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Abstract. In this paper we study the problem of finding maximally sized subsets of binary strings (codes) of
equal length that are immune to a given numberr of repetitions, in the sense that no two strings in the code can
give rise to the same string afterr repetitions. We propose explicit number theoretic constructions of such subsets.
In the case ofr = 1 repetition, the proposed construction is asymptotically optimal. For r ≥ 1, the proposed
construction is within a constant factor of the best known upper bound on the cardinality of a set of strings immune
to r repetitions. Inspired by these constructions, we then develop a prefixing method for correcting any prescribed
numberr of repetition errors in an arbitrary binary linear block code. The proposed method constructs for each
string in the given code a carefully chosen prefix such that the the resulting strings are all of the same length and
such that despite up to anyr repetitions in the concatenation of the prefix and the codeword, the original codeword
can be recovered. In this construction, the prefix length is made to scale logarithmically with the length of strings in
the original code. As a result, the guaranteed immunity to repetition errors is achieved while the added redundancy
is asymptotically negligible.
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1. Introduction. Substitution error correcting codes are traditionally used in commu-
nication systems for encoding of a binary input messagex into a coded sequencec = C(x).
The modulated version of this sequence is usually corruptedby additive noise, and is seen at
the receiver as a waveforms(t),

s(t) =
∑

i

cih(t − iT ) + n(t), (1.1)

whereci is theith bit of c, h(t) is the modulating pulse, andn(t) is the noise introduced in
the channel. The received waveforms(t) is sampled at certain sampling points determined
by the timing recovery process, and the resulting sampled sequence is passed to the decoder
which then produces the estimate ofc (or x). In the analysis of substitution error correcting
codes and their decoding algorithms it is traditionally assumed that the decoder receives a
sequence which is a properly sampled version of the waveforms(t).

The timing recovery process involves a substantial overhead in the design of communi-
cation chips, both in terms of occupying area on the chip and in terms of power consumption.
To avoid some of this cost, particularly in high speed systems, an alternative solution is to
operate under a poorer timing recovery, while oversamplingthe received waveform in order
to ensure that no information is lost. Thus the waveforms(t) instead of being sampled at
instanceskTs + τk might be sampled at instances roughlyT apart, forT < Ts. In the ide-
alized infinite signal-to-noise ratio limit of a pulse amplitude modulation (PAM) system, this
appears as if some symbols are sampled more than once. As a result, instead of creatingn
samples froms(t), n + r samples are produced, wherer ≥ 0. As a consequence, when
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r > 0, the decoder is presented with a sampled sequence whose length exceeds the length of
a codeword.

Motivated by this scenario, in this paper we study the problem of finding maximally
sized subsets of binary strings (codes) that are immune to a given numberr of repetitions, in
the sense that no two strings in the code can give rise to the same string afterr repetitions.
In particular, we develop explicit number-theoretic constructions of sets of binary strings
immune to multiple repetitions and provide results on theircardinalities. We then use these
constructions to develop a prefixing method which transforms a given set of binary strings
into another set that itself satisfies number-theoretic constraints of the proposed constructions.
The redundancy introduced by this carefully chosen prefix isshown to to be logarithmic in
the length of the strings in the given set.

The remainder of the paper is organized as follows. In Section 2 we first introduce an
auxiliary transformation that converts our problem into that of creating subsets of binary
strings immune to the insertions of0’s. In Section 3 we focus on subsets of binary strings
immune to single repetitions. We present explicit constructions of such subsets and use num-
ber theoretic techniques to give explicit formulas for their cardinalities. Our constructions
here are asymptotically optimal. In Section 4 we discuss subsets of binary strings immune to
multiple repetitions. Our constructions here are asymptotically within a constant factor of the
best known upper bounds and asymptotically better, by a constant factor than the best previ-
ously known such constructions, due to Levenshtein [9]. Inspired by these number-theoretic
constructions, in Section 5 we develop a general prefixing-based method which injectively
converts a given set of binary strings of the same length intoanother set such that the result-
ing set is immune to a prescribed number of repetition errors. The method produces for each
string in the original set a carefully chosen prefix such thatthe result of the concatenation of
the prefix and this string satisfies number-theoretic congruential constraints previously devel-
oped in Section 4 (where these constraints were shown to be sufficient to provide immunity to
repetition errors). The prefix length in the proposed methodis shown to scale logarithmically
with the length of the strings in the original given set. Thus, the proposed construction guar-
antees immunity to a prescribed number of repetition errors, while the incurred redundancy
becomes asymptotically negligible.

2. Auxiliary Transformation. To construct a binary,r repetition correcting codeC of
lengthn we first construct an auxiliary codẽC of lengthm = n−1 which is anr ‘0’-insertion
correcting code. These two codes are related through the following transformation.

Supposec ∈ C. We letc̃ = c × Tn mod2, whereTn is n × n − 1 matrix, satisfying

Tn(i, j) =

{
1, if i = j, j + 1
0, else.

(2.1)

Now, the repetition inc in positionp corresponds to the insertion of ‘0’ in positionp− 1
in c̃, and weight(̃c) = number of runs inc −1. We letC̃ be the collection of strings of length
n−1 obtained by applyingTn to all stringsC. Note thatc and its complement both map into
the same string iñC.

It is thus sufficient to construct a code of lengthn − 1 capable of overcomingr ‘0’-
insertions and apply inverseTn transformation to obtainr repetitions correcting code of
lengthn.

Since the strings starting with runs of different type cannot be confused under repetition
errors, both pre-images underTn may be included in such a code immune to repetition errors.

3. Single Repetition Error Correcting Set. Following the analysis of Sloane [7] and
Levenshtein [8] of the related so-called Varshamov-Tenengolts codes [6] known to be capable
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of overcoming one deletion or one insertion, letAm
w be the set of all binary strings of length

m and withw ones, for0 ≤ w ≤ m. PartitionAm
w based on the value of the first moment of

each string. More specifically, letSm,t
w,k be the subset ofAm

w such that

Sm,t
w,k = {(s1, s2, ..., sm)|

m∑

i=1

i × si ≡ k modt}. (3.1)

In the subsequent analysis we say that an element ofSm,t
w,k has the first moment congruent

to k modt.
LEMMA 3.1. Each subsetSm,w+1

w,k is a single ‘0’-insertion correcting code.
Proof. Suppose the strings′ is received. We want to uniquely determine the codeword

s = (s1, s2, ..., sm) ∈ Sm,w+1
w,k such thats′ is the result of inserting at most one zero ins.

If the length ofs′ is m, conclude that no insertion occurred, and thats = s′.
If the length ofs′ is m + 1, a zero has been inserted. Fors′ = (s

′

1, s
′

2, ..., s
′

m, s
′

m+1),
compute

∑m+1
i=1 i× s

′

i mod(w + 1). Due to the insertion,
∑m+1

i=1 i× s
′

i =
∑m

i=1 i× si + R1

whereR1 denotes the number of 1’s to the right of the insertion. Note that R1 is always
between0 andw.

Let k′ be equal to
∑m+1

i=1 i × s
′

1 mod(w + 1). If k′ = k the insertion occurred after
the rightmost one, so we declares to be them leftmost bits ins′. If k′ > k, R1 is equal to
k′ − k and we declares to be the string obtained by deleting the zero immediately preceding
the rightmostk′ − k ones. Finally, ifk′ < k, R1 is w + 1 − k + k′ and we declares to be
the string obtained by deleting the zero immediately preceding the rightmostw + 1 − k + k′

ones.

3.1. Cardinality Results. Since|Am
w | =

(
m
w

)
there existsk such that

|Sm,w+1
w,k | ≥ 1

w + 1

(
m
w

)
. (3.2)

Since two codewords of different weights cannot result in the same string when at most
one zero is inserted we may letC̃ be the union of largest setsSm,w+1

w,k∗

w
over different weights

w, i.e.

C̃ =

m⋃

w=1

Sm,w+1
w,k∗

w
, (3.3)

whereSm,w+1
w,k∗

w
is the set of largest cardinality among all setsSm,w+1

w,k for 0 ≤ k ≤ w. Thus,

the cardinality ofC̃ is at least

m∑

w=0

(
m
w

)
1

w + 1
=

1

m + 1

(
2m+1 − 1

)
. (3.4)

The upper boundU1(m) on any set of strings each of lengthm capable of overcoming
one insertion of a zero is derived in [9] to be

U1(m) =
2m+1

m
. (3.5)

Hence the proposed construction is asymptotically optimalin the sense that the ratio of
its cardinality to the largest possible cardinality approaches1 asn → ∞.
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By applying inverseTn transformation forn = m + 1 to C̃ and noting that both pre-
images underTn can simultaneously belong to a repetition correcting set, we obtain a code
of lengthn and of size at least1n

(
2n+1 − 2

)
, capable of correcting one repetition.

The cardinalities of the setsSm,w+1
w,k may be computed explicitly as we now show.

Recall that the M̈obius functionµ(x) of a positive integerx = pa1
1 pa2

2 . . . pak

k for distinct
primesp1, p2, . . . , pk is defined as [1],

µ(x) =





1 for x = 1
(−1)k if a1 = · · · = ak = 1
0 otherwise.

(3.6)

and that the Euler functionφ(x) denotes the number of integersy, 1 ≤ y ≤ x − 1 that are
relatively prime withx. By conventionφ(1) = 1.

LEMMA 3.2. Letg = gcd(m + 1, w + 1). The cardinality ofSm,w+1
w,k is

|Sm,w+1
w,k | =

1

m + 1

∑

d|g

(
m+1

d
w+1

d

)
(−1)(w+1)(1+ 1

d
)φ(d)

µ
(

d
gcd(d,k)

)

φ
(

d
gcd(d,k)

) (3.7)

wheregcd(d, k) is the greatest common divisor ofd andk, interpreted asd if k = 0.
Proof. Motivated by the analysis of Sloane [7] of the Varshamov-Tenengolts codes, let us

introduce the functionfb,n(U, V ) in which the coefficient ofUsV k, call it gb
k,s(n) represents

the number of strings of lengthn, weight s and the first moment equal tok mod b (i.e.
gb

k,s(n) = |Sn,b
s,k |,

fb,n(U, V ) =

b−1∑

k=0

n∑

s=0

gb
k,s(n)UsV k. (3.8)

Observe thatfb,n(U, V ) can be written as a generating function

fb,n(U, V ) =

n∏

t=1

(1 + UV t) mod (V b − 1) . (3.9)

Let a = ei 2π
b so that forV = aj

fb,n(U, ei 2πj

b ) =

b−1∑

k=0

n∑

s=0

gb
k,s(n)Usei 2πjk

b . (3.10)

By inverting this expression we can write
∑n

s=0 gb
k,s(n)Us

= 1
b

∑b−1
j=0 fb,n(U, ei 2πj

b )e−i 2πjk

b

= 1
b

∑b−1
j=0

∏n
t=1(1 + Uei 2πjt

b )e−i 2πjk

b .

(3.11)

Our next goal is to evaluate the coefficientU b on the right hand side in (3.11). To do so
we first evaluate the following expression

b∏

t=1

(1 + Uei 2πjt

b ) . (3.12)
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Let dj = b/gcd(b, j) andsj = j/gcd(b, j), and write

∏b
t=1(1 + Uei 2πjt

b )

=

(∏dj

t=1(1 + Ue
i
2πsjt

dj )

)gcd(b,j)

=

(
1 + U

∑dj

t1=1 e
i
2πsjt1

dj + U2
∑dj

t1=1

∑dj

t2=t1+1 e
i
2πsj(t1+t2)

dj + · · ·+

Udj e
i
2πsj(1+2+···+dj)

dj

)gcd(b,j)

.

(3.13)

Sincegcd(dj , sj) = 1, the set

V = {ei
2πsj1

dj , e
i
2πsj2

dj . . . e
i
2πsjdj

dj } (3.14)

represents all distinct solutions of the equation

xdj − 1 = 0 . (3.15)

For a polynomial equationP (x) of degreed, the coefficient multiplyingxk is a scaled
symmetric function ofd − k roots. Hence, by (3.15), symmetric functions involving at most
dj − 1 elements ofV evaluate to zero. The symmetric function involving all elements ofV ,
which is their product, evaluates to(−1)dj+1.

Therefore,

b∏

t=1

(1 + Uei 2πjt

b ) =
(
1 + (−1)1+dj Udj

)gcd(b,j)
. (3.16)

Returning to the inner product in (3.11), let us first supposethatb|n. Then

∏n
t=1

(
1 + Uei 2πjt

b

)

=
(∏b

t=1

(
1 + Uei 2πjt

b

))n/b

=
(
1 + (−1)1+dj Udj

)gcd(b,j)n/b

=
∑ n

dj

l=0

( n
dj

l

)
(−1)l(1+dj)U ldj .

(3.17)

Thus (3.11) becomes
∑n

s=0 gb
k,s(n)Us

= 1
b

∑b−1
j=0

∑ n
dj

l=0

( n
dj

l

)
(−1)l(1+dj)Udj le−i 2πjk

b .
(3.18)

We now regroup the terms whosej’s yield the samedj ’s
∑n

s=0 gb
k,s(n)Us

= 1
b

∑
d|b

∑n
d

l=0

(
n
d
l

)
(−1)l(1+d)Udl ×∑j:gcd(j,b)=b/d,0≤j≤b−1 e−i 2πjk

b .
(3.19)

The rightmost sum can also be written as
∑

j:gcd(j,b)=b/d,0≤j≤b−1

e−i 2πjk

b =
∑

s:0≤s≤d−1,gcd(s,d)=1

e−i 2πsk
d . (3.20)
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This last expression is known as the Ramanujan sum [1] and simplifies to

∑

s:0≤s≤d−1,gcd(s,d)=1

e−i 2πsk
d = φ(d)

µ
(

d
gcd(d,k)

)

φ
(

d
gcd(d,k)

) . (3.21)

Now the coefficient ofU b in (3.11) is

1

b

∑

d|b

(
n
d
b
d

)
(−1)

b
d
(1+d)φ(d)

µ
(

d
gcd(d,k)

)

φ
(

d
gcd(d,k)

) , (3.22)

which is precisely the number of strings of lengthn, weightb, and the first moment congruent
to k mod b, i.e. |Sn,b

b,k |.
Consider the set of strings described bySm,w+1

w,k for m = n − 1 andw = b − 1, i.e.

Sm,w+1
w,k = Sn−1,b

b−1,k . If we append ’1’ to each such string we would obtain a fraction of b/n

of all strings that belong to the setSn,b
b,k . To see why this is true, first note that the cardinality

of the setSn−1,b
b−1,k and of the subsetTn

b,k of Sn,b
b,k which contains all strings ending in ’1’ is

the same (since when a ’1’ is appended to each element of the set Sn−1,b
b−1,k , the resulting set

contains strings of lengthn, weightb and first moment congruent to(k + n) mod b, which
is also congruent tok mod b since by assumptionb|n). It is thus sufficient to show that
|Tn

b,k| = b
n |S

n,b
b,k |. Let Ak = |Sn,b

b,k |. Write Ak =
∑

u,u|b Ak(n, b, n
u ), whereAk(n, b, v)

denotes the number of strings of lengthn, weightb, first moment congruent tok mod b, and
with periodv. Consider a string accounted for inAk(n, b, n

u ). Its single cyclic shift has the
first moment congruent to(k+b) mod b and is thus also accounted for inAk(n, b, n

u ). Since
n
u is the period, and sincebu is the weight per period, fractionb/u

n/u of Ak(n, b, n
u ) represents

distinct strings that end in ’1’, have lengthn, weightb, first moment congruent tok mod b,
and periodn

u . Thus,|Tn
b,k| =

∑
u,u|b

b/u
n/uAk(n, b, n

u ) = b
nAk, as required.

Therefore, the cardinality ofSm,w+1
w,k is b/n times the expression in (3.22),

|Sm,w+1
w,k | =

1

m + 1

∑

d|w+1

(
m+1

d
w+1

d

)
(−1)

w+1
d

(1+d)φ(d)
µ
(

d
gcd(d,k)

)

φ
(

d
gcd(d,k)

) . (3.23)

Notice that the last expression is the same as the one proposed in Lemma 3.2 with
gcd(m + 1, w + 1) = w + 1.

Now suppose thatb is not a factor ofn. We work with fg,n(U, V ) as in (3.9) where
g = gcd(n, b) and get

n∑

s=0

gg
k,s(n)Us =

1

g

∑

d|g

n
d∑

l=0

(
n
d
l

)
(−1)l(1+d)Udl ×

∑

j:gcd(j,g)=g/d,0≤j≤g−1

e−i 2πjk

g .

(3.24)
Thus the coefficient ofU b here is

1

g

∑

d|g

(
n
d
b
d

)
(−1)

b
d
(1+d)φ(d)

µ
(

d
gcd(d,k)

)

φ
(

d
gcd(d,k)

) . (3.25)
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This is the number of strings of lengthn, weight b, and the first moment congruent
to k mod g, namely it is the cardinality of the setSn,g

b,k . Let Bk = |Sn,g
b,k |. Write Bk =∑

u,u|g Bk(n, b, n
u ) whereBk(n, b, v) denotes the number of strings of lengthn, weight b,

first moment congruent tok mod g and with periodv. By cyclically shifting a string of
lengthn, weightb, first moment congruent tok mod g and with periodn/u for n/u steps,
and observing that each cyclic shift also has the first momentcongruent tok mod g, it
follows that a fractionb/u

n/u of Bk(n, b, n
u ) represents the number of strings that end in ’1’,

have lengthn, weightb, first moment congruent tok mod g, and periodn
u . Thus a fraction

b/n of Bk denotes the number of strings that end in ’1’, are of lengthn, weightb, and have
the first moment congruent tok mod g. Since each string of lengthn− 1, weightb− 1, and
the first moment congruent tok mod g produces a unique string that ends in ’1’, is of length
n, weight b, and has the first moment congruent tok mod g by appending ’1’, it follows
that b

nBk is also the number of strings of lengthn − 1, weightb − 1, and the first moment
congruent tok mod g. Thus the number of strings given bySn−1,g

b−1,k is also b
nBk.

Consider again cyclic shifts of a string of lengthn, weightb, the first moment congruent
to k mod g and with periodn/u. A fractionb/u of these shifts produce strings with a ’1’ in
the last position. Let us consider one such strings0. Its firstn−1 bits correspond to a string of
lengthn−1, weightb−1, and the first moment congruent tok mod g. Thisn−1-bit string
has the first moment congruent tok0 mod b for somek0. Cyclically shift s0 for t1 places
until the first time ’1’ again appears in thenth position, and call the resulting strings1 (Since
b > g andu|g, b/u > 1, and thuss1 6= s0). The firstn−1 bits ofs1 correspond to a string of
lengthn − 1, weightb − 1, and the first moment congruent tok1 ≡ k0 + t1(b − 1) + t1 − n
mod g ≡ k0 + t1b − n mod b ≡ k0 − gy mod b, wherey = n

g . Cyclically shifts1 for for
t2 places until the first time ’1’ again appears in thenth position, and call the resulting string
s2. The firstn − 1 bits of s2 correspond to a string of lengthn − 1, weightb − 1, and the
first moment congruent tok2 ≡ k0 − gy + t2(b − 1) + t2 − n mod g ≡ k0 − gy + t2b − n
mod b ≡ k0 − 2gy mod b. Each subsequent cyclic shift with ’1’ in the last place gives a
stringsi whose firstn − 1 bits have the first moment congruent toki ≡ k0 − igy mod b.
The last such string,sb/u−1, before the strings0 is encountered again has the leftn − 1

bit substring whose first moment is congruent tokb/u−1 ≡ k0 − ( b
u − 1)gy mod b. Note

that the sequence{k0, k1, k2, . . . , kb/u−1} is periodic with periodz (here gcd(y, g) = 1 by
construction), wherez = b

g . Sincez| b
u , each ofk0, k1 throughk b

g
−1 appear equal number of

times in this sequence. Consequently, the number of stringsin the setSn−1,b
b−1,ki

is g
b of the size

of the setSn−1,g
b−1,k for everyki ≡ ig + k mod b.

Therefore|Sm,w+1
w,k | is

|Sm,w+1
w,k | = b

n
g
b |S

n,g
b,k |

= 1
m+1

∑
d|g

(
m+1

d
w+1

d

)
(−1)(w+1+ 1

d
(1+w))φ(d)

µ( d
gcd(d,k) )

φ( d
gcd(d,k) )

(3.26)

which completes the proof of the lemma.

3.2. Connection with necklaces.It is interesting to briefly visit the relationship be-
tween optimal single insertion of a zero correcting codes and combinatorial objects known as
necklaces [10].

A necklace consisting ofn beads can be viewed as an equivalence class of strings of
lengthn under cyclic shift (rotation).

Let us consider two-colored necklaces of lengthn with b black beads andn − b white
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beads. It is known that the total number of distinct necklaces is [10]

T (n) =
1

n

∑

d|gcd(n,b)

(
n
d
b
d

)
φ(d) . (3.27)

In general necklaces may exhibit periodicity. However, consider, for example for the
casegcd(n, b) = 1. Then there are

1

n

(
n
b

)
(3.28)

distinct necklaces, all of which are aperiodic. Now assume that b + 1|n and note that this
impliesgcd(n + 1, b + 1) = 1. Suppose we label each necklace beads in the increasing order
1 throughn and we rotate each necklace by one position at the time relative to this labeling.
At each step we sum modb + 1 the positions ofb black beads. For each necklace, each of
residuesk, 0 ≤ k ≤ b is encounteredn/(b+1) times. The total number of times each residue
k is encountered is thus

1

b + 1

(
n
b

)
=

1

n + 1

(
n + 1
b + 1

)
, (3.29)

which as expected equals the number of binary strings of weight b, lengthn, and the first
moment congruent tok modb + 1 (same for allk).

4. Multiple Repetition Error Correcting Set. We now present an explicit construction
of a multiple repetition error correcting set and discuss its cardinality.

Let a = (a1, a2, ..., ar) for r ≥ 1, and consider the set̂S(m,w,a, p) for w ≥ 1 defined
as

Ŝ(m,w,a, p) = { s = (s1, s2, ...sm) ∈ {0, 1}m :
v0 = 0, vw+1 = m + 1, and
vi is the position of theith 1 in s for 1 ≤ i ≤ w,
bi = vi − vi−1 − 1, for 1 ≤ i ≤ w + 1,∑m

i=1 si = w,∑w+1
i=1 ibi ≡ a1 modp,∑w+1
i=1 i2bi ≡ a2 modp,

...∑w+1
i=1 irbi ≡ ar modp }.

(4.1)

The setŜ(m, 0,0, p) contains just the all-zeros string. Leta0 = 0 and let
Ŝ (m, (a1, p1), (a2, p2), ..., (am, pm)) be defined as

Ŝ (m, (a1, p1), (a2, p2), ..., (am, pm)) =

m⋃

l=0

Ŝ(m, l,al, pl), (4.2)

whereb1, . . . , bw+1 denote the sizes of thebinsof 0’s between successive1’s.
LEMMA 4.1. If eachpl is prime andpl > max(r, l), the setŜ (m, (a1, p1), (a2, p2), ...,

(am, pm)), provided it is non empty, is r-insertions of zeros correcting.
Proof. It suffices to show that each non empty setŜ(m, l,al, pl) is r-insertions of zeros

correcting. This is obvious forl = 0. For l > 0 suppose a stringx ∈ Ŝ(m, l,al, pl) is
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transmitted. After experiencingr insertions of zeros, it is received as a stringx′. We now
show thatx is always uniquely determined fromx′.

Let i1 ≤ i2 ≤ ... ≤ ir be the (unknown) indices of the bins of zeros that have experienced
insertions. For eachj, 1 ≤ j ≤ r, computea′

j ≡ ∑w+1
i=1 ijb′i modpl, whereb′i is the size of

theith bin of zeros ofx′,

a′
j ≡∑w+1

i=1 ijb′i modpl

≡ aj + (ij1 + ij2 + ... + ijr) modpl,
(4.3)

whereaj is thejth entry in the residue vectoral (to lighten the notation the subscriptl in aj

is omitted).
By collecting the resulting expressions over allj, and settinga

′′

j ≡ a′
j − aj modpl, we

arrive at

Er =





a
′′

1 ≡ i1 + i2 + ... + ir modpl

a
′′

2 ≡ i21 + i22 + ... + i2r modpl

. . . . . . . . .

a
′′

t ≡ it1 + it2 + ... + irr modpl.

(4.4)

The terms on the right hand side of the congruency constraints are known as power sums inr
variables. LetSk denote thekth power sum modpl of {i1, i2, ..., ir},

Sk ≡ ik1 + ik2 + ... + ikr modpl, (4.5)

and letΛk denote thekth elementary symmetric function of{i1, i2, ..., ir} modpl,

Λk ≡
∑

v1<v2<...<vk

iv1
iv2

· · · ivk
modpl. (4.6)

Using Newton’s identities overGF (pl) which relate power sums to symmetric functions
of the same variable set, and are of the type

Sk − Λ1Sk−1 + Λ2Sk−2 − ... + (−1)k−1Λk−1S1 + (−1)kkΛk = 0, (4.7)

for k ≤ r, we can obtain an equivalent system ofr equations:

Ẽt =





d1 ≡∑r
j=1 ij modpl

d2 ≡∑j<k ijik modpl

. . . . . . . . .
dt ≡

∏r
j=1 ij modpl,

(4.8)

where each residuedk is computed recursively from{d1, ..., dk−1} and{a′′

1 , a
′′

2 , ...a
′′

k}. Specif-
ically, since the largest coefficient in (4.7) isr, andr < pl by construction, the last term in
(4.7) never vanishes due to the multiplication by the coefficientk.

Consider now the following equation:

r∏

j=1

(x − ij) ≡ 0 modpl, (4.9)

and expand it into the standard form

xr + cr−1x
r−1 + ... + c1x + c0 ≡ 0 modpl. (4.10)
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By collecting the same terms in (4.9) and (4.10), it follows that dk ≡ (−1)kcr−k modpl.
Furthermore, by the Lagrange’s Theorem, the equation (4.10) has at mostr solutions. Since
ir ≤ pl all incongruent solutions are distinguishable, and thus the solution set of (4.10) is
precisely the set{i1, i2, ..., ir}.

Therefore, since the systemEr of r equations uniquely determines the set{i1, i2, ..., ir},
the locations of the inserted zeros (up to the position within the bin they were inserted in) are
uniquely determined, and thusx is always uniquely recovered fromx′.

Hence,Ŝ (m, (a1, p1), (a2, p2), ..., (am, pm)) is r-insertions of zeros correcting forpl

prime andpl > max(r, l).
In particular, forr = 1, the constructions in (3.1) and (4.1) are related as follows.
LEMMA 4.2. For p prime andp > w, the setSm,p

w,a defined in (3.1) equals the set

Ŝ(m,w, â, p) defined in (4.1), wherêa = fm,w − a modp for fm,w = (w + 2)(2m − w +
1)/2 − (m + 1).

Proof. Consider a strings = (s1, s2, ..., sm) ∈ Sm,p
w,a , and letvi be the position of theith

1 in s, so that
∑m

i=1 isi =
∑w

i=1 vi. Observe thatvk =
∑k

i=1 bi + k wherebi is the size of
theith bin of zeros ins. Write

∑w
i=1 vi + (m + 1) = (b1 + 1) + (b1 + b2 + 2) + ...+

(b1 + b2 + ... + bw + w) + (b1 + b2 + ... + bw+1 + w + 1) =∑w+1
i=1 (w + 2 − i)bi + (w + 1)(w + 2)/2 =

(w + 2)(m − w) + (w + 1)(w + 2)/2 −
∑w+1

i=1 ibi =

(w + 2)(2m − w + 1)/2 −∑w+1
i=1 ibi.

(4.11)

Thus, fora ≡
∑m

i=1 isi modp, the quantitŷa ≡
∑w+1

i=1 ibi modp is (fm,w − a) modp.
Observe that the indicesi = 1, . . . , (w + 1) in (4.1) play the role of the “weightings” of

the appropriate bins of zeros in the construction above, andthat they do not necessarily have
to be in the increasing order for the construction and the validity of the proof to hold. We can
therefore replace each ofi in (4.1) with the weightingfi with the property that eachfi is a

residue mod p and thatfi 6= fj for i 6= j. Let ˆ̂
S(m,w,a, f , p) for w ≥ 1 be defined as

ˆ̂
S(m,w,a, f , p) = { s = (s1, s2, ...sm) ∈ {0, 1}m :

v0 = 0, vw+1 = m + 1, and
vi is the position of theith 1 in s for 1 ≤ i ≤ w,
bi = vi − vi−1 − 1 for 1 ≤ i ≤ w + 1,∑m

i=1 si = w,
fi mod p 6= fj mod p for i 6= j,∑w+1

i=1 fibi ≡ a1 modp,∑w+1
i=1 (fi)

2bi ≡ a2 modp,
...∑w+1

i=1 (fi)
rbi ≡ ar modp }.

(4.12)

The setˆ̂S(m, 0,0,0, p) contains just the all-zeros string. Leta0 = 0 and let
ˆ̂
S (m, (a1, f1, p1), (a2, f2, p2), ..., (am, fm, pm)) be defined as

ˆ̂
S (m, (a1, f1, p1), (a2, f2, p2), ..., (am, fm, pm)) =

m⋃

l=0

ˆ̂
S(m, l,al, fl, pl). (4.13)

We note thatˆ̂S(m,w,a, f , p) = Ŝ(m,w,a, p) whenf = (1, 2, . . . , (w + 1)).
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LEMMA 4.3. If eachpl is prime andpl > max(r, l), the setˆ̂S (m, (a1, f1, p1), (a2, f2, p2), ...,
(am, fm, pm)) is r-insertions of zeros correcting.

Proof. The proof follows that of Lemma 4.1 with appropriate substitutions offi for i.

The objectˆ̂S(m,w,a, f , p) will be of further interest to us in Section 5.2 when we discuss
a prefixing method for improved immunity to repetition errors.

We now present some cardinality results for the construction of present interest. For

simplicity we focus on the set̂S(m,w,a, p) as the results hold verbatim forˆ̂S(m,w,a, f , p)
with appropriate weighting assignments.

4.1. Cardinality Results. Let Ŝ∗ (m, (a1, p1), (a2, p2), ..., (am, pm)) be defined as

Ŝ∗ (m, (a1, p1), (a2, p2), ..., (am, pm)) =

m⋃

l=0

Ŝ(m, l,al
∗, pl). (4.14)

whereŜ(m, l,al
∗, pl) is the largest among all setŝS(m, l,al, pl) for al ∈ {0, 1, . . . , pl}r.

The cardinality ofŜ(m, l,al
∗, pl) is at least

(
m
l

)
1

pr
l

. (4.15)

Since for alln there exists a prime betweenn and2n it follows that one can choose thepl,
1 ≤ l ≤ m, so that cardinality of̂S(m, l,al

∗, pl) for l ≥ r is at least
(

m
l

)
1

(2l)r
. (4.16)

Thusp1, . . . , pm can be chosen so that the cardinality ofŜ∗ (m, (a1, p1), (a2, p2), ..., (am, pm))
is at least

1 +

r−1∑

w=1

(
m
w

)
1

(2r)
r +

m∑

w=r

(
m
w

)
1

(2w)r
, (4.17)

which is lower bounded by

1 +
1

(2r)
r

r−1∑

w=1

(
m
w

)
+

1

(2r)(m + 1)(m + 2) . . . (m + r)

(
2m+r −

2r−1∑

k=0

(
m + r

k

))
.

(4.18)
The prime counting functionπ(n) which counts the number of primes up ton, satisfies for
n ≥ 67 the inequalities [11]

n

ln(n) − 1/2
< π(n) <

n

ln(n) − 3/2
. (4.19)

From (4.19) it follows that

(1 + ǫ)n

ln((1 + ǫ)n) − 1/2
< π((1 + ǫ)n) <

(1 + ǫ)n

ln((1 + ǫ)n) − 3/2
. (4.20)

For a prime number to exist betweenn and(1 + ǫ)n , it is sufficient to have

π((1 + ǫ)n) > π(n) . (4.21)
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Using (4.19) and (4.20) it is sufficient to have

π((1 + ǫ)n) >
(1 + ǫ)n

ln((1 + ǫ)n) − 1/2
≥ n

ln(n) − 3/2
> π(n) . (4.22)

Comparing the innermost terms in (4.22) it follows that it issufficient forǫ to satisfy

ǫ ln(n) ≥ ln(1 + ǫ) +
3ǫ

2
+ 1 (4.23)

for (4.21) to hold.
For n ≥ 67 andǫ = 3

ln(n) , the left hand side of (4.1) evaluates to3 while the right hand
side of (4.1) is upper bounded by(0.539 + 1.071 + 1) < 3.

Sinceπ(n) is a non-decreasing function ofn, it follows that forn ≥ 67, there exists
a prime betweenn and (1 + ǫ)n for ǫ ≥ 3

ln(n) . Thus the lower bound on the asymptotic

cardinality of the best choice overp1, . . . , pm of Ŝ∗ (m, (a1, p1), (a2, p2), ..., (am, pm)) can
be improved to

1

(1 + ǫ)r(m + 1)(m + 2) . . . (m + r)

(
2m+r

)
− P (m), (4.24)

whereǫ = 3
ln m andP (m) is a polynomial inm. In the limitm → ∞, (4.24) is approximately

2m+r

(m + 1)r
. (4.25)

A construction proposed by Levenshtein [9] has the lower asymptotic bound on the car-
dinality given by

1

(log2 2r)r

2m

mr
. (4.26)

Note that both (4.17) and the improved bound (4.24) improve on (4.26) by at least a
constant factor.

The upper boundUr(m) on any set of strings each of lengthm capable of overcomingr
insertions of zero is

Ur(m) = c(r)
2m

mr
, (4.27)

as obtained in [9], where

c(r) =

{
2rr! oddr
8r/2((r/2)!)2 evenr

(4.28)

which makes the proposed construction be within a factor of this bound. By applying
the inverseTn transformation forn = m + 1 to Ŝ∗ (m, (a1, p1), (a2, p2), ..., (am, pm)) and
noting that both strings under the inverseTn transformation can simultaneously belong to
the repetition error correcting set, we obtain a code of length n capable of overcomingr
repetitions and of asymptotic size at least

2n+r

nr
. (4.29)
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5. Prefixing-based Method for Multiple Repetition Error Corre ction. In this section
we develop a general prefixing method which injectively transforms a given collectionS of
binary strings of lengthn into another collectionTS of binary strings of equal length, such
that the collectionTS is guaranteed to be immune to the prescribed number of repetition
errors. The proposed method is inspired by the number-theoretic construction developed in
the previous section. It takes an elements of S and produces a stringts = [pss], ts ∈ TS , that
is, the prefixps is prepended tos to producets, such that the stringts under transformation
(2.1) satisfies the set of conditions given by (4.12). In the proposed method, the setTS

has the property that the length of the prefixps is O(log(n)). Thus, if the setS is used
for transmission, the proposed method provides increased immunity to repetition errors with
asymptotically vanishing loss in the rate.

We start with some auxiliary results.

5.1. Auxiliary results. Consider a prime numberP with the property thatlcm(2, 3, ..r)|
(P − 1) for a given positive integerr. Since eachi, 1 ≤ i ≤ r, satisfiesi|(P − 1), it follows
that in the residue setmod P , there areP−1

i elements that areith power residues, each
havingi distinct roots (anith power residuex satisfiesyi ≡ x mod P for somey), [1]. For
convenience, letG = ⌊log2(P )⌋.

For eachi, 1 ≤ i ≤ r, we will construct a specific subsetVi of the ith power residues
mod P such that all other residues can be expressed as a sum of a subset of elements ofVi,
and such that eachVi has size that is logarithmic inP . The set of theith roots of the elements
of the setVi will be denotedFi. Thus,Fi will also have size logarithmic inP . The elements
of M =

⋃r
i=1 Fi ∪{0} (the setsFi will be made disjoint) will be reserved for the weightings

fi of the bins of zeros of the prefix stringps in the transformed domain (see the construction
(4.12)). Note thatM also has size that is logarithmic inP , and since each bin in the prefix
will have at most one zero, the length of the prefix is also logarithmic in P . The setsVi will
serve to satisfy theith congruency constraint of the type given in (4.12) for the string ts in
the transformed domain, as further explained below.

In the remainder of this section we will first show how to construct setsVi, and then we
will provide the proof that it is possible to construct setsVi with all distinct elements as well
as setsFi (from setsVi) that have distinct elements and are non intersecting, for the prime
P large enough. We will also provide a proof that for a given integern, for n large enough,
there exists a primeP for which we can construct non intersecting setsFi containing distinct
elements, where the primeP lies in an interval that linearly depends onn.

Combined with the encoding method described in the next section we will therefore have
constructed a prefix whose length is logarithmic inn such that the overall string (which is a
concatenation of the prefix and original string) in the transformed domain satisfies equations
of congruential type given in (4.12), which we have already proved in Section 4 are sufficient
for the immunity tor repetition errors.

We now provide some auxiliary results. Let[x]P indicate the residue modP congruent
to x .

LEMMA 5.1. For an integerP , each residuev modP can be expressed as a sum of a
subset of elements of the setTz,P = {[z]P , [2z]P , [22z]P , ..., [2Gz]P } whereG = ⌊log2 P ⌋,
z is an arbitrary non zero residue modP .

Proof. Observe thatT1,P = {1, 2, 22, ..., 2G}. We first show that each residuev mod
P can be expressed as a sum of a subset of elements of the setT1,P . Note that each residue
i, 0 ≤ i ≤ 2G − 1 (modP ) can be expressed as a sum of a subset, call this subsetQi, of
the set{1, 2, 22, ..., 2G−1}. HereQ0 is the empty set. Adding2G to the sum of eachQi, for
0 ≤ i ≤ 2G − 1, moduloP generates the remaining residues{2G, 2G + 1, ..., P − 1}. As a
result every residue modP can be expressed as a sum of a subset ofT1,P = {1, 2, 22, ..., 2G}.
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Suppose there exists an elementv which cannot be expressed as a sum of a subset of
elements ofTz,P , for z > 1, that isv 6= ∑G

i=0 ǫiz2i mod P , for all choices of{ǫ0, ..., ǫG},
ǫi ∈ {0, 1}. Let z−1 be the inverse element ofz under multiplication modP . Then the
residuev′ = vz−1 6= ∑G

i=0 ǫi2
i mod P , for all choices of{ǫ0, ..., ǫG}, ǫi ∈ {0, 1}, which

contradicts the result from the previous paragraph.
For a prime numberP for which i|P − 1, andi < P − 1, let Qi(P ) be the set of distinct

ith power residues modP . We also state the following convenient result.
LEMMA 5.2. For a primeP such thati|(P − 1), each residueu mod P can be ex-

pressed as a sum of two distinct elements ofQi(P ) in at leastP/(2i2) −
√

P/2 − 3 ways.
Proof. The result follows from Theorem II in [3] which states that over GF (P ) the

equation

xi + yi = a (5.1)

wherex, y, a ∈ GF (P ) and nonzero and0 < i < P − 1 has at least

(P − 1)2

P
− P−1/2

(
1 + (i − 1)P 1/2

)2

(5.2)

solutions. Rearrange the terms in (5.2) to conclude that (5.1) has at least

P − (i − 1)2
√

P − 2(i − 1) − 2 +
1

P
− 1√

P
(5.3)

solutions. Noting thati distinct values ofx result in the samexi, accounting for the symmetry
of x andy, and omitting the casexi = yi we obtain a lower bound on the number of ways
a residueu can be expressed as a sum of two distinctith power residues to beP/(2i2) −√

P/2 − 3.
Equations of the type in (5.1) were also studied by Weil [2].
We now continue with the introduction of some convenient notation. Forxi,1 an ith

power residue define the setAi,1(xi,1) to be

Ai,1(xi,1) = {[2ikxi,1]P |0 ≤ k ≤ ⌊G

i
⌋} . (5.4)

Let xi,2 andxi,3 be distinctith power residues such thatxi,2 + xi,3 ≡ 2xi,1 mod P . These
two power residues generate setsAi,2(xi,2) andAi,3(xi,3) where

Ai,2(xi,2) = {[2ikxi,2]P |0 ≤ k ≤ ⌊G − 1

i
⌋} and (5.5)

Ai,3(xi,3) = {[2ikxi,3]P |0 ≤ k ≤ ⌊G − 1

i
⌋} . (5.6)

Likewise, for each2lxi,1 for 1 ≤ l ≤ i − 1 let xi,2l andxi,2l+1 be distinctith power
residues such thatxi,2l + xi,2l+1 ≡ 2lxi,1 mod P . These residues generate setsAi,2l(xi,2l)
andAi,2l+1(xi,2l+1) where

Ai,2l(xi,2l) = {[2ikxi,2l]P |0 ≤ k ≤ ⌊G − l

i
⌋} and (5.7)

Ai,2l+1(xi,2l+1) = {[2ikxi,2l+1]P |0 ≤ k ≤ ⌊G − l

i
⌋}. (5.8)

By introducing setsAi,j(xi,j) we have effectively decomposed all residues of the type
[2ik+lxi,1]P , 0 ≤ ik + l ≤ G, 1 ≤ l ≤ i − 1 into a sum of twoith power residues, namely
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[2ikxi,2l]P and[2ikxi,2l+1]P . For each setAi,j(xi,j), 1 ≤ j ≤ 2i − 1, we letBi,j(xi,j) be
the set of allith power roots of elements ofAi,j(xi,j),

Bi,j(xi,j) = {[2ky
(t)
i,j ]P |(y(t)

i,j )i ≡ xi,j mod P, 1 ≤ t ≤ i, 0 ≤ k ≤ ⌊G − ⌊ j
2⌋

i
⌋} .(5.9)

First note that all elements inAi,j(xi,j) areith power residues by construction. Moreover,

they are all distinct since2ij1 6= 2ij2 mod P for 1 ≤ j1, j2 ≤ ⌊G−⌊ j

2 ⌋

i ⌋ for j1 6= j2 implies

xi,j2
ij1 6= xi,j2

ij2 mod P . Thus,|Aij(xi,j)| = ⌊G−⌊ j

2 ⌋

i ⌋ + 1 and since theith power roots

of distinctith power residues are themselves distinct,|Bij(xi,j)| = i
(
⌊G−⌊ j

2 ⌋

i ⌋ + 1
)

.

LEMMA 5.3. SupposeP is a prime number such thati|(P − 1). Let xi,1 be anith
power residue. Supposexi,j for 2 ≤ j ≤ 2i − 1 are ith power residues such that2kxi,1 ≡
xi,2k+xi,2k+1 mod P for 1 ≤ k ≤ (i−1). LetAi,j(xi,j) = {[2ilxi,j ]P |0 ≤ l ≤ ⌊G−⌊ j

2 ⌋

i ⌋}
for 1 ≤ j ≤ 2i − 1 andG = ⌊log2 P ⌋. If the setsAi,j(xi,j) are disjoint for1 ≤ j ≤ 2i − 1,
each residueu modP can be expressed as a sum of a subset of elements of the setLz,P =⋃2i−1

j=1 Ai,j(xi,j) wherez denotesxi,1.
Proof. Follows immediately from Lemma 5.1 by observing that, withz denotingxi,1, we

have in fact decomposed elements[2kz]P in the setTz,P for k not a multiple ofi into a sum
of two component elements such that all component elements are distinct from one another
and distinct from[2kz]P for i|k.

The following lemma proves that it is possible to construct subsetsAij(xi,j), and subsets
Bij(xi,j) from them, of the set of residuesmod P for P prime that satisfieslcm(2, 3, ...r)|(P−
1) for a given positive integerr, provided thatP is large enough, such that for fixedi the sub-
setsAij(xi,j) are disjoint, and such thatall subsetsBij(xi,j) for 1 ≤ i ≤ r, 1 ≤ j ≤ 2i − 1
are also disjoint. LetWi denote the number of ways any residuemod P can be expressed
as a sum of two distinct non zeroith power residues mod P . A universal lower bound on
Wi that holds for all residues was given in Lemma 5.2.

LEMMA 5.4. For a given integerr, suppose a prime numberP satisfieslcm(2, 3, ...r)|(P−
1). LetG = ⌊log2 P ⌋. If P −1 > (G+r)(G+r−1)(r−1)2 andWi > 2i(G+i)(G+i−1),
for eachi in the range2 ≤ i ≤ r, there exist subsetsAij(xi,j) of the type given in(5.7)
and (5.8) andBij(xi,j) of the type given in(5.9) such that for fixedi subsetsAij(xi,j) for
1 ≤ j ≤ 2i − 1 are disjoint, and for1 ≤ i ≤ r, 1 ≤ j ≤ 2i − 1 all subsetsBij(xi,j) are
disjoint.

Proof. We inductively build the setsAij(xi,j) andBij(xi,j) for 1 ≤ i ≤ r and1 ≤ j ≤
2i − 1, starting with the leveli = 1. We then incrementi by one to reach the next collection
of setsAij(xi,j) andBij(xi,j) while making sure the setsBij(xi,j) at the current level are
disjoint from one another and with all previously constructed sets at lower levels.

Consideri = 1. Let x1,1 be an arbitrary residuemod P , and let

A1,1(x1,1) = {[2kx1,1]P |0 ≤ k ≤ G} . (5.10)

Let z1 = x1,1 andy
(1)
1,1 = x1,1. HereB1,1(z1) is simplyA1,1(x1,1) for i = 1. All elements

in B1,1(z1) are distinct and|B1,1(z1)| = (G + 1). If r = 1, we are done, as we did not even
appeal to the condition on the lower bound onP − 1 (it is simplyP − 1 > 0).

If r ≥ 2, let us consideri = 2. Consider quadratic residuesx2,1, x2,2 andx2,3. Let their

respective distinct quadratic roots bey
(1)
2,1, y

(2)
2,1 (so that(y(1)

2,1)
2 ≡ (y

(2)
2,1)

2 ≡ x2,1 mod P ),

y
(1)
2,2, y

(2)
2,2 (so that(y(1)

2,2)
2 ≡ (y

(2)
2,2)

2 ≡ x2,2 mod P ) and y
(1)
2,3, y

(2)
2,3 (so that(y(1)

2,3)
2 ≡
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(y
(2)
2,3)

2 ≡ x2,3 mod P ). These quadratic residues give rise to sets

A2,1(x2,1) = {[22kx2,1]P |0 ≤ k ≤ ⌊G

2
⌋}, (5.11)

A2,2(x2,2) = {[22kx2,2]P |0 ≤ k ≤ ⌊G − 1

2
⌋} and, (5.12)

A2,3(x2,3) = {[22kx2,3]P |0 ≤ k ≤ ⌊G − 1

2
⌋} . (5.13)

Quadratic roots of elements of setsA2,1(x2,1), A2,2(x2,2) andA2,3(x2,3) give rise to sets
B2,1(x2,1), B2,2(x2,2) andB2,3(x2,3),

B2,1(x2,1) = {[2ky
(t)
2,1]P |1 ≤ t ≤ 2, 0 ≤ k ≤ ⌊G

2
⌋}, (5.14)

B2,2(x2,2) = {[2ky
(t)
2,2]P |1 ≤ t ≤ 2, 0 ≤ k ≤ ⌊G − 1

2
⌋}, and (5.15)

B2,3(x2,3) = {[2ky
(t)
2,3]P |1 ≤ t ≤ 2, 0 ≤ k ≤ ⌊G − 1

2
⌋} . (5.16)

Having fixed the setB1,1(x1,1) based on the earlier selection of the residuex1,1, we
want to show that it is possible to find quadratic residuesx2,1, x2,2 andx2,3 such thatx2,2 +
x2,3 ≡ 2x2,1 mod P and such that the resulting setsB1,1(x1), B2,1(x2,1), B2,2(x2,2) and
B2,3(x2,3) are all disjoint.

In particular we require thatx2,1 is a quadratic residuemod P (there are(P − 1)/2
quadratic residues) with the property that the setB2,1(x2,1) is disjoint fromB1,1(x1,1). That
is we require

y
(1)
2,12

k 6= y
(1)
1,12

l mod P (5.17)

and

y
(2)
2,12

k 6= y
(1)
1,12

l mod P (5.18)

for 0 ≤ k ≤ ⌊G
2 ⌋ and0 ≤ l ≤ G. By squaring the expressions, these two conditions can be

combined into

x2,12
2k 6= (x1,1)

222l mod P (5.19)

for 0 ≤ k ≤ ⌊G
2 ⌋ and0 ≤ l ≤ G. For the already choseny(1)

1,1(= x1,1) at most(G +

1)(⌊G
2 ⌋ + 1) candidate quadratic residues out of total(P − 1)/2 quadratic residues violate

(5.19). Observe that the function(G+ i)(G+ i− 1)(i− 1)2 is strictly increasing for positive
i, 2 ≤ i ≤ r, and thus the conditionP − 1 > (G + r)(G + r− 1)(r− 1)2 in the statement of
the Lemma impliesP −1 > (G+2)(G+1). SinceP−1

2 > (G+1)(G+2)
2 ≥ (G+1)(⌊G

2 ⌋+1),
suchx2,1 exists.

Fix x2,1 such that (5.19) holds. Having chosen suchx2,1, we now look forx2,2 and
x2,3 as distinct quadratic residues that satisfyx2,2 + x2,3 ≡ 2x2,1 mod P . We require that
B2,2(x2,2) be disjoint from bothB1,1(x1,1) andB2,1(x2,1) (by construction, ifB2,2(x2,2)
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andB2,1(x2,1) are disjoint so areA2,2(x2,2) andA2,1(x2,1)) so that

y
(1)
2,22

k3 6= y
(1)
1,12

k1 mod P,

y
(2)
2,22

k3 6= y
(1)
1,12

k1 mod P,

y
(1)
2,22

k3 6= y
(1)
2,12

k2 mod P,

y
(2)
2,22

k3 6= y
(1)
2,12

k2 mod P,

y
(1)
2,22

k3 6= y
(2)
2,12

k2 mod P,

y
(2)
2,22

k3 6= y
(2)
2,12

k2 mod P,

(5.20)

where0 ≤ k1 ≤ G, 0 ≤ k2 ≤ ⌊G
2 ⌋ and0 ≤ k3 ≤ ⌊G−1

2 ⌋.
Alternatively, by squaring both sides in each expression in(5.20),

x2,22
2k3 6= (x1,1)

222k1 mod P,
x2,22

2k3 6= x2,12
2k2 mod P,

(5.21)

where0 ≤ k1 ≤ G, 0 ≤ k2 ≤ ⌊G
2 ⌋ and0 ≤ k3 ≤ ⌊G−1

2 ⌋.
Likewise, we require thatB2,3(x2,3) be disjoint fromB1,1(x1,1), B2,1(x2,1) andB2,2(x2,2)

(again, ifB2,3(x2,3) is disjoint fromB2,2(x2,2) andB2,1(x2,1), thenA2,3(x2,3) is disjoint
from A2,2(x2,2) andA2,1(x2,1)) so that

x2,32
2k4 6= (y

(1)
1,1)

222k1 mod P,

x2,32
2k4 6= x2,12

2k2 mod P,
x2,32

2k4 6= x2,22
2k3 mod P,

(5.22)

where0 ≤ k1 ≤ G, 0 ≤ k2 ≤ ⌊G
2 ⌋, 0 ≤ k3 ≤ ⌊G−1

2 ⌋ and 0 ≤ k4 ≤ ⌊G−1
2 ⌋. For

the already chosen values ofx2,1 and y1,1 at mostN2 = 2
[(
⌊G

2 ⌋ + 1
) (

⌊G−1
2 ⌋ + 1

)
+

(G + 1)
(
⌊G−1

2 ⌋ + 1
)]

+
(
⌊G−1

2 ⌋ + 1
)2

choices forx2,2 andx2,3 violate (5.21) and (5.22).

We thus require thatW2 be strictly larger thanN2. Dropping floor operations it is suffi-

cient thatW2 > (G+1)(G+2)
2 + 5(G+1)2

4 . Further simplification yields that

W2 >
7(G + 1)(G + 2)

4
(5.23)

is sufficient to ensure that there existx2,2, x2,3 that make the respective sets disjoint. Note
that this last condition follows from the requirement in thestatement of the Lemma fori = 2,
namely thatW2 > 4(G + 1)(G + 2). If r = 2 we are done, else we consideri = 3. Before
considering general leveli let us present thei = 3 case.

For i = 3 we seek distinct cubic residuesx3,1, x3,2, x3,3, x3,4 andx3,5 with the property
that x3,2 + x3,3 ≡ 2x3,1 mod P andx3,4 + x3,5 ≡ 22x3,1 mod P , and such that the
respective setsB3,j(x3,j) for 1 ≤ j ≤ 5 generated from the cubic roots of these residues are
disjoint and are disjoint from previously constructed setsB1,1(x1,1), B2,1(x2,1), B2,2(x2,2)
andB2,3(x2,3).

We start withx3,1 a cubic residue mod P (there are(P −1)/3 cubic residues) with the
property that the setB3,1(x3,1) is disjoint from each ofB1,1(x1,1), B2,1(x2,1), B2,2(x2,2)
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andB2,3(x2,3). That is, after raising the elements of these sets to the third power, we require

x3,12
3k5 6= (y

(1)
1,1)

323k1 mod P,

x3,12
3k5 6= (y

(1)
2,1)

323k2 mod P,

x3,12
3k5 6= (y

(2)
2,1)

323k2 mod P,

x3,12
3k5 6= (y

(1)
2,2)

323k3 mod P,

x3,12
3k5 6= (y

(2)
2,2)

323k3 mod P,

x3,12
3k5 6= (y

(1)
2,3)

323k4 mod P,

x3,12
3k5 6= (y

(2)
2,3)

323k4 mod P,

(5.24)

where0 ≤ k1 ≤ G, 0 ≤ k2 ≤ ⌊G
2 ⌋, 0 ≤ k3 ≤ ⌊G−1

2 ⌋, 0 ≤ k4 ≤ ⌊G−1
2 ⌋ and0 ≤ k5 ≤ ⌊G

3 ⌋.

For the already chosen values ofx1,1 throughx2,3, which in turn determiney(1)
1,1 through

y
(2)
2,3, the condition in (5.24) preventsN3 =

(
⌊G

3 ⌋ + 1
) [

(G + 1) + 2
(
⌊G

2 ⌋ + 1
)
+

4
(
⌊G−1

2 ⌋ + 1
)]

choices forx3,1. Since there areP−1
3 cubic residues, after simplifying and

upper bounding the expression forN3, it follows that it is sufficient thatP−1
3 be strictly

larger than4(G+2)(G+3)
3 . Note that this condition is implied by the requirement thatP − 1 >

(r − 1)2(G + r)(G + r − 1) (again, since the function(i− 1)2(G + i)(G + i− 1) is strictly
increasing for positivei).

Fix x3,1 such that (5.24) holds. Having chosen suchx3,1, we now look for distinctx3,2,
x3,3, x3,4, x3,5 cubic residues that satisfyx3,2 + x3,3 ≡ 2x3,1 mod P andx3,4 + x3,5 ≡
22x3,1 mod P that make all setsBi,j(xi,j), 1 ≤ i ≤ 3, 1 ≤ j ≤ 2i − 1 disjoint.

In order that residuex3,2 generates setB3,2(x3,2) with the property thatB3,2(x3,2) is
disjoint from each ofB1,1(x1,1), B2,1(x2,1), B2,2(x2,2), B2,3(x2,3) andB3,1(x3,1), we re-
quire that their respective elements raised to the third power be distinct,

x3,22
3k6 6= (y

(1)
1,1)

323k1 mod P,

x3,22
3k6 6= (y

(1)
2,1)

323k2 mod P,

x3,22
3k6 6= (y

(2)
2,1)

323k2 mod P,

x3,22
3k6 6= (y

(1)
2,2)

323k3 mod P,

x3,22
3k6 6= (y

(2)
2,2)

323k3 mod P,

x3,22
3k6 6= (y

(1)
2,3)

323k4 mod P,

x3,22
3k6 6= (y

(2)
2,3)

323k4 mod P,

x3,22
3k6 6= x3,12

3k5 mod P,

(5.25)

where0 ≤ k1 ≤ G, 0 ≤ k2 ≤ ⌊G
2 ⌋, 0 ≤ k3 ≤ ⌊G−1

2 ⌋, 0 ≤ k4 ≤ ⌊G−1
2 ⌋, 0 ≤ k5 ≤ ⌊G

3 ⌋ and
0 ≤ k6 ≤ ⌊G−1

3 ⌋.

Likewise, we require thatB3,3(x3,3) be disjoint from all ofB1,1(x1,1), B2,1(x2,1),
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B2,2(x2,2), B2,3(x2,3), B3,1(x3,1) andB3,2(x3,2), so that

x3,32
3k7 6= (y

(1)
1,1)

323k1 mod P,

x3,32
3k7 6= (y

(1)
2,1)

323k2 mod P,

x3,32
3k7 6= (y

(2)
2,1)

323k2 mod P,

x3,32
3k7 6= (y

(1)
2,2)

323k3 mod P,

x3,32
3k7 6= (y

(2)
2,2)

323k3 mod P,

x3,32
3k7 6= (y

(1)
2,3)

323k4 mod P,

x3,32
3k7 6= (y

(2)
2,3)

323k4 mod P,

x3,32
3k7 6= x3,12

3k5 mod P,
x3,32

3k7 6= x3,22
3k6 mod P,

(5.26)

where0 ≤ k1 ≤ G, 0 ≤ k2 ≤ ⌊G
2 ⌋, 0 ≤ k3 ≤ ⌊G−1

2 ⌋, 0 ≤ k4 ≤ ⌊G−1
2 ⌋, 0 ≤ k5 ≤ ⌊G

3 ⌋,
0 ≤ k6 ≤ ⌊G−1

3 ⌋ and0 ≤ k7 ≤ ⌊G−1
3 ⌋.

From (5.25) and (5.26) it follows that at most

N ′
3 = 2

(
⌊G−1

3 ⌋ + 1
) [

(G + 1) + 2
(
⌊G

2 ⌋ + 1
)

+ 4
(
⌊G−1

2 ⌋ + 1
)

+
(
⌊G

3 ⌋ + 1
)]

+(
⌊G−1

3 ⌋ + 1
)2

.
(5.27)

candidate pairs(x3,2, x3,3) do not make the respectiveBi,j(xi,j) sets disjoint. Since

N ′
3 ≤ 2

(
G+2

3

) [
(G + 1) + 2

(
G+2

2

)
+ 4

(
G+1

2

)
+
(

G+3
3

)]
+
(

G+2
3

)2

< 2
(

G+2
3

)
· 13

(
G+3

3

)
+
(

G+2
3

)2

< 3(G + 2)(G + 3),

(5.28)

it follows that it is sufficient that

W3 > 3(G + 2)(G + 3) , (5.29)

whereW3 is the number of ways a residuemod P can be expressed as a sum of two dif-
ferent cubic residues. Similarly, the cubic residuesx3,4 andx3,5 for which the respective
disjointBi,j(xi,j) sets exist, provided that

W3 > 2
(
⌊G−2

3 ⌋ + 1
) [

(G + 1) + 2
(
⌊G

2 ⌋ + 1
)

+ 4
(
⌊G−1

2 ⌋ + 1
)

+
(
⌊G

3 ⌋ + 1
)
+

2
(
⌊G−1

3 ⌋ + 1
)]

+
(
⌊G−2

3 ⌋ + 1
)2

.
(5.30)

Some simplification of (5.30) yields

W3 >
31

9
(G + 2)(G + 3) , (5.31)

which subsumes the lower bound onW3 given in (5.29). Note that (5.31) is implied by the
condition in the statement of the Lemma, namelyW3 > 6(G + 2)(G + 3).

We now inductively show the existence of the appropriateith power residues and their
sets, assuming that we have successfully identified power residues at lower levels for which
all the setsBk,j(xk,j) for 1 ≤ k < i, 1 ≤ j ≤ 2k − 1 are disjoint.

Considerxi,1 an ith power residue mod P (there are(P − 1)/i such residues) with
the property that the setBi,1(xi,1) is disjoint from all ofBk,j(xk,j) for 1 ≤ k < i, 1 ≤ j ≤
2k − 1.
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These constraints on disjointness (an example of which is given in (5.19) fori = 2 and
in (5.24) fori = 3) prevent no more than(G+i

i )(G+k
k ) choices forxi,1 for eachy

(t)
k,j where

1 ≤ k ≤ i − 1, 1 ≤ j ≤ 2k − 1, and1 ≤ t ≤ k (since|Bi,1(xi,1)| = ⌊G
i ⌋ + 1 ≤ G+i

i , and

|Bk,j(xk,j)| = ⌊G−⌊ j

2 ⌋

k ⌋ + 1 ≤ G+k
k ). By summing over all choices it follows that at most

(
G+i

i

)∑i−1
k=1(2k − 1)k

(
G+k

k

)

≤ (G + i)
(

G+i−1
i

)∑i−1
k=1(2k − 1)

= (G + i)
(

G+i−1
i

)
(i − 1)2

(5.32)

ith power residues cannot be chosen forxi,1. Since there areP−1
i ith power residues, we

thus require

P − 1 > (G + i)(G + i − 1)(i − 1)2 (5.33)

for each leveli. Note that since the expression on the right hand side of the inequality (5.33)
is an increasing function of positivei, each subsequent level poses a lower bound onP that
subsumes all previous ones. It is thus sufficient to haveP −1 > (G+ r)(G+ r−1)(r−1)2,
as given in the statement of the Lemma.

Considerxi,2 andxi,3 as distinctith power residuesmod P that satisfyxi,2 + xi,3 ≡
2xi,1 mod P for a previously chosenxi,1. We require thatxi,2 andxi,3 give rise to sets
Bi,2(xi,2) andBi,3(xi,3) that are disjoint and that are disjoint from each ofBk,j(xk,j) for
1 ≤ k < i, 1 ≤ j ≤ 2k − 1 and fromBi,1(xi,1). By construction, if the setsBi,1(xi,1),
Bi,2(xi,2), andBi,3(xi,3) are disjoint, then so are setsAi,1(xi,1), Ai,2(xi,2), andAi,3(xi,3).

Constraints based on the previously encounteredy
(t)
j,k for 1 ≤ k < i, 1 ≤ j ≤ 2k − 1,

1 ≤ t ≤ k prevent at most(G+i−1
i )(G+k

k ) choices for each ofxi,2 andxi,3, for eachy
(t)
j,k

(since|Bi,2(xi,2)| = |Bi,3(xi,3)| = ⌊G−1
i ⌋ + 1 ≤ G+i−1

i , and|Bk,j(xk,j)| = ⌊G−⌊ j

2 ⌋

k ⌋ +

1 ≤ G+k
k ). Combined with the restriction based on the disjointness with Bi,1(xi,1) and the

requirement thatBi,2(xi,2) andBi,3(xi,3) be nonintersecting, it follows that

Wi > 2
(

G+i−1
i

) [∑i−1
k=1(2k − 1)k(G+k

k ) +
(

G+i
i

)]
+
(

G+i−1
i

)2
(5.34)

is sufficient for the pair(xi,2, xi,3) to exist.
Likewise, for xi,2l andxi,2l+1 to be distinctith power residues mod P that satisfy

xi,2l+xi,2l+1 ≡ 2lxi,1 mod P , that give rise to disjoint setsBi,2l(xi,2l) andBi,2l+1(xi,2l+1)
and that are also disjoint from all previously constructed setBk,j(xk,j), we require

Wi > 2(G+i−1
i )

[∑i−1
k=1(2k − 1)k(G+k

k ) + (2l − 1)
(

G+i
i

)]
+
(

G+i−1
i

)2
(5.35)

for the pair(xi,2l, xi,2l+1) to exist. Note that (5.35) subsumes (5.34). Since at each level i we
constructi − 1 pairsxi,2l andxi,2l+1, and since the right hand side of (5.35) is an increasing
function ofl, it is sufficient to upper bound the expression in (5.35) forl = i − 1,

Wi > 2(G+i−1
i )

[∑i−1
k=1(2k − 1)k(G+k

k ) + (2i − 3)
(

G+i
i

)]
+
(

G+i−1
i

)2

⇐ Wi > 2(G+i−1
i )

[
(i − 1)2(G + i) + 2i−3

i (G + i)
]
+
(

G+i−1
i

)2

⇐ Wi > (G + i)(G + i − 1)
(

2
i (i − 1)2 + 2

i
2i−3

i + 1
i2

)
.

(5.36)

Some simplification yields

Wi > (G + i)(G + i − 1) 2i3−4i2+6i−5
i2

(5.37)
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as a sufficient condition for the disjoint setsBi,j(xi,j) to exist that are also disjoint from all
setsBk,l(xk,l) for k < i.

Further simplifying the last inequality, it is sufficient that

Wi > 2i(G + i)(G + i − 1) (5.38)

to make these sets disjoint. We have thus demonstrated that with the appropriate lower bounds
onP andWi’s, it is possible to construct disjoint setsBi,j(xi,j).

Note that all residues mod P can be expressed as a sum of a subset of elements of
Vi =

⋃2i−1
j=1 Ai,j(xi,j) by Lemma 5.3 for eachi, 1 ≤ i ≤ r. Also note that|Vi| scales as

log2(P ), since|Ai,j(xi,j)| = ⌊G−⌊ j

2 ⌋

i ⌋ + 1. For Fi =
⋃2i−1

j=1 Bij(xi,j), |Fi| also scales as

log2(P ), since|Bi,j(xi,j)| = i
(
⌊G−⌊ j

2 ⌋

i ⌋ + 1
)

.

We now discuss how large primeP needs to be so that the conditions of Lemma 5.4 hold.
Namely we require

P − 1 > (r − 1)2(G + r)(G + r − 1) (5.39)

and

Wi > 2i(G + i)(G + i − 1) for 2 ≤ i ≤ r . (5.40)

Using Lemma 5.2 it follows that it is sufficient that

P > 4r3(G + r)(G + r − 1) + r2
√

P + 6r2 , for r ≥ 2 (5.41)

for (5.40) to hold. Moreover, if (5.41) holds , it implies (5.39).(Forr = 1, the requirement is
P > 1). The expression (5.41) certainly holds asP → ∞, and for the finite values ofP we
(loosely) have that

P > 2 × 102 for r = 1;
P > 4 × 103 for r = 2;
P > 2 × 104 for r = 3;
P > 6 × 104 for r = 4;
P > 2 × 105 for r = 5 .

(5.42)

For a given large enough integern, we now show that there exists a prime numberP
that satisfies (5.41) (which holds forP large enough) and for whichlcm(2, 3, ..., r)|(P − 1)
such thatP lies in an interval that is linear inn. Since the elements ofM =

⋃r
i=1 Fi ∪ {0}

are to be reserved for the indices of bins of zeros of the prefixin the transformed domain
we also require thatP − n > |M |, since the total number of bins of zeros to be used is at
mostn (from the original string) +|M | (from the prefix), and each bin receives a distinct

index. SinceFi = ∪2i−1
j=1 Bi,j(xi,j) and|Bi,j(xi,j)| =i

(
⌊G−⌊ j

2 ⌋

i ⌋ + 1
)

, wherebyi
(

G−i
i

)
≤

|Bi,j(xi,j)| ≤ i
(

G+i
i

)
, it follows that

|M | ≤
r∑

i=1

(2i − 1)(G + i) + 1 ≤ (G + r)
r∑

i=1

(2i − 1) = r2(G + r) + 1 (5.43)

and

|M | ≥
r∑

i=1

(2i − 1)(G − i) + 1 ≥ (G − r)

r∑

i=1

(2i − 1) = r2(G − r) + 1 (5.44)
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Equation (5.43) yields a sufficient requirement on how largeP needs to be

P > n + r2(log2(P ) + r) + 1 . (5.45)

For given integersn andr (n is typically large andr is small), we essentially need to
show that there exists a primeP for whichk = lcm(2, 3, ..., r)|(P − 1) andP ∈ (c1n, c2n)
(herec1 andc2 are positive numbers that do not depend onn) and such thatP satisfies (5.41)
and (5.45).

For the asymptotic regime asn → ∞ we recall the prime number theorem for arithmetic
progressions [5] which states that

π(n, k, 1) ∼ 1

φ(k)

n

log(n)
, (5.46)

whereπ(n, k, 1) denotes the number of primes≤ n that are congruent to1 mod k, andφ(k)
is the Euler function and represents the number of integers≤ k that are relatively prime with
k. As n → ∞, we may letc1 : = 2 andc2 : = 4, so that

π(4n, k, 1)

π(2n, k, 1)
∼ 2 , (5.47)

and thus there exists a primeP , k|(P −1) in an interval that is linear inn. Clearly, asn → ∞,
suchP also satisfies (5.41) and (5.45).

For finite (but possibly very large) values ofn and certain smallr we appeal to results
by Ramare and Rumely [4]. The number-theoretic functionθ(x; k, l) is usually defined as

θ(x; k, l) =
∑

p prime,p≡l mod k,p≤x

ln p . (5.48)

To show that there exists a primeP in the interval(c1n, c2n) for whichk = lcm(2, 3, ..., r)|(P−
1) it is sufficient to have

θ(c2n; k, 1) > θ(c1n; k, 1) , (5.49)

wherek = lcm(2, 3, ..., r).
Theorem 2 in [4] states that|θ(x; k, 1) − x

φ(k) | ≤ 2.072
√

x for all x ≤ 1010 for k given
in Table I of [4]. For largerx, Theorem 1 in [4], provides the bounds of the type

(1 − ε)
x

φ(k)
≤ θ(x; k, 1) ≤ (1 + ε)

x

φ(k)
, (5.50)

for k given in Table I of [4], andε also given in Table I of [4] for variousx. Hereφ(k) is the
Euler function and denotes the number of integers≤ k that are relatively prime withk.

For c2n ≤ 1010, using

θ(c1n; k, 1) <
c1n

φ(k)
+ 2.072

√
c1n (5.51)

and

θ(c2n; k, 1) >
c2n

φ(k)
− 2.072

√
c2n, (5.52)

it is thus sufficient to have

2.072φ(k) <
√

n(
√

c2 −
√

c1) , (5.53)
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for θ(c2n; k, 1) > θ(c1n; k, 1) to hold.
For c1n ≤ 1010 using

θ(c1n; k, 1) < (1 + ε)
c1n

φ(k)
(5.54)

and

θ(c2n; k, 1) > (1 − ε)
c2n

φ(k)
, (5.55)

after some simplification, it is sufficient to have

(1 + ε)c1 < (1 − ε)c2 , (5.56)

for θ(c2n; k, 1) > θ(c1n; k, 1) to hold.
ExpressingP ∈ (c1n, c2n) in terms ofc1n andc2n, it is sufficient that

(c1 − 1)n > r2(log2 n + log2 c2 + r) + 1 (5.57)

for (5.45) to hold. Likewise, forr ≥ 2, it is sufficient that

c1n > 4r3(log2 n + log2 c2 + r)(log2 n + log2 c2 + r − 1) + r2(6 +
√

c2n) (5.58)

for (5.41) to hold.
Parametersc1 andc2 can be chosen as a function ofr to make (5.53) (or (5.56)), (5.57)

and (5.58) hold. We consider now some suitable choices forc1 andc2 for small values ofr
and some finiten.

• r = 1: The condition (5.57) reduces to(c1 − 1)n > log2 n + log2 c2 + 2. For
c2n < 1010, the condition (5.53) reduces to

√
n(
√

c2 −
√

c1) > 2.072. We may let
c2 = 4 andc1 = 2 for 12 < n < 1010/4 to ensure that there exists a prime in the
interval(2n, 4n) which satisfies (5.57).
The condition (5.56) applies toc1n > 1010 so we may letc1 = 4 for n > 1010/4.
Since allε entries fork = 1 in Table I of [4] are≪ 1/9, we may letc2 = 5 to make
the condition (5.57) hold .
Since|M | ≤ (⌊log2 P ⌋ + 2) ≤ (log2 n + log2 c2 + 2) (from (5.43)), and|M | ≥
⌊log2 P ⌋ ≥ (log2 n + log2 c1 − 2) + 1 (from (5.44)) it follows that(log2 n) ≤
|M | ≤ (log2 n + 4) for 12 < n < 1010/4 and(log2 n + 1) ≤ |M | ≤ (log2 n + 5)
for n > 1010/4.

• r = 2: The conditions (5.57) and (5.58) reduce to(c1 − 1)n > 4(log2 n + log2 c2 +
2) + 1 andc1n > 4 · 8(log2 n + log2 c2 + 2)(log2 n + log2 c2 + 1) + 4(6 +

√
c2n).

Forc2n < 1010, the condition (5.53) is again
√

n(
√

c2−
√

c1) > 2.072. We may let
c1 = 210 andc2 = 211 to satisfy the required conditions (5.53), (5.57) and (5.58)
for 10 ≤ n ≤ 1010/211 = 1/2 × 510.
For n ≥ 1/2 × 510, we may letc1 = 211 and c2 = 212 to satisfy the required
conditions (5.56) (since allε entries in Table I of [4] are≪ 1/3), (5.57) and
(5.58).
Thus we have4(log2 n + 7) + 1 ≤ |M | ≤ 4(log2 n + 14) + 1, for n ≥ 10.

• r = 3: The conditions (5.57) and (5.58) reduce to(c1 − 1)n > 9(log2 n + log2 c2 +
3) + 1 andc1n > 4 · 27(log2 n + log2 c2 + 3)(log2 n + log2 c + 2) + 9(6 +

√
c2n).

For c2n < 1010, the condition (5.53) is now
√

n(
√

c2 − √
c1) > 2.072 × 2. We

may letc1 = 212 andc2 = 213 to satisfy the required conditions (5.53), (5.57) and
(5.58) for10 ≤ n ≤ 1010/213 = 1/8 × 510.
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For n ≥ 1/8 × 510 it suffices to letc1 = 213 andc2 = 214 to ensure (5.53), (5.57)
and (5.58) are satisfied.
Thus we have9(log2 +8) + 1 ≤ |M | ≤ 9(log2 n + 17) + 1, for n ≥ 10.

• r = 4: The conditions (5.57) and (5.58) reduce to(c1−1)n > 16(log2 n+log2 c2+
4)+1 andc1n > 4 ·64(log2 n+log2 c2 +4)(log2 n+log2 c2 +3)+16(6+

√
c2n).

For c2n < 1010, the condition (5.53) is
√

n(
√

c2 −
√

c1) > 2.072 × 4. We may let
c1 = 213 andc2 = 214 to satisfy the required conditions (5.53), (5.57) and (5.58)
for 16 ≤ n ≤ 1010/214 = 1/16 × 510.
Forn ≥ 1/16 × 510 it suffices to letc1 = 214 andc2 = 215 to ensure (5.53), (5.57)
and (5.58) are satisfied.
Thus we have16(log2 +8) + 1 ≤ |M | ≤ 16(log2 n + 19) + 1, for n ≥ 16.

• r = 5: The conditions (5.57) and (5.58) reduce to(c1−1)n > 25(log2 n+log2 c2+
5)+1 andc1n > 4 ·125(log2 n+log2 c2 +5)(log2 n+log2 c2 +4)+25(6+

√
c2n).

Forc2n < 1010, the condition (5.53) is
√

n(
√

c2 −
√

c1) > 2.072×16. We may let
c1 = 214 andc2 = 215 to satisfy the required conditions (5.53), (5.57) and (5.58)
for 19 ≤ n ≤ 1010/215 = 1/32 × 510.
Forn ≥ 1/32 × 510 it suffices to letc1 = 215 andc2 = 216 to ensure (5.53), (5.57)
and (5.58) are satisfied.
Thus we have25(log2 +8) + 1 ≤ |M | ≤ 25(log2 n + 21) + 1, for n ≥ 19.

5.2. Prefixing Algorithm. Let r denote the target synchronization error correction ca-
pability. The goal of this section it to provide an explicit prefixing scheme which, based on
the strings of lengthn, produces a fixed length prefixps of lengthv, whereps is a function
of s, such that the stringts = [ps s] after the transformationTv+n given in (2.1) satisfies first
r congruency constraints of the type previously described in(4.12), which were shown to be
sufficient to provide immunity tor repetition errors. Using judiciously chosen prefix, we will
show that this will be possible forv = |ps| = O(log n).

We select asps that preimage with the property that in the concatenation[ps s] the last
bit of ps is the complement of the first bit ofs. This property ensures that no bin of zeros
in the transformed domain spans the boundary separating thesubstrings corresponding to the
transformed prefix and the transformed original string.

For a given repetition error correction capabilityr and the original string lengthn letP be
a prime number with the property thatk = lcm(2, 3, ..., r)|(P −1) and such thatP lies in the
interval that scales linearly withn, namely thatP ∈ (c1n, c2n) for 1 < c1 < c2, wherec1, c2

possibly depend onr but not onn and are chosen such that (5.53) (or (5.56), for appropriate
k andn), (5.57) and (5.58) hold. The existence of suchP was discussed in the previous
section. LetRP be the set of all residuesmod P . Recall thatM = ∪r

i=1Fi ∪ {0} denotes
the set of indices of bins of zeros reserved for the prefix, whereFi = ∪2i−1

j=1 Bi,j(xi,j) where
Bi,j(xi,j) are given in (5.9), and are constructed such that all setsBi,j(xi,j) for 1 ≤ i ≤ r,
1 ≤ j ≤ 2i − 1 are nonintersecting. The existence of disjoint setsBi,j(xi,j) for suchP was
proved in Lemma 5.4. LetL = |M |. Let N denote the total number of bins of zeros ofs̃,
wheres̃ = sTn. By construction,N ≤ n. Let

a′
1 ≡ ∑L+N

i=L+1 bifi modP,

a′
2 ≡ ∑L+N

i=L+1 bif
2
i modP

...
a′

r ≡ ∑L+N
i=L+1 bif

r
i modP

(5.59)

wherebi is the size of theith bin of zeros iñts (obtained by transformingts using (2.1)), and
fi in (5.59) are chosen in the increasing order from the setRP \ M . SinceN ≤ n, and since
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by the condition (5.57),n ≤ P − L, the setRP \ M is large enough to accommodate such
fi’s.

We may think ofa′
1 througha′

r as the contribution of the original string to the overall
congruency value of̃ts, since theith bin of zeros forL + 1 ≤ i ≤ L + N is precisely thejth
bin of zeros iñs for j = i − L, since no run spans bothps ands by the choice ofps.

Since not all strings in the original code may have the same number of bins of zeros in the
transformed domain, we may view the unused elements of the set RP \ M as corresponding
to ”virtual” bins of size zero. Since these bins are not altered during the transmission that
causesr or less repetitions, the locations of repetitions can be uniquely determined as shown
in the proof of Lemmas 4.1 and 4.3.

We now show that it is always possible to achieve

a1 ≡
∑L+N

i=1 bifi modP,

a2 ≡ ∑L+N
i=1 bif

2
i modP,

...
ar ≡

∑L+N
i=1 bif

r
i modP,

(5.60)

for arbitrary but fixed valuesa1 throughar irrespective of the valuesa′
1 througha′

r,
wherebi is either0 or 1 for 1 ≤ i ≤ L − 1, and wherefL = 0.

Before describing the encoding method that achieves (5.60)we state the following con-
venient result.

LEMMA 5.5. SupposeP is a prime number such thati|(P − 1). Suppose the equation
xi ≡ a mod P has a solution,1 ≤ a ≤ P − 1. Then the equationxi ≡ a mod P hasi
distinct solutions [1] and we may call themx1 throughxi. The sum

∑i
k=1 xj

k ≡ 0 mod P
for 1 ≤ j ≤ i − 1.

Proof. Let us consider the equationxi ≡ a mod P . Using Vieta’s formulas and New-
ton’s identities overGF (P ) it follows that

∑i
k=1 xj

k ≡ 0 mod P for 1 ≤ j ≤ i − 1.
The encoding procedure is recursive and proceeds as follows. Let l be thelth level of

recursion forl = 1 to l = r. Thelth level ensures that thelth congruency constraint in (5.60)
is satisfied without altering previousl − 1 levels. At each levell, starting withl = 1 and
while l ≤ r:

1. Select a subsetTl of Fl = ∪2l−1
j=1 Bl,j(xl,j) such that

∑
k∈Tl

kl ≡ al−a′
l−
∑l−1

i=1 di,l

mod P , and such that if an elementy, yl ≡ z mod P of Bl,j(xl,j) is selected,
then so are all otherl − 1 lth roots ofz (which are also elements ofBl,j(xl,j) by
construction). Forl = 1,

∑
k∈T1

k ≡ a1 − a′
1 mod P .

2. Letdl,j ≡
∑

k∈Tl
kj mod P for l + 1 ≤ j ≤ r.

3. For eachi, 1 ≤ i ≤ |Fl|, for whichfi ∈ Tl we setbi = 1, and for eachi, for which
fi /∈ Tl we setbi = 0.

4. Proceed to levell + 1.
After the levelr is completed, letbL =

∑r
i=1(|Fi| − |Ti|). The purpose of this bin with

weighting zero is to ensure that the overall stringts has the same length irrespective of the
structure of the starting strings.

The existence ofTl, Tl ⊆ Fl in Step 1) follows from Lemmas in Section 2. In particular,
recall that each residuemod P can be expressed as a sum of a subsetLl of ∪2l−1

j=1 Al,j(xl,j),
by Lemma 5.3. We then letTl consist of alllth power roots of elements inLl. By construc-
tion, Tl is the union of appropriate subsets of setsBl,j(xl,j), whoselth powers are precisely
the elements ofLl, and these subsets are disjoint by construction.

Recall that the setsBl,j(xl,j) are constructed such that if anlth power root of a residuey
belongs toBl,j(xl,j) then alll power roots ofy also belong toBl,j(xl,j). Then, by Lemma 5.5
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the contribution to each congruency sum for levels1 throughl − 1 of the elements ofFl is
zero. Hence, once the target congruency value is reached fora particular level, it will not
be altered by establishing congruencies at subsequent levels. As a result, since each string
t̃s satisfies congruency constraints given in (4.12), the resulting set of strings is immune tor
repetitions while incurring asymptotically negligible redundancy.

6. Summary and Concluding Remarks. In this paper we discussed the problem of
constructing repetition error correcting codes (subsets of binary strings) and the problem of
guaranteeing the immunity to repetition errors of a collection of binary strings. We presented
explicit number-theoretic constructions and provided results on the cardinalities of these con-
structions. We provided a generalization of a generating function calculation of Sloane [7]
and a construction of multiple repetition error correctingcodes that is asymptotically a con-
stant factor better than the previously best known construction due to Levenshtein [9]. The
latter construction was then used to develop a technique forprefixing a collection of binary
strings for guaranteed immunity to repetition errors. The presented prefixing scheme relies
on introducing a carefully chosen prefix for each original binary string such that the resulting
strings (each consisting od the prefix and one of the originalstrings) belong to the set previ-
ously shown to be immune to repetition errors. The prefix length is constructed to be only
logarithmic in the size of the original collection.
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