REPETITION ERROR CORRECTING SETS: EXPLICIT CONSTRUCTIONS AND
PREFIXING METHODS *
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Abstract. In this paper we study the problem of finding maximally sizedsetb of binary strings (codes) of
equal length that are immune to a given numbarf repetitions, in the sense that no two strings in the coae ca
give rise to the same string afterepetitions. We propose explicit number theoretic consisas of such subsets.
In the case ofr = 1 repetition, the proposed construction is asymptoticallsinogl. Forr > 1, the proposed
construction is within a constant factor of the best knowperound on the cardinality of a set of strings immune
to r repetitions. Inspired by these constructions, we thenldpwe prefixing method for correcting any prescribed
numberr of repetition errors in an arbitrary binary linear block eodThe proposed method constructs for each
string in the given code a carefully chosen prefix such thatlie resulting strings are all of the same length and
such that despite up to amyrepetitions in the concatenation of the prefix and the codewbe original codeword
can be recovered. In this construction, the prefix length idema scale logarithmically with the length of strings in
the original code. As a result, the guaranteed immunity totit@e errors is achieved while the added redundancy
is asymptotically negligible.

Key words. Synchronization error correcting codes, enumeration prab| generating functions, congruences,
residue systems.
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1. Introduction. Substitution error correcting codes are traditionallydusecommu-
nication systems for encoding of a binary input messageo a coded sequenee= C(x).
The modulated version of this sequence is usually corrupyestditive noise, and is seen at
the receiver as a waveforgft),

s(t) = Zcm(t —iT) +n(t), (1.1)

wherec; is thei bit of ¢, h(t) is the modulating pulse, andt) is the noise introduced in
the channel. The received wavefowtt) is sampled at certain sampling points determined
by the timing recovery process, and the resulting samplgdesece is passed to the decoder
which then produces the estimatecofor x). In the analysis of substitution error correcting
codes and their decoding algorithms it is traditionallyussed that the decoder receives a
sequence which is a properly sampled version of the wavef¢tin

The timing recovery process involves a substantial ovetleshe design of communi-
cation chips, both in terms of occupying area on the chip arerims of power consumption.
To avoid some of this cost, particularly in high speed systeam alternative solution is to
operate under a poorer timing recovery, while oversamiliegeceived waveform in order
to ensure that no information is lost. Thus the wavefaiit) instead of being sampled at
instances: T + 1, might be sampled at instances rougfilyapart, forT” < T;. In the ide-
alized infinite signal-to-noise ratio limit of a pulse antpe modulation (PAM) system, this
appears as if some symbols are sampled more than once. Aglia irestead of creating
samples froms(t), n + r samples are produced, where> 0. As a consequence, when
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r > 0, the decoder is presented with a sampled sequence whoske éwgeds the length of
a codeword.

Motivated by this scenario, in this paper we study the pnobté finding maximally
sized subsets of binary strings (codes) that are immune it@a gumbern- of repetitions, in
the sense that no two strings in the code can give rise to the s&ing after repetitions.

In particular, we develop explicit number-theoretic constions of sets of binary strings
immune to multiple repetitions and provide results on tieaidinalities. We then use these
constructions to develop a prefixing method which transfoagiven set of binary strings
into another set that itself satisfies number-theoretisttamts of the proposed constructions.
The redundancy introduced by this carefully chosen prefshimwvn to to be logarithmic in
the length of the strings in the given set.

The remainder of the paper is organized as follows. In Se@iave first introduce an
auxiliary transformation that converts our problem intattiof creating subsets of binary
strings immune to the insertions 6. In Section 3 we focus on subsets of binary strings
immune to single repetitions. We present explicit consioms of such subsets and use num-
ber theoretic techniques to give explicit formulas for thegrdinalities. Our constructions
here are asymptotically optimal. In Section 4 we discusseatsof binary strings immune to
multiple repetitions. Our constructions here are asynqatly within a constant factor of the
best known upper bounds and asymptotically better, by atanhfactor than the best previ-
ously known such constructions, due to Levenshtein [9]pihesl by these number-theoretic
constructions, in Section 5 we develop a general prefixeed method which injectively
converts a given set of binary strings of the same lengthantiiher set such that the result-
ing set is immune to a prescribed number of repetition erfbine method produces for each
string in the original set a carefully chosen prefix such thatresult of the concatenation of
the prefix and this string satisfies number-theoretic coggfial constraints previously devel-
oped in Section 4 (where these constraints were shown tdffieesut to provide immunity to
repetition errors). The prefix length in the proposed methathown to scale logarithmically
with the length of the strings in the original given set. Thihe proposed construction guar-
antees immunity to a prescribed number of repetition ersghsle the incurred redundancy
becomes asymptotically negligible.

2. Auxiliary Transformation. To construct a binary; repetition correcting cod€' of
lengthn we first construct an auxiliary code of lengthm = n—1 which is anr ‘0™-insertion
correcting code. These two codes are related through tlesviag transformation.

Suppose € C. We letc = ¢ x T,, mod2, whereT,, isn x n — 1 matrix, satisfying

. 1 ifizjj+1
160 ={ 5 e’ @Y

Now, the repetition irc in positionp corresponds to the insertion of ‘0’ in positipn- 1
in &, and weightf) = number of runs it —1. We letC be the collection of strings of length
n — 1 obtained by applying’, to all stringsC. Note thatc and its complement both map into
the same string i

It is thus sufficient to construct a code of length- 1 capable of overcoming ‘0’-
insertions and apply inversg, transformation to obtaim repetitions correcting code of
lengthn.

Since the strings starting with runs of different type céariv@confused under repetition
errors, both pre-images undgf may be included in such a code immune to repetition errors.

3. Single Repetition Error Correcting Set. Following the analysis of Sloane [7] and
Levenshtein [8] of the related so-called Varshamov-Tenliagodes [6] known to be capable
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of overcoming one deletion or one insertion, 48} be the set of all binary strings of length
m and withw ones, for0 < w < m. Partition A} based on the value of the first moment of
each string. More specifically, | U”,f, be the subset ofl}} such that

Sihe={(s1,82, ..., 8m)| Y _i x s; = k modt}. (3.1)

In the subsequent analysis we say that an elemeﬁ?]fcjfhas the first moment congruent
to k modt. 7

LEMMA 3.1.Each subsej?{f)’,i‘“r1 is a single ‘0’-insertion correcting code.

Proof. Suppose the string is received. We want to uniquely determine the codeword
S = (81,82, .., Sm) € S:Z;f“ such that’ is the result of inserting at most one zerasin

If the length ofs’ is m, conclude that no insertion occurred, and Ehai s’

If the length ofs’ is m + 1, a zero has been inserted. For= (81, Sy ees Sy St )s
compute}7 i x s; mod (w 4 1). Due to the insertiony )7 " i x s; = 37" i x s, + Ry
where R, denotes the number of 1's to the right of the insertion. Nbtd R, is always
betweer) andw.

Let &’ be equal toy.7" 1" i x s; mod(w + 1). If k' = k the insertion occurred after
the rightmost one, so we declas¢o be them leftmost bits ins’. If k¥’ > k, R; is equal to
k' — k and we declare to be the string obtained by deleting the zero immediatetggding
the rightmostt’ — k ones. Finally, ift’ < k, Ry isw + 1 — k + k¥’ and we declare to be
the string obtained by deleting the zero immediately priwethe rightmostv +1 — k + £’
ones. a

3.1. Cardinality Results. Since|A"| = ( Z}L > there existg: such that

m,w+1 m
szets o (7). o2

Since two codewords of different weights cannot result aagame string when at most
one zero is inserted we may I€tbe the union of largest se%f w+1 over different weights
w, I.e.

0 = Lnj S, (33)

whereS, " v +1is the set of largest cardinality among all sefs;” w1 for 0 < k < w. Thus,

the cardlnallty ofC is at least

N /m 1 1 .
Z<w)w+1‘m+1<2 T 34

w=0

The upper bound/; (m) on any set of strings each of length capable of overcoming
one insertion of a zero is derived in [9] to be

2m+1
U1 (m) =

(3.5)
m

Hence the proposed construction is asymptotically optimébe sense that the ratio of
its cardinality to the largest possible cardinality apgtossl asn — oc.
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By applying inversel, transformation fom = m + 1 to C' and noting that both pre-
images undef’, can simultaneously belong to a repetition correcting setpitain a code
of lengthn and of size at Ieas}e (2”*1 ) capable of correcting one repetition.

The cardinalities of the seSZL 1 may be computed epr|C|tIy as we now show.

Recall that the Mbius functlom( ) of a positive integex: = p{*ps* ... p;* for distinct
primespy, po, . .., p is defined as [1],

1 forz =1
pr)=< (-D)F ifag=-=a,=1 (3.6)
0 otherwise.

and that the Euler function(z) denotes the number of integeysl < y < z — 1 that are
relatively prime withz. By conventionp(1) = 1.
LEMMA 3.2.Letg = ged(m + 1,w + 1). The cardinality of57"" " is

d
m,w mtl w 1 H cd(d,k)
szt = X () A C ‘ ) e
d| d)(gcd(d,k:))

wheregced(d, k) is the greatest common divisor @andk, interpreted asl if k£ = 0.

Proof. Motivated by the analysis of Sloane [7] of the Varshamowereyolts codes, let us
introduce the functiorf,, ,, (U, V) in which the coefficient ot/*V'*, call it g° _(n) represents
the number of strings of length, weight s and the first moment equal1 to mod b (i.e.

gh.o(n) = S0,
fn V) =323 b (U VE, (3.8)
Observe thaf;, ,, (U, V') can be written as a generating function
fon (U, V) ﬁ 14+UVY mod (VP —1). (3.9)
t=1

J

Leta = e*% so that forV = af

Fon(U.7F) = 37N " gh (m)Usel™" (3.10)

By inverting this expression we can write

ZZ:O glz,s (n) Us

27 2k
b

= sz Ofbn( et et
. 2mjk
b

= I, (1 + U™ e

Our next goal is to evaluate the coefficidnt on the right hand side in (3.11). To do so
we first evaluate the following expression

(3.11)

b .
[T +uve™). (3.12)

t=1
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Letd; = b/gcd(b,j) ands; = j/ged(b, j), and write

o, (1 + Ue™5)
<27r5jt QCd(bij)

= (mzasud

2ms it 2ms i (t14ta)
d; Pputiit 2N d; d; il RSt B2 (3.13)
<1+UZt1J_16 T+ Ut th:l Zt;:tl—&-le % +ee

275 (1424 +d;) )gc‘i(b’j)
j2rsg (A2t td;)

Udje dj

Sinceged(d;, s;) = 1, the set

‘27rs_7-1 <27rs]'2 ,27rs]'dj

V={e"% % ... U } (3.14)

represents all distinct solutions of the equation
¥ —1=0. (3.15)

For a polynomial equatio®(x) of degreed, the coefficient multiplyingz* is a scaled
symmetric function ofl — k roots. Hence, by (3.15), symmetric functions involving atsin
d; — 1 elements ol evaluate to zero. The symmetric function involving all eéerts ofV/,
which is their product, evaluates te-1)%+1.

Therefore,

2mjt

b .
[I(1+Ue ) = (14 (—1) iy ) ) (3.16)
t=1

Returning to the inner product in (3.11), let us first suppbséb|n. Then

2mjt

ITi- (1 +Ue

Comjt n/b
= (H?:l (1 + Ue’zT))
= (14 (-1)% Udj)gcd(byj)n//b (3.17)
ZEO ( % ) (_l)l(l—i-dj)UldJ _
Thus (3.11) becomes
Z::O gll;,s(n)Us
= $¥75 Zfio( f )(_1)l(1+dj>Udjze—¢%gk. (3.18)
We now regroup the terms whogs yield the samel;’s
Z::O glz,s n)[]g
i e (3.19)

%Zd\b >ilo < ? > (*U“Hd)Udl X Zj:gcd(j,b):b/d,ogjgb—l et

The rightmost sum can also be written as

3 e = > e (3.20)

j:ged(3,b)=b/d,0<j<b—1 5:0<s<d—1,gcd(s,d)=1
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This last expression is known as the Ramanujan sum [1] anglifies to

_d
Z —iiE _ ¢(d)'u(96dw’k)> . (3.22)

d
5:0<s<d—1,gcd(s,d)=1 ¢ ged(d,k)

Now the coefficient ot/? in (3.11) is

d
sy (Fm) (322)
),

which is precisely the number of strings of lengthweightb, and the first moment congruent
tok mod b, i.e. \Sg’,ﬂ

Consider the set of strings described £Y" YHlform =n—1landw = b— 1, ie.
St = - ll,f If we append 1’ to each such string we would obtain a frattbb/n
of all strings that belong to the sSf’,f To see why this is true, first note that the cardinality
of the setS;"'” and of the subsef}”, of S}’ which contains all strings ending in "1’ is
the same (since when a 1’ is appended to each element of Mﬁ”_@;’,ﬁ, the resulting set
contains strings of length, weightb and first moment congruent {& + n) mod b, which
is also congruent t& mod b since by assumptiob|n). It is thus sufficient to show that
= LISpl Let Ay =[Sy Write Ay = 3, i, Ak(n,b,2), where Ay (n, b, v)
denotes the number of strings of lengthweightb, first moment congruenttlo mod b, and
with periodv. Consider a string accounted for iy.(n, b, 2). Its single cyclic shift has the
first moment congruent tg:+b) mod b and is thus also accounted fordn (n, b, ). Since
= is the period, and sinc% is the weight per period, fractioﬁ% of Ax(n,b, 2) represents
distinct strings that end in '1’, have length weightb, first moment congruent te mod b,
and period?. Thus,| Ty, | = 3=, s n//uAk(” b, %) = L4, as required.

Therefore, the cardinality dj’;’f,j”“ is b/n times the expression in (3.22),

i

dlb

aloals

m+1

d
m,w+1 1 — wtl (4 g) H (W)
Swk  |= o wh ) (=1)74 d)—— < - (3.23)
dlwtl N1 ¢ (gcd(d,k))

Notice that the last expression is the same as the one prbpedesemma 3.2 with
gedim+Liw+1)=w+ 1.

Now suppose that is not a factor ofn. We work with f, ,,(U, V') as in (3.9) where
g = ged(n,b) and get

n

ig%s( ZZ( ;i) > Yt grd o Z itk
s=0

d|g 1=0 Jiged(4,9)=g/d,0<j<g—1
(3.24)
Thus the coefficient o/’ here is
. (et )
Z( g )< 1) 404 () — XD (3.25)
Fi

dlg
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This is the number of strings of length, weightb, and the first moment congruent
to k mod g, namely it is the cardinality of the s&';. Let By, = [S,77|. Write By =
> uulg Br(n,b, ) where By (n, b,v) denotes the number of strings of lengthweightb,
first moment congruent t& mod g and with periodv. By cyclically shifting a string of
lengthn, weightb, first moment congruent tt mod ¢ and with periodr/u for n/u steps,
and observing that each cyclic shift also has the first mormengruent tok mod g, it
follows that a fraction% of By(n,b, ) represents the number of strings that end in '1’,
have length, weightb, first moment congruent to mod g, and period?. Thus a fraction
b/n of By, denotes the number of strings that end in '1’, are of lengtiveightd, and have
the first moment congruent fo mod g¢. Since each string of length— 1, weightb — 1, and
the first moment congruent o mod ¢ produces a unigue string that ends in '1’, is of length
n, weightb, and has the first moment congruentitomod g by appending '1’, it follows
that%Bk is also the number of strings of length— 1, weightb — 1, and the first moment

congruent tdc mod g. Thus the number of strings given lSY_’llj is aIso%Bk.

Consider again cyclic shifts of a string of lengthweightb, the first moment congruent
tok mod g and with periodh/u. A fractionb/u of these shifts produce strings with a1’ in
the last position. Let us consider one such steindts firstn — 1 bits correspond to a string of
lengthn — 1, weightb — 1, and the first moment congruent#o mod g. Thisn — 1-bit string
has the first moment congruenttg mod b for somek,. Cyclically shifts, for ¢; places
until the first time "1’ again appears in thgh position, and call the resulting string (Since
b > gandulg, b/u > 1, and thuss; # sg). The firstn — 1 bits of s; correspond to a string of
lengthn — 1, weightb — 1, and the first moment congruentko = ko +t:(b— 1)+t — n
mod g = ko +t1b—n mod b= ko — gy mod b, wherey = %. Cyclically shifts; for for
to places until the first time '1’ again appears in thit position, and call the resulting string
sa. The firstn — 1 bits of sy correspond to a string of length— 1, weightb — 1, and the
first moment congruent t, = ko — gy +t2(b— 1) +to —n mod g =ko — gy +tob—n
mod b = kg — 2gy mod b. Each subsequent cyclic shift with "1’ in the last place giee
string s; whose firstn — 1 bits have the first moment congruentitp= ko, — igy mod b.
The last such strings; 1, before the strings, is encountered again has the left- 1
bit substring whose first moment is congruentto, | = ko — (% —1)gy mod b. Note
that the sequencgko, k1, ks, . . ., ky/u—1} is periodic with period: (here gcdy, g) = 1 by
construction), where = % Sincez\%, each ofkg, k4 throughk;%f1 appear equal number of
times in this sequence. Consequently, the number of stiinidye sets*gl_’llj’,fi is £ of the size
of the setS,’f_’ll”,f for everyk; = ig + k mod b.

Thereforel S| is

m,w—+1 n,
St = RbsE
mtl d 3.26)
_ 1 d —1)(wHl+ 5 (1+w) 4 g 1( geatan) (
T 2dlg whi (1) o( )¢> )
which completes the proof of the lemma. a

3.2. Connection with necklaces.It is interesting to briefly visit the relationship be-
tween optimal single insertion of a zero correcting codes@mbinatorial objects known as
necklaces [10].

A necklace consisting of. beads can be viewed as an equivalence class of strings of
lengthn under cyclic shift (rotation).

Let us consider two-colored necklaces of lengtlwith b black beads and — b white
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beads. It is known that the total number of distinct necldds410]

T(n):l > (

n
d|ged(n,b)

o3

> o(d) . (3.27)

In general necklaces may exhibit periodicity. However, sider, for example for the
casegcd(n,b) = 1. Then there are
1 ( n ) (3.28)
n\ b

distinct necklaces, all of which are aperiodic. Now assuh&it + 1|n and note that this
impliesged(n+1,b+ 1) = 1. Suppose we label each necklace beads in the increasing orde
1 throughn and we rotate each necklace by one position at the timevelatithis labeling.

At each step we sum mdg+ 1 the positions ob black beads. For each necklace, each of
residues;, 0 < k < bis encountered/(b+ 1) times. The total number of times each residue

k is encountered is thus
1 n 1 n-+1
- 2
b+1(b> n+1<b+1)’ (3-29)

which as expected equals the number of binary strings of weiglengthn, and the first
moment congruent tb modb + 1 (same for alk).

4. Multiple Repetition Error Correcting Set. We now present an explicit construction
of a multiple repetition error correcting set and discus#rdinality.

Leta = (a1, aq,...,a,) forr > 1, and consider the sét(m, w, a, p) for w > 1 defined
as

S(m,w,a,p) ={ s=(s1,82,...5m) € {0,1}™:
v = 0,041 =m + 1, and
v; is the position of the" 1 insfor 1 < i < w,
bi=v; —vi_1—1, f0r1§z§w+1,
D $i =W, 4.1)
Z;l:_ll ib; = aq l’nOdp7
Z;?U:ll i2b; = as modp,

St ith; = a, modp }.

The setS(m, 0, 0, p) contains just the all-zeros string. L&g = 0 and let
S (m, (a1,p1), (az,p2), ..., (am, pm)) be defined as

m

S (m7 (al,pl)v (327]72); ) (amapm)) = U S(m, lvalapl)a (4.2)
=0

whereb, ..., b,+1 denote the sizes of tHensof 0’s between successivés.

LEMMA 4.1.If eachp, is prime andp; > maxr, 1), the setS (m, (a1,p1), (a2, p2), ..,
(am,pm)), provided it is non empty, is r-insertions of zeros cornegti

Proof. It suffices to show that each non empty §etn, I, a1, py) is r-insertions of zeros
correcting. This is obvious fof = 0. For! > 0 suppose a string € S(m,hal,pl) is



REPETITION ERROR CORRECTING SETS: EXPLICIT CONSTRUCTIONSD PREFIXING METHODS 9

transmitted. After experiencing insertions of zeros, it is received as a strixfg \We now
show thatx is always uniquely determined froxd.

Leti; < iy < ... <1, bethe (unknown) indices of the bins of zeros that have egpeed
insertions. For each, 1 < j < r, computen); = Zf’:ll /b, modp;, whereb) is the size of

thes™ bin of zeros ofx’,

_ +1 .
ay =350, ib;modp (4.3)
=aj+ (¢ +4 + ... + ) modp,,
wherea; is the ;™ entry in the residue vectey (to lighten the notation the subscripin a;
is omitted).

By collecting the resulting expressions overzaland setting:; = afj — a; modp;, we
arrive at

"

ay =41 +i2 + ... + i, modp;
B ay = i3 + i3 + ... + 42 modp;
=

"

a, =i} +ib + ...+ modp;.

(4.4)

The terms on the right hand side of the congruency constranetknown as power sumssin
variables. LetS) denote thé:™ power sum mog; of {i1, i, ..., 4, },

Sy = i% +45 + ... +i" modp, (4.5)

and letA; denote thé:'" elementary symmetric function i, 4z, ..., i, } modp;,

A= Y iy, iy, modp. (4.6)

v1<v2<...<vg

Using Newton’s identities ove® F'(p;) which relate power sums to symmetric functions
of the same variable set, and are of the type

Sp— A1Sp_1 4+ AoSp_o — oo+ (1) 1A, 1S + (—1)*EAL = 0, (4.7)
for & < r, we can obtain an equivalent systemrafquations:

d = Z;:l ij mOdpl
B, = dy =3 tjik Modp (4.8)

dy = [1;—, i; modpy,

where each residug, is computed recursively froftl; , ..., d_; } and{a} , a,, ..., }. Specif-
ically, since the largest coefficient in (4.7)risandr < p; by construction, the last term in
(4.7) never vanishes due to the multiplication by the coieffick.

Consider now the following equation:

T

[[(=—i;) = 0modp,, (4.9)

j=1
and expand it into the standard form

"+ cp1x" T 4 4 1z + ¢o = 0 modp;. (4.10)
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By collecting the same terms in (4.9) and (4.10), it followattd, = (—1)*c,_; modp;.
Furthermore, by the Lagrange’s Theorem, the equation J44€ at most solutions. Since
i < p; all incongruent solutions are distinguishable, and thessihiution set of (4.10) is
precisely the sefiy, is, ..., %, }.

Therefore, since the systeh). of  equations uniquely determines the §&t is, ..., 3, },
the locations of the inserted zeros (up to the position withe bin they were inserted in) are
uniquely determined, and thusis always uniquely recovered frosi. a

Hence,S (m, (a1,p1), (a2, p2), ..., (Am, Pm)) IS r-insertions of zeros correcting foj
prime andp; > max(r, ).

In particular, forr = 1, the constructions in (3.1) and (4.1) are related as follows

LEMMA 4.2. For p prime andp > w, the setS;"? defined in (3.1) equals the set
S(m,w, a,p) defined in (4.1), where = fm.w —amodp for fp, ., = (w+2)(2m —w+
1)/2—=(m+1).

Proof. Consider a string = (s1, s2, ..., sm) € Sy, and letv; be the position of thet
lins, so thaty)"”  is; = S, v;. Observe thaty = Y27 b; + k whereb, is the size of
thei™ bin of zeros ins. Write

Yivit(m+1)=((b1+1)+ (b1 +bo+2)+ ..+

(b1 +ba+...+by+w)+ (b1 +ba+ ... +bp1+w+1)=

S w2 — )b+ (w4 1) (w +2)/2 = (4.11)
(w+2)(m — w) + (w+ 1) (w+2)/2 = W b, =

(w+2)(2m —w+1)/2 — S04 ib,.

Thus, fora = " | is; modp, the quantitys = Z;’fll ib; modp is (fim.w —a) modp. 0O
Observe that the indices= 1, ..., (w + 1) in (4.1) play the role of the “weightings” of
the appropriate bins of zeros in the construction abovetlzatdhey do not necessarily have
to be in the increasing order for the construction and thieliglof the proof to hold. We can
therefore replace each 6fn (4.1) with the weightingf; with the property that eaclj is a

residue mod p and thatf; # f; fori # j. LetS‘(m,w, a,f, p) forw > 1 be defined as

S(m,w,a,f,p) ={ s=(s1,52,..5m) € {0,1}":
vg =0, V1 = M+ 1, and
v; is the position of the" 1 insfor1 < i < w,
bizvi—vi,1—1f0r1§i§w+1,
; S; = w,
]z‘}:l_rlnod p # f; mod pfori#j, (4.12)
Z;U:f ib; = a; modp,
SN (f1)2b; = a2 modp,

Y (£:)7bi = a, modp }.

The setS(m, 0,0, 0, p) contains just the all-zeros string. L& = 0 and let
S (m, (a1, f1,p1), (a2, f2,12), .-, (am, fm, pm)) be defined as

m

S’ (m7 (alaflapl)a (8.2, f2ap2)a ey (am, fmvp’m)) = U S(m? l7a1a f17pl)' (413)
=0

We note thaé(m,w, a,f,p)= S(m,ma,p) whenf = (1,2,..., (w +1)).
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LEMMA 4.3.If eachp, is prime andy; > maxr, 1), the se'é (m, (a1, f1,p1), (a2, f2,p2), ...,
(am, fm, pm)) IS r-insertions of zeros correcting.
Proof. The proof follows that of Lemma 4.1 with appropriate suiogitons of f; for ¢. O

The objectﬁ(m, w, a, £, p) will be of further interest to us in Section 5.2 when we discus
a prefixing method for improved immunity to repetition egor

We now present some cardinality results for the constroatbpresent interest. For
simplicity we focus on the sef(m, w, a, p) as the results hold verbatim f8(m, w, a, f, p)
with appropriate weighting assignments.

4.1. Cardinality Results. Let 5* (m, (a1,p1), (az,p2), ..., (am, Pm)) be defined as

S* (m7 (a17p1)7(a25p2)a"'ﬂ(am7p7ﬂ>) = S'(m,l,al*,pl). (414)

C:=

=0

whereS(m, I, ar*, p;) is the largest among all se#{m, I, a;, p;) for a; € {0,1,...,p}".
The cardinality ofS(m, [, a)*, p;) is at least

< m ) L (4.15)
L) v

Since for alln there exists a prime betweenand2n it follows that one can choose the,
1 <1 < m, so that cardinality of(m, [, a;*, p;) for I > r is at least

( ”; ) & (4.16)

Thusp, ..., p, can be chosen so that the cardinalitﬁdf(m, (a1,p1), (az,p2), ..., (Am, Pm))
is at least

r—1 m
m 1 m 1
1 — —_— 4.17
t2 ( w ) oyt ( w ) @u) @10
which is lower bounded by

<2i>rg( " ) EE T T (2’””%21( " >>

k=0
(4.18)
The prime counting functiom (n) which counts the number of primes upripsatisfies for
n > 67 the inequalities [11]

1+

n n

) =12 <" < Wy =32 (4.19)
From (4.19) it follows that
(1+e)n <m((1+en) < (L+e)n (4.20)

In((1+€)n) —1/2 In((14€)n) —3/2 "
For a prime number to exist betweerand(1 + ¢)n , it is sufficient to have

(1 +e€)n) > n(n) . (4.21)
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Using (4.19) and (4.20) it is sufficient to have

(I+e)n S n

m((1+€)n) > (L + ) —1/2 = In(n) =372 > 7(n). (4.22)
Comparing the innermost terms in (4.22) it follows that isigficient fore to satisfy
3e
eln(n) >In(l4+¢)+ —+1 (4.23)

2

for (4.21) to hold.

Forn > 67 ande = ﬁ the left hand side of (4.1) evaluates3tavhile the right hand
side of (4.1) is upper bounded l6§.539 + 1.071 + 1) < 3.

Sincer(n) is a non-decreasing function af it follows that forn > 67, there exists
a prime betweem and (1 + €)n for e > i) Thus the lower bound on the asymptotic

In(n

cardinality of the best choice over, . . ., p,, of 5* (m, (a1, p1), (az, p2), ..., (Am, pm)) €aAN
be improved to

1
I+e)r(m+1)(m+2)...(m+7r)

(2m7) = P(m), (4.24)

wheree = -2 andP(m) is a polynomial inm. In the limitm — oo, (4.24) is approximately

2m+r

sk (4.25)

A construction proposed by Levenshtein [9] has the lowengsgtic bound on the car-
dinality given by

1 277L

T (4.26)

Note that both (4.17) and the improved bound (4.24) impravd426) by at least a
constant factor.

The upper bound’,.(m) on any set of strings each of lengthcapable of overcoming
insertions of zero is

2m

mr’

U.(m) = c(r) (4.27)

as obtained in [9], where

oyl dd
() { 87/2((r/2)))? oven: (4.28)

which makes the proposed construction be within a factohisftbound. By applying
the inversel’, transformation fom = m + 1 to S* (m, (a1,p1), (az,p2), -, (Am,pm)) and
noting that both strings under the inversg transformation can simultaneously belong to
the repetition error correcting set, we obtain a code of tlemgcapable of overcoming
repetitions and of asymptotic size at least

2n+r

(4.29)

nT
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5. Prefixing-based Method for Multiple Repetition Error Corre ction. In this section
we develop a general prefixing method which injectively $farms a given collectios' of
binary strings of lengtt into another collectioA’s of binary strings of equal length, such
that the collectionTs is guaranteed to be immune to the prescribed number of tigpeti
errors. The proposed method is inspired by the number-¢tieaonstruction developed in
the previous section. It takes an elemeof S and produces a string = [pss], ts € Ts, that
is, the prefixps is prepended te to producets, such that the strings under transformation
(2.1) satisfies the set of conditions given by (4.12). In theppsed method, the s&¥
has the property that the length of the prebixis O(log(n)). Thus, if the setS is used
for transmission, the proposed method provides increasetlinity to repetition errors with
asymptotically vanishing loss in the rate.

We start with some auxiliary results.

5.1. Auxiliary results. Consider a prime numbét with the property thatem(2, 3, ..r)|
(P — 1) for a given positive integer. Since each, 1 < i < r, satisfies|(P — 1), it follows
that in the residue setmod P, there are% elements that ar&h power residues, each
havingi distinct roots (anth power residue satisfiesy’ = + mod P for somey), [1]. For
convenience, letf = |log,(P)].

For eachi, 1 < i < r, we will construct a specific subsg} of theith power residues
mod P such that all other residues can be expressed as a sum ofet stiblements of/,
and such that eadli has size that is logarithmic iR. The set of théth roots of the elements
of the setV; will be denotedF;. Thus,F; will also have size logarithmic i#. The elements
of M = {J;_, F; U{0} (the setsF; will be made disjoint) will be reserved for the weightings
/i of the bins of zeros of the prefix string in the transformed domain (see the construction
(4.12)). Note that\/ also has size that is logarithmic i, and since each bin in the prefix
will have at most one zero, the length of the prefix is alsofibiganic in P. The setd/; will
serve to satisfy théth congruency constraint of the type given in (4.12) for tireng ts in
the transformed domain, as further explained below.

In the remainder of this section we will first show how to coust setsV;, and then we
will provide the proof that it is possible to construct sktswith all distinct elements as well
as setg; (from setsV;) that have distinct elements and are non intersecting hptime
P large enough. We will also provide a proof that for a givereg#rn, for n large enough,
there exists a prim& for which we can construct non intersecting sEtgontaining distinct
elements, where the primt lies in an interval that linearly depends an

Combined with the encoding method described in the nexiweate will therefore have
constructed a prefix whose length is logarithmiaisuch that the overall string (which is a
concatenation of the prefix and original string) in the tfarmsed domain satisfies equations
of congruential type given in (4.12), which we have alreadyvpd in Section 4 are sufficient
for the immunity tor repetition errors.

We now provide some auxiliary results. Le{» indicate the residue moB congruent
toz .

LEMMA 5.1. For an integerP, each residue mod P can be expressed as a sum of a
subset of elements of the $&tp = {[z]p, [22]p, [222] P, ..., [2C 2] p} WhereG = |log, P|,

z is an arbitrary non zero residue mael.

Proof. Observe tha’y » = {1,2,22,...,2¢}. We first show that each residwemod
P can be expressed as a sum of a subset of elements of tlig setNote that each residue
i, 0 < i < 29 — 1 (mod P) can be expressed as a sum of a subset, call this s@hsef
the set{1,2,22,...,2¢71}. HereQy is the empty set. Adding“ to the sum of eacly;, for
0 < i < 2% — 1, moduloP generates the remaining residye$§’,2¢ + 1,...,P — 1}. As a
result every residue mafl can be expressed as a sum of a subsét gf = {1,2,22,...,2¢}.
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Suppose there exists an elemenvhich cannot be expressed as a sum of a subset of
elements off;, p, for z > 1, that isv # Z?:o €;22" mod P, for all choices of{¢, ..., e},
e; € {0,1}. Let 27! be the inverse element afunder multiplication modP. Then the
residues’ = vz~ # Y% ¢;2' mod P, for all choices of{e, ..., e}, & € {0,1}, which
contradicts the result from the previous paragraph.

For a prime numbeP for whichi|P — 1, andi < P — 1, letQ;(P) be the set of distinct
ith power residues mo&. We also state the following convenient result.

LEMMA 5.2. For a prime P such thati|(P — 1), each residue: mod P can be ex-
pressed as a sum of two distinct elementgfP) in at leastP/(2i%) — v/P/2 — 3 ways.

Proof. The result follows from Theorem Il in [3] which states thateo GF(P) the
equation

ity =a (5.1)

wherez,y,a € GF(P) and nonzero ant < ¢ < P — 1 has at least

(P — 1)2 —1/2 . 1/2 2
—p = P (1 +(E-1)P ) (5.2)
solutions. Rearrange the terms in (5.2) to conclude thaj t@s at least
1 1
P—(i—1)*/P—-2(i—1) -2+ = — —= 5.3
(=VP-20i-1)-2+ 5 - (5.3)

solutions. Noting thatdistinct values of: result in the same?, accounting for the symmetry
of z andy, and omitting the case’ = y* we obtain a lower bound on the number of ways
a residueu can be expressed as a sum of two distittlistpower residues to b&/(2i?) —
VP/2 - 3. 0
Equations of the type in (5.1) were also studied by Weil [2].
We now continue with the introduction of some convenieniatioh. Forz;; anith
power residue define the sét ; (z; 1) to be

Air(zi1) = {[2%2:1]pl0 < k < LgJ} . (5.4)

Letz; » andx; 3 be distinctith power residues such thats + z; 3 = 22,1 mod P. These
two power residues generate sdts, (z; 2) andA; s(z; 3) where

Ai72($i’2) = {[Zikxi,g]pm <k< L?J} and (55)

Ais(aig) = {2%wsslelo <k < | S22 (5.6)

Likewise, for eachzl;cl-,l forl1 <1 <i—1letz;q andx; 511 be distinctith power

residues such that; o; + z; 2141 = 2l1'i,1 mod P. These residues generate séts;(z; o)
andAi,ng(mi’QlH) where

) G -1
A or(xi21) = {[2% 2 ]P0 < k < LTJ} and (5.7)

, G-1
Ai o1 (Tioie1) = {[2%zi211]p|0 < k < LfJ} (5.8)
By introducing sets4, ;(x; ;) we have effectively decomposed all residues of the type

(242, 1]p, 0 < ik +1 < G,1 <1 <i— 1into asum of twoith power residues, namely
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[Qikzi’gl]p and [2ik$i721+1]p. For each Seﬂi7j(a:,»7j), 1< 7 < 2i — 1, we Ieth- (mi,j) be
the set of allith power roots of elements of; ;(z; ;),

G- |1
B;j(zi) = {[2"%Npl(y)) = 2;; mod P1<t<i0<k< LMJ} (5.9
1

First note that all elements i, ;(x; ;) areith power residues by construction. Moreover,
they are all distinct sincg™' # 292 mod P for1 < ji, ja < LG%.L%JJ for j; # jo implies

x; ;21 # x; ;292 mod P. Thus,|A;;(z; ;)| = LG;.L%JJ + 1 and since théth power roots
of distinctith power residues are themselves distifb}, (z; ;)| = (LG Lz JJ + 1)

LEMMA 5.3. SupposeP is a prime number such thaj(P — 1). Letz;; be anith
power residue. Supposg ; for 2 < j < 2i — 1 are ith power residues such thatz; ; =

T; 2k + 252641 mod Pforl <k < (’L—l) LetAi,j(:viJ) = {[2ill‘i’j]p|0 <Il< LG%L%JJ}
forl1 <j <2i—1landG = |log, P|. If the sets4,; ;(z; ;) are disjoint forl < j < 2i — 1,
each residue: mod P can be expressed as a sum of a subset of elements of the set
USS" A j(2:,) wherez denotesr; ;.

Proof. Follows immediately from Lemma 5.1 by observing that, wittlenotingz; ;, we
have in fact decomposed elemef#sz] » in the setl’, p for k not a multiple ofi into a sum
of two component elements such that all component elemeatdistinct from one another
and distinct from{2* z] p for i|k. 0

The following lemma proves that it is possible to construtisets4;; (x; ;), and subsets
Bi,;(z; ;) fromthem, of the set of residuesnod P for P prime that satisfiekm(2, 3, ...r)|(P—
1) for a given positive integer, provided that is large enough, such that for fixethe sub-
setsA;;(z; ;) are disjoint, and such thatl subsetB;;(x; ;) forl1 <i<r,1<j<2i—1
are also disjoint. Let¥; denote the number of ways any residuaod P can be expressed
as a sum of two distinct non zefth power residues mod P. A universal lower bound on
W; that holds for all residues was given in Lemma 5.2.

LEmMMA 5.4. For a given integer, suppose a prime numbérsatisfiedem(2, 3, ...r)|(P—
1). LetG = [logy P|. f P—1 > (G+7)(G+r—1)(r—1)2 andW; > 2i(G+i)(G+i—1),
for eachi in the range2 < ¢ < r, there exist subsetd;;(x; ;) of the type given if5.7)
and (5.8) and B;;(x; ;) of the type given it{5.9) such that for fixed subsets4;;(z; ;) for
1 < j <2i—1aredisjoint, and forl < i <r,1 < j < 2{ — 1 all subsetsB;;(x; ;) are
disjoint.

Proof. We inductively build the setd,;;(z; ;) andB;;(z; ;) for1 <i < randl < j <
2i — 1, starting with the level = 1. We then incrementby one to reach the next collection
of setsA;;(z; ;) and B;;(x; ;) while making sure the sei8;;(x; ;) at the current level are
disjoint from one another and with all previously constadtsets at lower levels.

Consideri = 1. Letz; ; be an arbitrary residuemod P, and let

Ajpq(zr) = {[2%214]Pl0< k< G} . (5.10)

Letz; = z11 andy1 1 =x1,1. HereBy 1(z1) is simply A; 1 (z1,1) for ¢ = 1. All elements
in By 1(z1) are distinct anq|B1 1(z1)] = (G +1). If r =1, we are done, as we did not even
appeal to the condition on the lower boundBn- 1 (it is simply P — 1 > 0).

If » > 2, let us considef = 2. Consider quadratic residuegl, x2,2 andzq 3. Let their

respectlve distinct quadratic roots y§>, Ys, (so that(y2 1)2 = (yfl))2 = x91 mod P),

y§12), y22 (so that(y2 2))2 = (:1/522))2 = x5 mod P) and yél?)), y23 (so '[hat(y2 3) =
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(yé 32) = x23 mod P). These quadratic residues give rise to sets
Az i(x21) = {[2% 221]p[0 < k < LgJ}, (5.11)
Am@mﬂ={p%mﬂpmgkgL9§iﬁam (5.12)
Ar(wrg) = ([P maslplo < b < T2} (5.13)

Quadratic roots of elements of sets 1 (z21), Az22(x2,2) and A, 3(z23) give rise to sets
Bs1(x21), Ba2(x2,2) andBs 3(z2,3),

BM@M):ﬂﬁ<%Pu<t<2o<k<L§”, (5.14)
Bao(wa) = {[2*y]pll <t < 2,0 <k < L—G _ 1J}, and (5.15)
<&3uu>:ﬂf<%pu<t<2o<k<tg——ﬂ (5.16)

Having fixed the seB; ;(x1,1) based on the earlier selection of the residyg, we
want to show that it is possible to find quadratic residues, 2 2 andz, 3 such thates o +
x93 = 2w21 mod P and such that the resulting se8s ; (x1), Bz,1(x2,1), Ba,2(x2,2) and
Bs 3(x2 3) are all disjoint.

In particular we require that, ; is a quadratic residuemod P (there arg(P — 1)/2
quadratic residues) with the property that the8g§ (x2 1) is disjoint fromBy 1 (x1,1). That
is we require

ys 2k # 412l mod P (5.17)
and
y2k # 4 N2! mod P (5.18)

for0 <k < L%J and0 < I < G. By squaring the expressions, these two conditions can be
combined into

JJ27122]C 7é (.1‘1,1)22% mod P (519)

for0 < k < [$] and0 < I < G. For the already chosegﬂl)(: x1,1) at most(G +
1)(1%] + 1) candidate quadratic residues out of tqt&l — 1) /2 quadratic residues violate
(5.19). Observe that the functidty +4)(G +4 — 1)(i — 1)? is strictly increasing for positive
i,2 < i <, and thus the conditio® — 1 > (G + r)(G +r — 1)(r — 1) in the statement of
the Lemma implie®® — 1 > (G+2)(G +1). SinceZ5t > (GHE) > (G 1)(|§ ] +1),
suchz; ; exists.

Fix z2,; such that (5.19) holds. Having chosen sugh, we now look forzs » and
x93 as distinct quadratic residues that satisfy, + x2 3 = 222; mod P. We require that
By 2(2,2) be disjoint from bothB; 1 (z1,1) and Bs 1(z2,1) (by construction, ifBs 2 (22,2)
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1(1‘271)) so that

y§%2)2k3 #+ yﬂ?kl mod P,
y2% £ 0ok mod P,
yp92" # 95125 mod P, (5.20)
925 # yf125 mod P |
y592% £ ys12%  mod P,
ysa2 # y5i2%  mod P,
where0 < k; < G,0< ko < [§]and0 < ks < |92
Alternatively, by squaring both sides in each expressidisig0),
92k 292k mod P,
iz:zQng ZZ (212’?1)22k2 ng P: (5.21)

where0 < k; < G,0 < ky < [§]and0 < k3 < [ 951,

Likewise, we require thaB, 5(z2 3) be disjoint fromB1 1(x1,1), B2,1(x2,1) andBs 2 (x2.2)
(again, if By 3(z2,3) is disjoint from Bs 2 (22 2) and Bz 1 (z2,1), then As 3(x2 3) is disjoint
from Ay 5(22,2) and Ay 1 (x2,1)) So that

(1)

L9322 £ (2U1,11)222k1 mod P,
39322 £ py 2%k mod P, (5.22)
x2,322k4 #* $2’222k3 mod P,

where0 < k1 < G, 0 < ks < |$],0 < k3 < |9 ] and0 < ky < |952]. For
the already chosen values of ; andy; ; at most/N, 2[(1€)+1) (IS +1)+
(G+1) (1%52] +1)] + (%2 + 1) choices for, » anda, 5 violate (5.21) and (5.22).

We thus require that/’; be strictly larger tharV,. Dropping floor operations it is suffi-
cient thati, > (G+U(E+2) | S(GHD? pyrther simplification yields that

7(G +1)(G +2)

Wy > 1

(5.23)

is sufficient to ensure that there exist», x2 3 that make the respective sets disjoint. Note
that this last condition follows from the requirement in #tatement of the Lemma for= 2,
namely thaftV, > 4(G + 1)(G + 2). If r = 2 we are done, else we consider 3. Before
considering general levélet us present the= 3 case.

Fori = 3 we seek distinct cubic residues ;, 3 2, £33, £3 4 andxs 5 with the property
thatzs s + 233 = 2237 mod P andzz 4 + 35 = 2%z3; mod P, and such that the
respective set8s; ;(x3 ;) for 1 < j < 5 generated from the cubic roots of these residues are
disjoint and are disjoint from previously constructed $Bts (z1,1), B2,1(z2,1), B2,2(z2,2)
andB273($273).

We start withzs ; a cubic residue mod P (there ard P —1)/3 cubic residues) with the
property that the seBs 1 (z5,1) is disjoint from each 0B 1(x1,1), Be,1(x2,1), Ba2(z2,2)
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andBs; 3(x2 3). That s, after raising the elements of these sets to the pluwer, we require

x312%%5 £ (115,11))323]€1 mod P,
231235 £ (yé)ll))323k2 mod P,
312% £ (yy))*2% mod P,
2312%% £ (y52)32%%  mod P, (5.24)
131235 £ (y%)323k3 mod P,
x312%%  # @52)3231@4 mod P,
131235 £ (y£?§)323k4 mod P,

where0 < k; < G,0<ky < |§],0< ks < |95, 0<ky < [SF2 ] and0 < k5 < | S ).

For the already chosen valuesagf; throughz, 3, which in turn determin@&) through

y§2§ the condition in (5.24) preventS; = (| $] +1) [(G+ 1) +2 (1] +1)+

4 (%52 +1)] choices forzz ;. Since there aré> cubic residues, after simplifying and

upper bounding the expression fdf;, it follows that it is sufficient that% be strictly

larger than‘w. Note that this condition is implied by the requirement tRat 1 >

(r—1)2(G +r)(G +r— 1) (again, since the functiofi — 1)?(G +i)(G + i — 1) is strictly
increasing for positive).

Fix 23,1 such that (5.24) holds. Having chosen sugh, we now look for distinctzs 2,
x3,3, T34, T35 CUbic residues that satisfys » + 33 = 2231 mod P andxz 4 + 235 =
22731 mod P that make all set®; ;(z;;),1 <4 < 3,1 <j <2 — 1disjoint.

In order that residue:; » generates seB; o(x3.2) With the property thaBs o(x32) IS
disjoint from each OB1,1($171), 3271(.'1/'271), 3272(1/,5212), 3273(1‘2}3) anng71(:v371), we re-
quire that their respective elements raised to the thirdgpdye distinct,

w3223k o (yg,l1))323k1 mod P,

23223k £ (yé,l1))323k2 mod P,

33223k £ (yg,zb%sb mod P,

x37223k6 + (yé’%)323k3 mod P, (5.25)
9:37223’@6 + (y%)323k3 mod P, .
13023k £ (y£?§)323k4 mod P,

13023k £ (y£7§)323k4 mod P,

5037223’“6 # 13,23 mod P,

where0 < k1 < G,0<ky < [§],0<ky < [95H],0 < ka < [“FH],0< ks < | §] and
0<ke <[]

Likewise, we require thaBs 3(x33) be disjoint from all of By 1(z1,1), B21(221),
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Bj2(x2,2), B2,3(w2,3), Bs,i(x3,1) andBs 2(x3.2), S0 that

w3323k (115,11))323]cl mod P,
133237 £ (yé)ll))323k2 mod P,
133237 £ (yé)zl))323k2 mod P,
13323k £ (yélz))323k3 mod P,
25423k (y;z% )32%%5  mod P, (5.26)
332%7 (%2)3231@4 mod P,
w332°%7  # (Z/é?%)gQSk“ mod P,
x37323k7 # 13123 mod P,
5037323’“7 #+ x37223k6 mod P,

where0 < k1 < G, 0< ks < [$],0< ks < [G52],0 < kg < [S52),0 < ks < [ €],
0< ke <[] ando < ky < [“F4].

From (5.25) and (5.26) it follows that at most

Ny= 2(+ ) [G+D)+2($)+1) +4([S2 1+ + (1§)+1)] +
(I_G 1J+1)

(5.27)
candidate pairézs 2, x3,3) do not make the respective; ;(z; ;) sets disjoint. Since
Nj < 2(SR)[(GH1)+2(%82) +4(S8) + (S82)] + (682)°
< 2(99%) - 13(99°) + (%)2 (5.28)
< 3(G+2)(G+3),
it follows that it is sufficient that
W5 > 3(G +2)(G+3), (5.29)

whereWs is the number of ways a residuenod P can be expressed as a sum of two dif-
ferent cubic residues. Similarly, the cubic residugs andz; 5 for which the respective
disjoint B; ;(x; ;) sets exist, provided that

Ws>2 (92 +1) [(G+ D) +2(15]+1) +4 (L9 +1) + ([§]+1) +
2(1%1 + )] + (1952 +1)°.
(5.30)
Some simplification of (5.30) yields

Ws > %(G+2)(G+3), (5.31)

which subsumes the lower bound @ry given in (5.29). Note that (5.31) is implied by the
condition in the statement of the Lemma, nam@ly > 6(G + 2)(G + 3).

We now inductively show the existence of the appropritttepower residues and their
sets, assuming that we have successfully identified powgatues at lower levels for which
all the setsBy, ;(zx ;) for1 < k < 4,1 < j < 2k — 1 are disjoint.

Considerz; ; anith power residue mod P (there are(P — 1) /i such residues) with
the property that the sé®; 1 (z; 1) is disjoint from all of By, j(x, ;) for1 <k <i,1 < j <
2k — 1.
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These constraints on disjointness (an example of whichviengin (5.19) fori =2and
in (5.24) fori = 3) prevent no more tha:tt) (<) choices forx; ; for eachy Y where
1<k<i—1,1<j<2k—1andl <t <k(since|B;1(z;1) = [£]+1< Gi“, and
|Bj(w5,;)| = LG%@J +1 < <tk). By summing over all choices it follows that at most

(SH) X2k — Dk (5%)

(G +1i) (CH=L) S (2k — 1) (5.32)
(@ +i) (F5=) (= 1)

I IA

ith power residues cannot be chosendpy. Since there aré=! ith power residues, we
thus require

P—1>(G+i)(G+i—1)(i—1)> (5.33)

for each level. Note that since the expression on the right hand side ohguiality (5.33)
is an increasing function of positivie each subsequent level poses a lower bound dhat
subsumes all previous ones. It is thus sufficient to Havel > (G +7)(G +r—1)(r—1)2,

as given in the statement of the Lemma.

Considerz; » andz; 3 as distinctith power residues mod P that satisfyz; o + z; 3 =
2x; 1 mod P for a previously chosen; ;. We require that; » andx; 3 give rise to sets
B, 2(z2) and B, 3(z; 3) that are disjoint and that are disjoint from eachRf ;(xy ;) for
1 <k<i1<j<2k-1andfromB,(z;1). By construction, if the set®; (z; 1),
Bi,g(aﬁi)g), andBi)g(l‘i)g,) are disjoint, then so are S%’1($i71), Ai’g(aﬁiQ), andAi)g,(l’i’g).
Constraints based on the previously encount@ﬁé@for 1 <k<i,1<j<2k—-1,
1 <t < k prevent at mos(%)(%) choices for each at; » andz; 3, for eachyg,)C

. . A
(since| B; o(wi2)| = |Bis(wis)| = |97 +1 < SH=L and| By j(a )| = |2 +
1< %). Combined with the restriction based on the disjointnei$ls W, ; (z; 1) and the
requirement thaB, »(z; 2) and B; 3(z; 3) be nonintersecting, it follows that

? K2

Wi > 2 (SH=1) [ (26— DR(SE) + (95| + (S5=2)? (5.34)

is sufficient for the paifz; 2, ; 3) to exist.

Likewise, forz; o; andx; 9,41 to be distinctith power residues mod P that satisfy
T2+ 2141 = 2le1'71 mod P, that give rise to dlS]Olnt SeBigl (mi’Ql) andBi721+1(1’i’21+1)
and that are also disjoint from all previously constructetl; ; (z, ;), we require

Wi > 2(CH=1) [0 @k - DR(GE) + (20— 1) (SF)] + (S4=1)° (5.35)

for the pair(x; 21, i 21+1) to exist. Note that (5.35) subsumes (5.34). Since at eaehilexe
constructi — 1 pairsz; o; andzx; 2;41, and since the right hand side of (5.35) is an increasing
function ofl, it is sufficient to upper bound the expression in (5.35)fer: — 1,

Wi > 2(S52) [0 2 1>k<%> (2 -3) (5) | + (S5
e Wi>2(SE=) [(6— 1)2(G + 1) + 23(G +4)] + (EE=L)? (5.36)
= Wi>(Gﬂ')(Gﬂ'—1)(%(2‘—1)2+22z 2+ 1) .

7 (3

Some simplification yields

Wi > (G + i) (G + i — 1) 22=436i=5 (5.37)
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as a sufficient condition for the disjoint seBs ;(z; ;) to exist that are also disjoint from all
SetsBk_,l(ka) for k < 1.
Further simplifying the last inequality, it is sufficientath

Wi > 2i(G+i)(G+i— 1) (5.38)

to make these sets disjoint. We have thus demonstrated ithahe appropriate lower bounds
on P andW;’s, it is possible to construct disjoint sel ; (z; ;). 0
Note that all residues mod P can be expressed as a sum of a subset of elements of

vV, = U?i:_ll A; j(z; ;) by Lemma 5.3 for each, 1 < i < r. Also note thaiV;| scales as

log,(P), since|A; ; (i ;)| = LG%.L%JJ +1. For F; = i)' Bij(a:,), | F3| also scales as
log, (P), since|B; j(x; ;)| =1 (LG%%JJ + 1).

We now discuss how large prinféneeds to be so that the conditions of Lemma 5.4 hold.
Namely we require

P—1>@r—-1*G+7)(G+r—1) (5.39)
and
W; > 2i(G+i)(G+i—1)for2<i<r. (5.40)
Using Lemma 5.2 it follows that it is sufficient that
P>43G+1)(G+r—1)+r*VP+6r® forr > 2 (5.41)

for (5.40) to hold. Moreover, if (5.41) holds , it implies 89).(Forr = 1, the requirement is
P > 1). The expression (5.41) certainly holdsias— oo, and for the finite values aP we
(loosely) have that

P>2x10% forr=1;
P>4x10® forr=2;
P>2x10* forr=3; (5.42)
P>6x10* forr=4;
P>2x10° forr=5.

For a given large enough integer we now show that there exists a prime number
that satisfies (5.41) (which holds fér large enough) and for whiclem(2, 3, ...,7)|(P — 1)
such thatP lies in an interval that is linear in. Since the elements dff = |J;_, F; U {0}
are to be reserved for the indices of bins of zeros of the pieftke transformed domain
we also require thaP — n > | M|, since the total number of bins of zeros to be used is at
mostn (from the original string) M| (from the prefix), and each bin receives a distinct

index. Sincer; = UiL,' By j(:) and| By j (w: ;)| =i (LG%-L%JJ + 1), wherebyi (%) <
B j(zi ;)| < (), it follows that

K3

|M| < i(zz -G+ +1<(G+r) i(% -1)=r*(G+r)+1 (5.43)
=1 =1
and

|M| > i(% -G —-i)+1>(G—r) i(% -1 =r*(G-r)+1 (5.44)

i=1
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Equation (5.43) yields a sufficient requirement on how lafgeeeds to be
P>n+r%(logy(P)+7)+1. (5.45)

For given integers, andr (n is typically large and- is small), we essentially need to
show that there exists a primfefor whichk = lem/(2,3,...,7)|(P — 1) andP € (c¢in, can)
(herec; andc, are positive numbers that do not dependwpiand such thaP satisfies (5.41)
and (5.45).

For the asymptotic regime as— oo we recall the prime number theorem for arithmetic
progressions [5] which states that

1 n
w(n,k,1) 50 Tog(n) * (5.46)
wherer(n, k, 1) denotes the number of primesn that are congruent tb mod &, and¢(k)
is the Euler function and represents the number of integetghat are relatively prime with
k. Asn — oo, we may letc; : = 2 andc; : = 4, so that

m(4n, k,1)
— ~2 5.47
m(2n, k, 1) ’ (547

and thus there exists a prinfg k|(P —1) in an interval that is linear in. Clearly, as: — oo,
suchP also satisfies (5.41) and (5.45).

For finite (but possibly very large) values ofand certain small we appeal to results
by Ramare and Rumely [4]. The number-theoretic function &, ) is usually defined as

O(x; k, 1) = > Inp. (5.48)

pprime,p=l mod k,p<z

To show that there exists a prinf&in the interval(ci n, can) for whichk = lem(2, 3, ..., r)|(P—
1) itis sufficient to have

O(can; k, 1) > 0(cins k, 1), (5.49)

wherek = lem(2,3, ..., 7).
Theorem 2 in [4] states the(z; k, 1) — 55| < 2.072y/z for all 2 < 10 for & given
in Table | of [4]. For largetr, Theorem 1 in [4], provides the bounds of the type

(1=2)555 <0k ) < (1+e) o (5.50)

for k given in Table | of [4], and: also given in Table | of [4] for various. Hereg(k) is the
Euler function and denotes the number of integerk that are relatively prime witl.
Forcon < 10, using

cin

O(cin; k, 1) < m +2.072\/c1n (5.51)
and
Ccan
O(com; k, 1) > ok~ 2.072+/cam, (5.52)

it is thus sufficient to have

2.0726(k) < v/n(\/e3 — V1) (5.53)
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for 0(can; k,1) > 0(cin; k, 1) to hold.
Forein < 10'° using

(cin; k1) < (1+¢) (;(1;”) (5.54)
and
O(con; ke, 1) > (1 —¢) ;?Z) (5.55)
after some simplification, it is sufficient to have
(I+e)a < (1—¢)ea, (5.56)
for 0(can; k,1) > O(cin; k, 1) to hold.
ExpressingP € (¢1n, con) in terms ofc;n andcean, it is sufficient that
(c1 — D)n > r?(logyn + logy ca + 1) + 1 (5.57)
for (5.45) to hold. Likewise, for > 2, it is sufficient that
cin > 4r(logy n 4 logy ca + 1) (logy n + logy co + 1 — 1) + 72(6 4 \/can) (5.58)

for (5.41) to hold.

Parameters; andc, can be chosen as a functionsofo make (5.53) (or (5.56)), (5.57)
and (5.58) hold. We consider now some suitable choices;fandc, for small values of-

and some finite.

e r = 1: The condition (5.57) reduces te; — 1)n > log,n + log, c2 + 2. For

can < 10'°, the condition (5.53) reduces tgn(,/cz — /c1) > 2.072. We may let

ca = 4 andc; = 2 for 12 < n < 1019/4 to ensure that there exists a prime in the
interval (2n, 4n) which satisfies (5.57).

The condition (5.56) applies tan > 10'° so we may let; = 4 for n > 10 /4.
Since alle entries fork = 1 in Table | of [4] are< 1/9, we may letc; = 5 to make
the condition (5.57) hold .

Since|M| < (|logy P| 4+ 2) < (logyn + logy co + 2) (from (5.43)), and M|
llogy P| > (logyn + logy c1 — 2) 4+ 1 (from (5.44)) it follows that(log, n)
|M| < (logyn +4) for 12 < n < 10'°/4 and(logy n + 1) < |M| < (logyn + 5)
forn > 1019/4.

r = 2: The conditions (5.57) and (5.58) reducd¢p — 1)n > 4(log, n + log, co +

2) + 1andcin > 4 - 8(logy n + logy ¢z + 2)(logy n 4 log, c2 4 1) +4(6 4 /czn).
Forcan < 109, the condition (5.53) is again(y/c2 —/c1) > 2.072. We may let

c1 = 2'% andcy, = 2!! to satisfy the required conditions (5.53), (5.57) and (5.58
for 10 <n < 10'0/2'" =1/2 x 510,

Forn > 1/2 x 519, we may lete; = 2! andc, = 2!2 to satisfy the required
conditions (5.56) (since alt entries in Table | of [4] arex 1/3), (5.57) and
(5.58).

Thus we havel(logon + 7) + 1 < |M] < 4(logy n + 14) + 1, for n > 10.

r = 3: The conditions (5.57) and (5.58) reducdt® — 1)n > 9(log, n + log, c2 +

3) + landcin > 4-27(logy n + log, ¢2 + 3)(logy n + logy ¢+ 2) +9(6 4 /can).

For con < 10'Y, the condition (5.53) is now/n(\/cz — \/c1) > 2.072 x 2. We
may letc; = 2'2 ande, = 2'3 to satisfy the required conditions (5.53), (5.57) and
(5.58) for10 < n < 100/213 = 1/8 x 510,

IN IV
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Forn > 1/8 x 5% it suffices to lete; = 2! andc, = 2! to ensure (5.53), (5.57)
and (5.58) are satisfied.
Thus we havé(log, +8) + 1 < |M| < 9(logy n + 17) + 1, for n > 10.

e = 4: The conditions (5.57) and (5.58) reducéte—1)n > 16(log, n+log, ca +
4)+1andcin > 4-64(log, n+1log, c2 +4)(logy n+1log, ca +3) +16(6+ /can).
Forcon < 10%°, the condition (5.53) is/n(y/cz — /c1) > 2.072 x 4. We may let
c1 = 213 andc, = 2™ to satisfy the required conditions (5.53), (5.57) and (.58
for 16 < n < 1010/214 = 1/16 x 51°.

Forn > 1/16 x 59 it suffices to letc; = 2!4 andc, = 215 to ensure (5.53), (5.57)
and (5.58) are satisfied.
Thus we havd6(log, +8) + 1 < |M| < 16(logy n + 19) + 1, for n > 16.

e r = 5: The conditions (5.57) and (5.58) reducd&p— 1)n > 25(log, n+logs co +
5)+1andcin > 4-125(log, n+logy c2 +5)(log, n+logy ¢ +4) +25(6 4 /can).
Forcan < 10'°, the condition (5.53) is/n(y/c2 — /c1) > 2.072 x 16. We may let
c1 = 2" andcy = 2'° to satisfy the required conditions (5.53), (5.57) and (5.58
for 19 <n <10'0/2' =1/32 x 5'°.

Forn > 1/32 x 5 it suffices to letc; = 2'° andc, = 2!° to ensure (5.53), (5.57)
and (5.58) are satisfied.
Thus we have5(log, +8) + 1 < |M| < 25(logy n + 21) + 1, forn > 19.

5.2. Prefixing Algorithm. Letr denote the target synchronization error correction ca-
pability. The goal of this section it to provide an expliciefixing scheme which, based on
the strings of lengthn, produces a fixed length prefyx, of lengthv, wherepy is a function
of s, such that the strings = [ps s] after the transformatio®,,,, given in (2.1) satisfies first
r congruency constraints of the type previously describe@ii?2), which were shown to be
sufficient to provide immunity te repetition errors. Using judiciously chosen prefix, we will
show that this will be possible far = |ps| = O(logn).

We select aps that preimage with the property that in the concatendtiars] the last
bit of ps is the complement of the first bit ef This property ensures that no bin of zeros
in the transformed domain spans the boundary separatirgutigtrings corresponding to the
transformed prefix and the transformed original string.

For a given repetition error correction capabilitgnd the original string lengthlet P be
a prime number with the property thiat= lem(2, 3, ..., 7)| (P — 1) and such thaP lies in the
interval that scales linearly with, namely thatP € (c¢in, con) for 1 < ¢; < ¢g, Wherecey, co
possibly depend on but not onn and are chosen such that (5.53) (or (5.56), for appropriate
k andn), (5.57) and (5.58) hold. The existence of suelwas discussed in the previous
section. LetRp be the set of all residuesnod P. Recall thatM = U!_, F; U {0} denotes
the set of indices of bins of zeros reserved for the prefix,re/lie = U3' B; ; (x; ;) where
B, j(z;,;) are given in (5.9), and are constructed such that all Betgz, ;) for 1 <i¢ <,

1 < j < 2i— 1 are nonintersecting. The existence of disjoint $&ts(x; ;) for suchP was
proved in Lemma 5.4. LeL = |M|. Let N denote the total number of bins of zerossof
wheres = sT,,. By construction)V < n. Let

ay = zé{LN L bif; mod P,
ay = 1 bifZ mod P

? izt bif: (5.59)
ay = ZZL;LAJ]A bif{ mod P

whereb; is the size of théth bin of zeros irts (obtained by transforminty using (2.1)), and
fiin (5.59) are chosen in the increasing order from the®et, M. SinceN < n, and since
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by the condition (5.57)p < P — L, the setRp \ M is large enough to accommodate such
fi's.

We may think ofa’; througha’,. as the contribution of the original string to the overall
congruency value dfs, since theth bin of zeros forl. + 1 < i < L + N is precisely thgith
bin of zeros irs for j = ¢ — L, since no run spans both, ands by the choice ops.

Since not all strings in the original code may have the sameu of bins of zeros in the
transformed domain, we may view the unused elements of the;s& M as corresponding
to "virtual” bins of size zero. Since these bins are not alteduring the transmission that
causes or less repetitions, the locations of repetitions can bgugly determined as shown
in the proof of Lemmas 4.1 and 4.3.

We now show that it is always possible to achieve

a; = ZZL:JrlN bzfz mOdP,
as = S Nbif2modP, (5.:60)
ar = S Nbifr modPp,

for arbitrary but fixed valueg; througha,. irrespective of the values'; throughda’,,
whereb; is either0 or1 for 1 < ¢ < L — 1, and wheref;, = 0.

Before describing the encoding method that achieves (3v8Gtate the following con-
venient result.

LEMMA 5.5. SupposeP is a prime number such that(P — 1). Suppose the equation
#' = a mod P has a solution] < a < P — 1. Then the equation’ = ¢ mod P hasi
distinct solutions [1] and we may call them throughz;. The sumd_;_, 2} =0 mod P
fori<j<i—1.

Proof. Let us consider the equatian = a mod P. Using Vieta’s formulas and New-
ton’s identities over7 F'(P) it follows that~, _, 27 =0 mod Pfor1 <j <i—1. 0

The encoding procedure is recursive and proceeds as follbets be theith level of
recursion forl = 1tol = r. Thelth level ensures that théh congruency constraint in (5.60)
is satisfied without altering previous— 1 levels. At each level, starting with/ = 1 and
while! < r:

1. Selectasubsé} of I}, = U?l:_llBM(a:l,j) suchthab, ., k' = a—d =Yl diy
mod P, and such that if an elemept ' = z mod P of By ;(x,;) is selected,
then so are all other— 1 ith roots ofz (which are also elements @ ;(z; ;) by
construction). Fot = 1, ZkeTl k=a; —a’y mod P.

2. Letd;; = EkeTl k7 mod Pforl+1<j<r.

3. Foreach, 1 < < |F, for which f; € T; we setb; = 1, and for each, for which
fi ¢ T, we seth; = 0.

4. Proceed to levél+ 1.

After the levelr is completed, leb, = >""_, (|F;| — |T;]). The purpose of this bin with
weighting zero is to ensure that the overall strigchas the same length irrespective of the
structure of the starting strirg

The existence df;, T; C F; in Step 1) follows from Lemmas in Section 2. In particular,
recall that each residuenod P can be expressed as a sum of a subgef Ufl:‘llAm- (x1,5)s
by Lemma 5.3. We then Ié; consist of allith power roots of elements ib;. By construc-
tion, 7; is the union of appropriate subsets of sBis (x;, ;), whoselth powers are precisely
the elements of;, and these subsets are disjoint by construction.

Recall that the setB; ;(x;, ;) are constructed such that if &h power root of a residug
belongs taB; ;(x;, ;) then alll power roots of; also belong td3; ;(z; ;). Then, by Lemma5.5
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the contribution to each congruency sum for leviethirough! — 1 of the elements of; is
zero. Hence, once the target congruency value is reachea garticular level, it will not
be altered by establishing congruencies at subsequerts.lefe a result, since each string
ts satisfies congruency constraints given in (4.12), the tiasuset of strings is immune to
repetitions while incurring asymptotically negligibledtendancy.

6. Summary and Concluding Remarks. In this paper we discussed the problem of
constructing repetition error correcting codes (subselsmary strings) and the problem of
guaranteeing the immunity to repetition errors of a coltecof binary strings. We presented
explicit number-theoretic constructions and providedltson the cardinalities of these con-
structions. We provided a generalization of a generatimgtfan calculation of Sloane [7]
and a construction of multiple repetition error correctargles that is asymptotically a con-
stant factor better than the previously best known conStnuclue to Levenshtein [9]. The
latter construction was then used to develop a techniquprédixing a collection of binary
strings for guaranteed immunity to repetition errors. Thespnted prefixing scheme relies
on introducing a carefully chosen prefix for each originaldsy string such that the resulting
strings (each consisting od the prefix and one of the origitradgs) belong to the set previ-
ously shown to be immune to repetition errors. The prefix flerig) constructed to be only
logarithmic in the size of the original collection.
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