The rate–distortion region for this problem
was found by Oohama [21], [13] and independently by Prab-
hakaran, Tse, and Ramchandran [14]. We show that the con-
verse result of these four authors can be recovered from our
single-letter outer bound, while the Berger–Tung outer bound
contains points that lie outside the true rate–distortion region.
The other conclusive result is for the quadratic Gaussian version
of the two-encoder problem depicted in Fig. 1. The rate region
for this problem was recently determined by Wagner, Tavildar,
and Viswanath [15]. For this problem too our outer bound is
tight while the Berger–Tung outer bound is not.

The converse results used to solve all of the other special
cases mentioned so far are also consequences of our bound. This
is discussed in Section IV. Our outer bound therefore serves to
unify most of what is known about the nonexistence of mul-
tiuser source codes. This unification is noteworthy in the case
of the Gaussian problems because the connection between those
converse results and the classical discrete results is not immedi-
ately apparent. As we will see, subject to some technical caveats,
most of the key results in multiterminal source coding can be re-
covered by combining the general inner bound described earlier
with the outer bound described next.

II. FORMULATION AND MAIN RESULT

We work exclusively in discrete time. We use uppercase
letters to denote random variables, lowercase letters to denote
their realizations, and script letters to denote their ranges. Let

be a vector-valued,
finite-alphabet, memoryless source. The superscript denotes
the time horizon or block length. For , we
denote by . If , we write
this simply as . In this context, the set should be
interpreted as rather than .
When , we shall write and in place of

and , respectively. Also, we use to
denote , to denote , and to
denote

Similar notation will be used for other vectors that appear later.
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Fig. 3. Notation for the encoding and decoding rules.

The notation for the encoding and decoding rules is shown in
Fig. 3. For each in , encoder observes a block of
symbols of length , . It then employs a mapping

to convey information about the observed block to the decoder.
The decoder observes and uses it and the received mes-
sages to estimate functions of the vector-valued source using
the mappings

for

We assume that distortion measures
are given.

We mention at this point that while the generality of this setup
will be useful later when studying examples, it is not needed to
appreciate the bounding technique itself. The reader is welcome
to focus on the basic model shown in Fig. 1 for that purpose.

Definition 1: The rate–distortion vector

is achievable if there exists a block length , encoders , and
a decoder

such that2

for all and

for all (1)

Let be the set of achievable rate–distortion vectors. Its
closure, , is called the rate–distortion region.

We will sometimes be concerned with slices of the rate–dis-
tortion region. We denote these by, for example,

, meaning

In this paper, we view lossless compression as a limit of lossy
compression with the distortion tending to zero. More precisely,
if we wish to reproduce losslessly, we will set, say,
with equal to Hamming distance, and then examine

2All logarithms and exponentiations in this paper have base e.

. This notion of lossless compression is weaker than
the one traditionally used. It is common instead to require that
for all sufficiently large block lengths, there exists a code for
which the probability of correctly reproducing the entire vector

is arbitrarily close to . But a weaker notion is desirable here
since we are proving an outer bound or converse result.

Definition 2: Let be generic random
variables with the distribution of the source at a single time.
Let denote the set of finite-alphabet random variables

satisfying the following
conditions:

(i) is independent of ;
(ii) ), shorthand for

“ , and form a Markov
chain in this order,” for all ; and

(iii) .

It is straightforward to verify that is precisely the set of
finite-alphabet random variables

whose joint distribution with factors as

This description is useful in that it suggests a parametrization of
the space .

Definition 3: Let denote the set of finite-alphabet random
variables with the property that are conditionally
independent given .

Note that is nonempty since it contains, e.g.,
.

There are many ways of coupling a given in and
in to the source. In this paper, we shall only consider the
unique coupling for which , which
we call the Markov coupling. Whenever the joint distribution of

, , and arises, we assume that this coupling is
in effect.

It is evident from the definition of that there is consider-
able latitude in choosing how depends on . This is be-
cause the sole constraint on the choice of only depends on
the joint distribution of and . But as the following
definition shows, this freedom is inconsequential since our outer
bound only depends on the distributions of and

separately.

Definition 4: Let

for all

and for all
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Then define

Our main result is that is an outer bound on the rate
region. In particular, for each

is an outer bound. We can therefore view as an intersection
of a family of outer bounds, one for each choice of .

Theorem 1: The rate–distortion region is contained in .
In fact, .

Proof: It suffices to show the second statement. Suppose
is achievable. Let be encoders and

a decoder satisfying (1). Take any in and
augment the sample space to include so that

is independent over . Next, let be uniformly distributed over
and independent of , , , and . Then

define

for each in

for each

for each

We will show that is in and that, to-
gether with , , , and , it satisfies the Markov cou-
pling. Condition (i) in the definition of is satisfied because the
source (including ) is independent and identically distributed
(i.i.d.) over time. Condition (iii) holds because is a function
of . To show condition (ii), observe that since is
in

for all and

Since the source is i.i.d., this implies

Since is independent of the source, this implies

Since is a function of , this implies

Likewise, is a function of , so

which is condition (ii) in the definition of . This establishes
that is in . To show that the Markov coupling is satisfied,
note that since the source is i.i.d.

By averaging this equation over and using the fact that is
independent of the source, we obtain

Also, since is independent of the source

By the chain rule for mutual information, these two equations
imply

But is a function of

so this implies

which is the condition for the Markov coupling.
It remains to show that is in . First, note

that (1) implies

for all

i.e.,

for all

Second, let . Then by the cardinality bound on
entropy

Since conditioning reduces entropy, this implies

(2)

By the chain rule for mutual information

(3)

Applying the chain rule again gives the equation at the top of the
following page. Consider next the second term on the right-hand
side of (3). Since
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Applying the chain rule once more gives

But

and the second term on the left-hand side is zero. Thus

Substituting the results of these various calculations into (2)
gives (4) at the bottom of the page. If is nonempty, this can
be rewritten as

The case is handled separately. In this case,
observe that

Substituting this into (4) and proceeding as in the case
completes the proof.

It is worth noting that the proof uses classical techniques.
Most of the manipulations in the latter part of the proof can
be viewed as versions of the chain rule for mutual information.
Since this chain rule holds in abstract spaces [22, eq. (3.6.6)],
the proof can be readily extended to more general alphabets.

The key step in the proof is the introduction of in (2).
Unlike the other auxiliary random variables, does not rep-
resent a component of the code. Rather, it is used to aid the
analysis by inducing conditional independence among the mes-
sages sent by the encoders. This technique of augmenting the
source to induce conditional independence was pioneered by
Ozarow [23], who used it to solve the Gaussian two-descriptions
problem. Wang and Viswanath [24] used it to determine the sum
rate of the Gaussian vector multiple-descriptions problem with
individual and central decoders. It was also used by Wagner,
Tavildar, and Viswanath [15] to solve the Gaussian two-encoder
source-coding problem. A step that is similar to (2) appeared in
Gel’fand and Pinsker [9] and in later papers on the Gaussian
CEO problem [13], [14], although in these works is part of
the source, so no augmentation is involved.

The significance of conditional independence has long been
known in the related field of distributed detection (e.g., [25]).
Given the similarity between distributed detection and the mul-
titerminal source-coding problem, one expects conditional in-
dependence to play a significant role here as well. Indeed, most
conclusive results for the multiterminal source-coding problem
involve some kind of conditional independence assumption [9],
[19], [12]–[14]. The motivation for introducing is that it al-
lows one to apply the approach used in these works to problems
that lack conditional independence.

We do not consider the problem of computing in this
paper. Note that we have not specified the alphabet sizes of the
auxiliary random variables , , and . As such, the outer
bound provided by Theorem 1 is not computable [26, p. 259]
in the present form. One might question the utility of an outer
bound that cannot be computed. The remainder of the paper,
however, will show that the bound is still useful as a theoret-
ical tool. In addition, cardinality bounds might be found later,
although obtaining such bounds appears to be more difficult in
this case than for related bounds.

(4)
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It should be mentioned that the time-sharing variable is
unnecessary; it can be absorbed into the other variables. We have
included it to ease the comparison with existing inner and outer
bounds, to which we turn next.

III. RELATION TO EXISTING BOUNDS

The coding scheme described in the Introduction gives rise to
the following inner bound on the rate–distortion region.

Definition 5: Let denote the set of finite-alphabet
random variables

satisfying the following conditions:
(i) is independent of ;

(ii) for all ; and
(iii) .

Then define

for all

and for all

Finally, let

Proposition 1 ([16], [17]): is an inner bound, i.e.,
.

In Appendix F we show that is in fact closed. We call
the Berger–Tung [16], [17] inner bound, since although

these authors prove a bound that is less general than the one
given here, their proof can be extended to prove Proposition 1.
See Chen et al. [27] or Gastpar [12] for recent sketches of the
proof that accommodate some of the generalizations included
here.

To understand the difference between and , sup-
pose that

is in and is deterministic. Then is in , and
for all and all

Thus

(5)

Conversely, if is in , then for any deterministic
, is in and (5) holds for any . It follows that

is equal to with restricted to be deterministic.
In particular, to obtain coincident inner and outer bounds, it

suffices to show that restricting to be deterministic does not
reduce . We will see later how this can be accomplished in
several examples. Of course, it is not possible for the problem
solved by Körner and Marton [8], since they show that the inner
bound is not tight in that case.

The best general outer bound in the literature is the following.

Definition 6: Let denote the set of finite-alphabet
random variables satisfying the following
conditions:

(i) is independent of ;
(ii) for all ; and

(iii) .
Then define

for all

and for all

Finally, let

Proposition 2 ([16], [17]): is an outer bound, i.e.,
.

As with the inner bound, Berger [16] and Tung [17] prove the
result for a model that is more restrictive than the one considered
here, but their proof can be extended to this setup (cf. [27], [12]).
The difference between and is that condition (ii)
has been weakened in the latter. To understand this difference,
it is helpful to consider the special case in which there are two
encoders and no hidden source , side information , or
time-sharing variable . In this case, condition (ii) in the inner
bound reduces to

(6)

For the outer bound, on the other hand, condition (ii) reduces to

(7)

The condition in (6) is sometimes called the “long Markov
chain” [11] to contrast it with the “short Markov chains” in (7).
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Proposition 3: The outer bound subsumes , i.e.,
.

Proof: First observe that for any in

for each (8)

Now since is independent of , we also
have the following chain :

(9)

We will show that this pair of Markov chains implies that

for each (10)

To see this, consider the quantity

Using the chain rule, it can be decomposed in two ways

By (8) and (9), the right-hand side is zero. This implies that

which establishes (10). Thus is in . From the defi-
nition of , we see that if we choose , then the mutual
information expressions that define match those in

. That is

It follows that

The proof reveals that improves upon in two
ways. The first is that allows for optimization over
while effectively requires the choice . The
second is that is “smaller” than in the sense that if

is in then is in . In particular,
if there are two encoders and no hidden source , no side
information , and no time-sharing variable , then
requires to satisfy (7) while requires the condition

for some that is independent of . Thus, requires that
be a “mixture of long chains,” whereas only requires that

satisfy the less-stringent short-chains condition.
The remainder of this section is devoted to showing that

these improvements make the containment in Proposition 3
strict in some cases. As the reader will see, the first difference
between the two outer bounds is entirely responsible for the
gap that we expose between them in our examples. We hasten

to add, however, that the second improvement is not empty in
that Anantharam and Borkar [28] have shown that there can
exist a in with the property that there does not
exist a such that is in . It is interesting to
note that the Anantharam–Borkar example arose independently
of this work in the context of distributed stochastic control.

We will describe four examples for which strictly
contains . In all four examples yields a conclusive
result. The first is rather contrived and can be solved from first
principles. It is included to illustrate the difference between the
two bounds.

A. Toy Example

Let , , , and be i.i.d. random variables, uni-
formly distributed over Consider two encoders ( )
with and (there is no hidden
source or side information in this example). We have a single
distortion constraint ( ) with and

if or
otherwise.

In words, the decoder attempts to guess either the first coordi-
nate or the second coordinate of both encoders’ observations. It
incurs a distortion of zero if it guesses correctly the same coordi-
nate of the two sources and one otherwise. Note that the decoder
need not declare which coordinate it is attempting to guess.

One simple approach is to have both encoders always send,
say, the first coordinate of their observations. This requires rate

for each encoder, and achieves a distortion of zero. It is not
obvious that this scheme is optimal, however, because it does
not make use of the flexibility afforded the decoder in choosing
which coordinate to reconstruct. Using the outer bound, we can
show that this scheme is indeed optimal.

Proposition 4: For this problem

Proof: Suppose is in and . Since
and are independent, deterministic random variables are

in . Thus, there exists in such that

By condition (ii) defining

(11)

Since is independent of in this example, must
be independent of . Thus

(12)

Likewise, is independent of and hence given
, is independent of . This observation com-

bined with (11) implies . In
particular, . By condition (iii)
defining , . These last
two chains imply that
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Thus conditioned on and the event , we
have . It follows that

since is a function of and . Next, observe that
on the events and , and
together must reveal one of the two bits of . Thus

Continuing our chain of inequalities

(13)

Now

where, here and throughout, is the binary entropy function
with natural logarithms. We conclude that

Similarly

Substituting these two observations into (13) and recalling (12)
yields

By symmetry, must satisfy the same inequality.
This implies the desired conclusion.

Since we know that is achievable, it follows
that

In particular, is tight in the zero-distortion limit. In con-
trast, we show next that the Berger–Tung outer bound is not.

Proposition 5: The unachievable point
is contained in .

Proof: Let the random variable be uniformly distributed
over , and let and . Let

. It is straightforward to verify that is in
(the time-sharing random variable is not needed and

can be taken to be constant). Next note that .
Finally, one can compute

and

This implies that

The conclusion follows.

B. Binary Erasure CEO Problem

Here is uniformly distributed over , and

for in

where are i.i.d., independent of , and satisfy

Let . We will assume that there is no side infor-
mation and that the decoder is only interested in reproducing the
hidden process . We measure the fidelity of its reproduction
using a family of distortion measures , where

if
if
otherwise.

We are particularly interested in the large- limit. In this regime,
approximates the “erasure distortion measure” [2, p. 338]

if
if
otherwise.

We use a finite approximation because an infinite distortion
measure is unforgiving of decoding errors that have negligible
probability.

This example is motivated by the following problem arising
in energy-limited sensor networks. We seek to monitor a re-
mote source . To this end, we deploy an array of sensors,
each of which is capable of observing the source with negli-
gible probability of error. To lengthen the lifetime of the net-
work, each sensor spends a fraction of the time in a low-power
“sleep” state. We assume that the sensors cycle between the
awake and sleep states independently of each other and on a
faster time scale than the sampling; at each discrete time, each
sensor sleeps with probability , independently of the other sen-
sors and the past. Sensors do not make any observations while
they are asleep, resulting in erasures. We permit the coding
process to introduce additional erasures, but not errors, yielding
the erasure distortion measure. What sum rate is required in
order for the decoder to reproduce a fraction of the
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Fig. 4. Sum rate for the binary erasure CEO problem with p = 1=2 and
�!1.

variables while almost never making an error? Of course,
must satisfy .

Define

where is the rate–distortion region when the dis-
tortion measure is . We define and
analogously.

In Appendix A, we show that if , then

(14)

where again denotes the binary entropy function. In Ap-
pendix B, we show that the quantity on the right-hand side is
also a lower bound to

This is accomplished by choosing . Hence, this expres-
sion must equal

That is, the improved outer bound and the Berger–Tung inner
bound together yield a conclusive result for the sum rate of
the binary erasure CEO problem. In Appendix C, we show that

contains points with a strictly smaller sum rate in gen-
eral. Fig. 4 shows the correct sum rate for and several
values of in the limit as .

C. Quadratic Gaussian CEO Problem [20], [29], [13], [14]

We turn to a continuous example. Here are jointly
Gaussian and are conditionally independent given

. For , let us write , where
are independent and

for all

We will denote the variance of by . Again there is no side
information, and the decoder is only interested in reproducing
the hidden process

The rate–distortion region for this problem was found by
Oohama [21], [13] and Prabhakaran, Tse, and Ramchandran
[14]. The two proofs are nearly the same, and build on earlier
work of Oohama [29]. The primary contribution is the converse
result, which uses the entropy power inequality [2, Theorem
17.7.3]. The Berger–Tung inner bound is used for achievability.

It is straightforward to extend Theorem 1 to this continuous
setting. A statement of the continuous version is given in
Appendix D, where we also use the techniques of Oohama
[13] and Prabhakaran, Tse, and Ramchandran [14] to prove the
following.

Proposition 6: For the Gaussian CEO problem,

there exists for all

(15)

where .

Since this expression equals [13], we conclude that
is tight in this example. It also follows that the converse

result of Oohama [13] and Prabhakaran, Tse, and Ramchan-
dran [14] is a consequence of the outer bound provided in this
paper. This does not imply, however, that the task of proving
the converse result is made any easier by our bound. In fact,
the proof that the outer bound is tight follows the same steps
as the proof of the original converse, including the use of the
entropy power inequality. But this is still an improvement over
the Berger–Tung outer bound, which as we show in Appendix E
contains points outside the rate–distortion region.

It should be mentioned that Oohama’s [13] converse is actu-
ally more general than the result described here, in that Oohama
permits one of the encoders to make noise-free observations
(i.e., ). Comparing Oohama’s proof to Appendix D
shows that the outer bound supplied in this paper also recovers
this more general result.

D. Quadratic Gaussian Two-Encoder Problem With Separate
Distortion Constraints [16], [17], [30], [11], [15]

In this problem, there are two sources ( ), and , that
are jointly Gaussian. The decoder attempts to reproduce each of
the two sources individually
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Recently, Wagner, Tavildar, and Viswanath [15] determined the
rate region for this problem by showing that the Berger–Tung
inner bound is tight. Although they do not explicitly use the
outer bound described here, they do use the idea that underpins
it, namely, augmenting the source to induce conditional inde-
pendence. Partial characterizations of the rate region had been
obtained earlier by Oohama [30] and Zamir and Berger [11].

Vamvatsikos [31] has shown that the outer bound is tight for
this problem. The proof has two noteworthy aspects.

1) It utilizes an that is not an existing component of
the source (i.e., neither nor ). Thus, the proof requires
that the source be augmented. This is different from the
previous two examples, where the that is used is already
present in the source.

2) For the CEO problem, the intersection over is not
really needed in the sense that there exists a choice of
such that

For this problem, on the other hand, the proof requires one
to intersect over several values of to show that the outer
bound is tight.

The reader is referred to Vamvatsikos [31] for the details of the
proof. Tung [17, Appendix III] has shown that the Berger–Tung
outer bound contains points that are now known to be outside
the rate region.

IV. RECOVERY OF DISCRETE CONVERSE RESULTS

Having seen that the new outer bound recovers the converse
in two Gaussian examples, we show in this final section that it
also recovers the converse for the discrete problems of Slepian
and Wolf [1], Wyner [5], Ahlswede and Körner [6], Wyner and
Ziv [7], Gel’fand and Pinsker [9], Berger and Yeung [10], and
Gastpar [12]. The outer bound also recovers the converse result
for the problem studied by Körner and Marton [8], although the
proof of this fact is not as interesting. We shall therefore focus
on the others. To recover these converse results, we shall use the
following conclusive result for a special case of the problem.

Suppose that there exists a function such that
are conditionally independent given .

Also let

if
otherwise.

We make no other assumptions about the problem; in partic-
ular, the other distortion measures are arbitrary. We would like
to characterize the set . In words, condi-
tioned on the side information and some function of the hidden
variable, the observations are independent, and the function of
the hidden variable must be reproduced losslessly (in addition
to any other distortion constraints that are present). Note that

will be empty unless .
Gel’fand and Pinsker [9] refer to a similar condition as “com-
pleteness of observations.”

Proposition 7: For this problem

(16)

(17)

Proof: To show (16), it suffices to show that
is contained in . Suppose

is a point in and . By
choosing in Definition 4, we see that there exists

in such that

for all

and for all

Now

where we have used the fact that

By Fano’s inequality [26, Lemma 1.3.8]

Thus

If we now define , then is in and the
point

is in . This implies that

which proves (16). To prove (17), it suffices to show that
is closed. This is shown in Appendix F.
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The differences between this result and that of Gel’fand and
Pinsker [9] are numerous but minor. Gel’fand and Pinsker’s for-
mulation does not include side information at the decoder or dis-
tortion constraints beyond the one on . They also require that

, instead of , be reproduced at the decoder. The region
given here reduces to theirs when these extensions are ignored.
Thus, this result seems to be a generalization of theirs, albeit a
trivial one, since their proof can be modified to handle these ex-
tensions. A closer comparison, however, reveals that they define
the rate region more stringently than we do here. Thus, our re-
sult does not recover theirs, strictly speaking, although it does
recover the converse component of their result since our defini-
tions are weaker.

The reason for including side information and additional dis-
tortion constraints in the model is that they enable us to also re-
cover the converse results of the other problems mentioned ear-
lier. For instance, Gastpar [12] considers the problem of repro-
ducing the individual observations, subject to separate distortion
constraints, under the assumption that the decoder is provided
with side information that makes the observations conditionally
independent. His converse result can be recovered by taking
to be constant. It is easily verified that, under this condition,
our region coincides with his. The classical Wyner–Ziv problem
[7] can be viewed as Gastpar’s problem with a single encoder
( ). So that converse result is recovered as well.

Berger and Yeung [10] solve the two-encoder problem in
which the individual observations are to be reproduced, with at
least one of the two being reproduced losslessly. In our notation,
this corresponds to setting , , and .
Note that our conditional independence requirement trivially
holds in this case.

To see that under these assumptions, our region reduces to
theirs, suppose for
some . Then

(18)

Also

(19)

where we have used the fact that

and

(see Cover and Thomas [2, p. 35]). Finally

(20)

It is now evident that the two regions are identical (cf. [10, p.
230]). Thus, the converse result of Berger and Yeung is a con-
sequence of the outer bound provided here.

The classical problem of source coding with side information
[5], [6] can be viewed as a special case of the Berger–Yeung

problem in which exceeds the maximum value of , the
distortion measure for . Berger and Yeung demonstrate how,
under this assumption, the region described above reduces to
the one given by Wyner [5] and Ahlswede and Körner [6]. Ipso
facto, the converse result for this problem is also recovered.

Finally, we return to the result of Slepian and Wolf [1]. Here
the aim is to losslessly reproduce all of the observations. For
two encoders ( ), this can be viewed as a special case of
the problem of Berger and Yeung. These authors show how the
region described in (18)–(20) reduces to the one given at the
beginning of the paper. The result for more than two encoders
can be viewed as a special case of Proposition 7 in which

and . In this case, if , then
for any

since . Now is independent of
, so

which is the well-known rate region for this problem. Thus, the
converse of Slepian and Wolf is also recovered. For this result,
as with the others, our outer bound dispenses with the need to
prove a custom converse coding theorem. In fact, Proposition 7
can be viewed as unifying all of the results in this discussion.

APPENDIX A
SUM-RATE ACHIEVABILITY FOR THE

BINARY ERASURE CEO PROBLEM

Showing that a particular rate–distortion vector is achievable
using the Berger–Tung inner bound is mostly a matter of finding
the proper “test channels” for the encoders. To prove
(14), we use binary erasure test channels that are identically
distributed across the encoders. In this appendix and the next
two, the notation is drawn from Section III-C.

Lemma 1: For any

Proof: Fix and let be i.i.d., independent of
, with

For in , let . Then let

if
if
otherwise.
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Then for all

Thus, is contained in for all if for all

(21)

The rate vectors satisfying this collection of inequalities are
known to form a contrapolymatroid [32], [27]. As such, there
exist rate vectors satisfying (21) such that

In particular, this holds for any vertex of (21) [32], [27]. Now

But and

Then for any , there exist vectors in such
that

The conclusion follows.

APPENDIX B
SUM-RATE CONVERSE FOR THE

BINARY ERASURE CEO PROBLEM

We evaluate the outer bound’s sum-rate constraint for
the binary erasure CEO problem via a sequence of lemmas.
Throughout this appendix, will denote the function on

defined by

.

We begin by proving several facts about . For this, the fol-
lowing calculations are useful.

Lemma 2: For all in

(22)

and

(23)

Proof: It is well known that

for all

Replacing with and rearranging yields (22). To see (23),
note that (22) implies that the first derivative of

(24)

is nonpositive on . Since the function in (24) is non-
negative at , it follows that

(25)

for all in . One can now obtain (23) by multiplying
both sides by and dividing both sides by .

Lemma 3: The function is nonincreasing and convex
as a function of on .

Proof: The first derivative of on is

This observation, the first conclusion of Lemma 2, and the con-
tinuity of together imply that is nonincreasing on

. Since is constant on , it follows that
is nonincreasing on . The second derivative of
on is

This observation, the second conclusion of Lemma 2, and
the continuity of together imply that is convex on

. Since is nonincreasing on and con-
stant on , it follows that is convex on .

Corollary 1: The function is nonincreasing and
convex in on .

Proof: with , and
is convex and nonincreasing while is concave and
nondecreasing.

The next lemma is central to our evaluation of the outer
bound’s sum rate. Note that condition (i) in the hypothesis
implies that . That is, the reproduction
is never in error (although it may be an erasure).

Lemma 4: Suppose and is such that
(i) for all ;

(ii) for all ; and
(iii) .

Then

Proof: For each encoder , let
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Then define

if
if
otherwise.

Finally, let

Then

Since a.s., on the event we must
have and hence for all . In addi-
tion, the condition dictates that when

we must have for some , for otherwise
we would have . All of this implies
that on the event that . Simi-
larly, on the event . Thus,

implies that , so

This implies that

Thus

for all and

This optimization problem is not convex, but if we change vari-
ables to

then it can be rewritten as

for all and

for all and

which is convex by Lemma 3. Thus, we may assume without
loss of optimality that

and

This gives

where we have used Lemma 3 again.

The quantity can be interpreted as the amount
of information per symbol that the th encoder sends about the
erasure pattern of its observation. Lemma 4 then says that if a
fraction of the output symbols is allowed to be erased and
no errors are allowed, then the amount of information that the
average encoder must send about its erasure pattern is at least

nats per symbol. We would like to extend this last as-
sertion to allow “few” decoding errors instead of none. To this
end, we will employ the following cardinality bound on the al-
phabet sizes of the auxiliary random variables .

Lemma 5: Let be such that
(i) for all , and

(ii) .
Then for any , there exist alternate random variables and
also satisfying (i) and (ii) such that

for all
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and

for all

See Csiszár and Körner [26, Theorem 3.4.6] or Lemma 11
to follow for proofs of similar results. The next lemma is the
desired extension of Lemma 4.

Lemma 6: Suppose and is such that
(i) ;

(ii) for all ; and
(iii) .

If

then

Proof: By Lemma 5, we may assume that
for each . We may also assume that is a deterministic func-
tion of : . Define

and

and

We now define random variables to replace . The
replacements will be close to the originals in distribution but
will have the property that . That is,
will never be in error. Set for each , and let

if
if
otherwise

if
if
otherwise

if
if
otherwise.

Then define

for all
otherwise.

There is a natural way of coupling to such that if is
in then . With this coupling in mind, it is
evident that

Now for any in

By the union bound, this is upper-bounded by

Since

However

which implies that for any

(26)

By the definition of , for each , there exists at
least one such that and

Together with (26), this implies
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Applying Hölder’s inequality [33, p. 121] then gives

Likewise

Thus

By the union bound, it follows that

and therefore

Note that only if is in for some , and

for all

Thus, and similarly,
. It follows from Lemma 4 that

(27)

The remainder of the proof is devoted to showing that
is close to . For this we use the

decomposition

Observe that

Thus

Similarly

and

Therefore, if we view as a random variable on ,
for any in

A standard result on the continuity of entropy [26, Lemma 1.2.7]
now implies that (recall )

so

Likewise, for any in

Thus

so

as before. It follows that

Combining this with (27) yields

We are now in a position to prove the main result of this Ap-
pendix.

Lemma 7: For any

Proof: Fix and , and suppose
satisfies

(28)

By taking in the definition of , it follows that
there exist in and in such that

and

(29)

For each realization of , let
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Let . Then by Markov’s inequality

(30)

In particular, . Also, for any

by (28). Thus, by Lemma 6, if

By averaging over and invoking Corollary 1, we
obtain

From (30), it follows that

(31)
Now by the data processing inequality

Let . Continuing

Substituting this and (31) into (29) yields

The proof is terminated by letting and then .

APPENDIX C
THE BERGER–TUNG OUTER BOUND IS LOOSE FOR THE

BINARY ERASURE CEO PROBLEM

We will show numerically that for one instance of the binary
erasure CEO problem, contains points with a strictly
superoptimal sum rate. Let and . Let and
be -valued random variables with the joint distribution

i.e.,

We assume that is independent of . Let
for in , and let . Since

can be written as where and are i.i.d.
with (recall the notation of
Section III-C), we have . Note that
and have the joint distribution

Thus, for any

Now we can compute

0.6273 nats

and

0.3248 nats

It follows that is in for any .
Thus

0.6496 nats

From the previous two appendices, the correct sum rate is

0.6562 nats

APPENDIX D
EVALUATION OF THE OUTER BOUND FOR THE

GAUSSIAN CEO PROBLEM

Two lemmas are needed for our proof of Proposition 6. The
first is a simple extension of Theorem 1 to the Gaussian CEO
setting of Section III-D. For this appendix, let us redefine to be
the set of real-valued random variables such that
are conditionally independent given (the side information

is unneeded and shall be ignored). Let us also redefine
to be the set of random variables such
that each takes values in a finite-dimensional Euclidean space,
and collectively they satisfy the Markov conditions defining the
original :

(i) is independent of ;
(ii) for all ; and

(iii) ;
and one new technical condition:
(iv) the conditional distribution of given and is

discrete for each .
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Note that any conditional distribution involving these random
variables is well defined [34, Theorem 6.3]. As such, so is any
conditional mutual information [22, Ch. 3, especially the trans-
lator’s notes at the end].

Lemma 8: For the Gaussian CEO problem,
if is defined using the and just described.

The proof follows the original and is omitted. The second in-
gredient is a consequence of an intriguing result of Oohama [13]
and Prabhakaran, Tse, and Ramchandran that relates informa-
tion the encoders send about the hidden source to information
they send about their observation noise.

Lemma 9 (cf. [13, Lemma 3]): If is in , then for all

Proof: For any realization of , it follows from
Lemma 3 in Oohama [13] that3

We now average over and invoke the convexity of
twice, once on each side.

Proof of Proposition 6: If is in , then there
exists in such that and for all

(32)

Now

(33)

Since , the right-hand side can be lower-
bounded as follows:

where we have used the rate–distortion theorem for Gaussian
sources [2, Theorem 10.3.2]. In particular

(34)

Let us address the second term on the left-hand side of (33).
Observe that

3Oohama’s result assumes that U is a deterministic function of Y for each
`, but the proof shows that condition (ii) above is actually sufficient.

Defining and applying Lemma 9 to the
right-hand side gives

(35)

Substituting (34) and (35) into (33) gives

The conclusion follows upon substitution of this inequality and
the definition of into (32).

APPENDIX E
THE BERGER–TUNG OUTER BOUND IS LOOSE FOR THE

GAUSSIAN CEO PROBLEM

We have just seen that the improved outer bound is capable of
recovering the converse result of Oohama [13] and Prabhakaran,
Tse, and Ramchandran [14] for the Gaussian CEO problem.
Here we will show that the Berger–Tung outer bound does not
recover this result. As with the binary erasure CEO problem, we
will show that, in general, the Berger–Tung outer bound con-
tains points with a strictly superoptimal sum rate.

Consider the case in which, in the notation of Section III-D,
and . In words, two encoders

each observe a unit variance, i.i.d. Gaussian process in additive
Gaussian noise with a signal-to-noise ratio of unity. It follows
from Proposition 6 that the minimum sum rate needed to achieve
the distortion is at least nats.

Let , , and be Gaussian random variables, indepen-
dent of each other and of , , and . Let and have
unit variance; we denote the variance of by . Let

Note that the sum of and is a sufficient statistic for
given and . This observation makes it easy to verify that
if , then . Note that
this distortion is independent of .

It follows that for any value of , contains points
of the form with

However

and
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Observe that, when viewed as functions of ,
is strictly decreasing and is

continuous. Since yields

it follows that there exists such that

APPENDIX F
IS CLOSED

The main step in proving that is closed is to show
that one can limit the ranges of the auxiliary random variables
without reducing the region.

Definition 7: Let denote the set of finite-alphabet
random variables

in such that

for all

and

Then let

We shall show that in two steps, first han-
dling the case in which is deterministic, and then bootstrap-
ping to the general case. Both steps involve now-standard uses
of Carathéodory’s theorem. We give proofs of both steps, albeit
condensed ones, due to the complexity of the setup.

Lemma 10: Suppose that is in and
is deterministic. Then there exists in such
that is deterministic and .

Proof: For any containing , we have

while for any nonempty not containing , we have

Carathéodory’s theorem [26, Lemma 4.3.4] guaran-
tees that we can find a with such that

and the equations at the bottom of
the page hold, and similarly for
and . Since

, if we substitute for , the resulting
is in and is unchanged. Repeating this

procedure for completes the proof.

Lemma 11: .
Proof: Let be in . For each in , let

denote the joint distribution of con-
ditioned on the event . By Lemma 10, for each
, there exists such that is in and

. By replacing
with for each value of , we obtain in

such that for all and
. Now

for all and

for all

Carathéodory’s theorem implies that we can find a with
and such that

for all nonempty and similarly for

Then is in and

Since in was arbitrary, this implies

. This completes the proof because the reverse contain-
ment is obvious.

for all in but one

for all containing
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The cardinality bounds provided by the last two lemmas,
while finite, are exponential in and hence impractical for
moderate numbers of encoders. One can improve upon these
bounds by exploiting the contrapolymatroid structure [32],
[27] of . While this would be useful if one wished to
numerically evaluate the bound, our aim here is merely to show
that it is closed.

Lemma 12: is closed.
Proof: The Markov conditions defining can be ex-

pressed as

for all

Since the conditional mutual information function is contin-
uous, is compact when viewed as a subset of Euclidean

space. Thus, if is a sequence in that con-
verges to , by considering subsequences we may assume

that is in for each and
. By invoking the continuity of mutual infor-

mation once again, we obtain

for each . Likewise

for all

It follows that is in and therefore also in

.

Corollary 2: is closed.
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