
CS294: Probabilistically Checkable and Interactive Proofs February 16, 2017

PCPs from Linear PCPs
Instructor: Alessandro Chiesa & Igor Shinkar Scribe: Aditya Mishra

1 Introduction

In this lecture, we formally introduce Linear PCPs (LPCPs), and then show how one can compile
any LPCP into a PCP. This will complete the proof that NP ⊆ PCP[poly(n), O(1)] from last lecture.

2 Linear PCPs

We repeat the definition of a PCP in order to compare it with that of a LPCP.

Definition 1 A PCP for a language L is a probabilistic polynomial time verifier V such that:

1. Completeness. ∀x ∈ L,∃π ∈ {0, 1}l such that Pr[V π(x)] = 1 ≥ c

2. Soundness. ∀x /∈ L,∀π ∈ {0, 1}l, it holds that Pr[V π(x)] = 1 ≤ s

We say that L ∈ PCPc,s[r, q, l] if the above holds with V tossing r random coins and making q
queries.

We now turn to LPCPs, which are the same as PCPs except that that the verifier has oracle access
to a linear function rather than a string.

Definition 2 A LPCP for a language L is a probabilistic polynomial time verifier V such that:

1. Completeness. ∀x ∈ L,∃λ ∈ {0, 1}l such that Pr[V 〈λ,·〉(x) = 1] ≥ c

2. Soundness. ∀x /∈ L,∀λ ∈ {0, 1}l, it holds that Pr[V 〈λ,·〉(x) = 1] ≤ s

We say that L ∈ LPCPc,s[r, q, l] if the above holds with V tossing r random coins and making q
queries.

Note here that, while 〈λ, ·〉 is a linear function defined via l bits, the evaluation table of 〈λ, ·〉 consists
of 2l bits.

3 Compiling a Linear PCP into a PCP

We describe how any Linear PCP can be compiled into a (standard) PCP.

9-1

Idea 3 Let π : [2l]→ {0, 1} be an evaluation table of 〈λ, ·〉. Let VPCP = VLPCP.

This seems like a good idea at first. However, the prover may write π̃ that is not the evaluation table
of any linear function. We clearly have no way to check if π̃ is the evaluation of a linear function in
less than 2l queries, as there could always be a mistake at the location that we did not query. That
said, as we shall see, it will suffice to ensure that π̃ is close to the evaluation of a linear function,
and this can be done with few queries.

Definition 4 We say that a function f : {0, 1}n → {0, 1} is δ-far from LIN if for all linear functions
p ∈ LIN, ∆(f, p) ≥ δ. Likewise, we say that a function f : {0, 1}n → {0, 1} is δ-close from LIN if
there exists a linear function p such that ∆(f, p) ≤ δ.

Theorem 5 There exists O(1)-query verifier VLIN such that:

1. ∀π ∈ LIN, P r[V πLIN = 1] = 1

2. ∀π such that ∆(π,LIN) > 1
10 , P r[V

π
LIN = 1] ≤ 1

2

We will hold off the proof for Theorem 5 until Section 4.

Now we can define V πPCP as follows:

1. Run V πLIN. If the function is not linear, reject.

2. Run V 〈λ̃,·〉LPCP, where 〈λ̃, ·〉 is π treated as a linear function.

The proof of completeness is trivial. We now prove soundness. Suppose that x ∈ L and λ̃ is a
function from [2l] → {0, 1}. There are two cases. Suppose that λ̃ is 1

10 far from LIN. This implies
that VLIN accepts λ̃ as linear with probability at most 1

2 , and VLPCP by definition accepts with
probability at most s. The second case is when λ̃ is 1

10 -close from LIN. Let λ be the closest linear
function to λ̃. Assuming that the distribution of the queries is uniformly random, we see that

Pr[V λ̃PCPaccepts] ≤ Pr[V
〈λ,·〉
LPCPaccepts] + Pr[∃a query that is noise]

≤ s+ q · 1

10

Of course in most cases, the distribution of the queries is not uniformly random. We can use self-
correction in order to bring down the upper-bound shown in the last expression, and to address the
issue of the bias of the queries. This is explained below.

Idea 6 For all a ∈ {0, 1}l, pick random r ∈ {0, 1}l and return π(r) + π(r + a). Using the union
bound, we see that

Pr[〈λ, a〉 6= π(r) + π(r + a)] ≤ 2

10

Using Chernoff bounds, we see that doing this process O(log q) times will result in an error at most
O(1

q). Of course, we can bring down the error further as we wish by having more queries.

We have shown that indeed Theorem 1 holds with:

9-2

1. c′ = c

2. s′ = max{ 1
2 , s+ ε}, where ε is the error that occurred from the log q queries

3. r′ = r + log(q) · l

4. q′ = q · log(q)

5. l′ = 2l

4 A Linearity Test

The compiler from LPCP to PCP that we have described assumed the existence of a linearity test,
as stated in Theorem 5. We now prove this theorem by presenting and analyzing the linearity test
of Blum, Luby, and Rubinfeld [BLR93]; we follow lecture notes by Moshkovitz [Mos10].

4.1 Preliminaries

Before we introduce the actual test, we first go over some definitions.

Definition 7 A function f : {0, 1}n → {0, 1} is linear if for all x, y ∈ {0, 1}n, f(x+y) = f(x)+f(y).

4.2 The Actual Test

Suppose we are given a (potentially linear) function f : {0, 1}n → {0, 1}. Choose points x, y ∈ {0, 1}n
independently and uniformly at random, and test if f(x) + f(y) = f(x + y) over F2. It is easy to
see that this is a 3-query verifier. The proof of completeness is trivial, since if f is linear, then by
definition of linearity, this test will pass with probability 1. The soundness theorem is as follows:

Theorem 8 Pr[BLR test rejects f] ≥ min
(

2
9 ,

∆(f,LIN)
2

)
The subsequent section gives a proof of soundness for the BLR test.

4.3 Proof of Soundness

We use the idea of majority correction. If a function f is linear in a binary field, we have that
f(x) = f(y) + f(x + y). We can think of each of the 2n possible values of y as a vote on the value
of f(x). Since f(x) is equal to either 0 or 1, we see that either 0 or 1 received the majority of votes
from the y values. More formally, we define gf (which is dependent on f) as follows:

gf (x) =

{
1 if Pry[f(y) + f(x− y) = 1] ≥ 1

2

0 otherwise.

We also define Px = Pry[gf (x) = f(y) + f(x− y)]. Note that by definition of gf , Px ≥ 1
2 . In order

to prove soundness, we first prove some claims.

9-3

Claim 9 Pr[BLR rejects f] ≥ 1
2 ·∆(f, g)

Proof: We have that:

Pr[rejection] = Pr[g(x) 6= f(x)]·Pr[rejection|g(x) 6= f(x)]+Pr[g(x) = f(x)]·Pr[rejection|g(x) = f(x)]

Since we are interested in a lower bound, we ignore the second term. Note that Pr[g(x) 6= f(x)] =
∆(f, g) by definition. We see that if g(x) 6= f(x), then f(x) = (y) + f(x− y) for 1− Px ≤ 1

2 of the
possible values for y. Since we are in F2, addition and subtraction are the same and so the equation
f(x) = f(y) + f(x− y) is the same as the BLR test, f(x+ y) = f(x) + f(y). �

Claim 10 If Pr[BLR rejects f] < 2
9 , then for all x we have Px > 2

3 .

Proof: Fix x. We define

Ax = Pr
y,z

[f(y) + f(x+ y) = f(z) + f(x+ z)]

We can compute A in two different ways. We see that

Ax = Pr
y,z

[f(y) + f(x+ y) = g(x) ∧ f(z) + f(x+ z) = g(x)]

+ Pr
y,z

[f(y) + f(x+ y) 6= g(x) ∧ f(z) + f(x+ z) 6= g(x)]

= P 2
x + (1− Px)2

We can also use the BLR rejection probability to bound Ax. Since we are working over a binary field,
we can rewrite the equation f(y) + f(x+ y) = f(z) + f(x+ z) as f(y) + f(z) = f(x+ y) + f(x+ z).
We see that by linearity, Pr[f(y) + f(z) = f(y + z)] = 1 − Pr[BLR rejects f] > 7

9 . As y and z
are independent and uniformly sampled, we can apply the same reasoning to the case of x+ y and
x+ z. Thus we can say that f(x+ y) + f(y + z) = f((x+ y) + (x+ z)) = f(y + z) with probability
greater than 7

9 . Thus the probability of both these events happening (which is Ax) is greater than
5
9 . Solving the quadratic:

P 2
x + (1− Px)2 >

5

9

gives [0, 1
3) ∪ (2

3 , 1] as solutions. As Px ≥ 1
2 , we see that Px > 2

3 . �

Claim 11 If Pr[BLR rejects f] < 2
9 , then gf is linear.

Proof: Using the previous claim, we see that Px > 2
3 . Fix x and y and choose z uniformly and

random. Then g(x) = f(z) + f(x+ z) with probability larger than 2
3 . Using the same argument, we

see that Pr[g(y) = f(z) + f(y + z)] > 2
3 and Pr[g(x + y) = f(z) + f(x + z + y)] > 2

3 . Substituting
(x+ z) in place of z, we have that Pr[gf (x+ y) = f(z + x) + f(z + y)] > 2

3 . Thus, there exists a z0

such that:
gf (x) = f(z0) + f(x+ z0)

gf (y) = f(z0) + f(y + z0)

gf (x+ y) = f(x+ y + z0)

all hold. This shows that
gf (x) + gf (y) = gf (x+ y)

9-4

So we see that gf is linear. �

Using the previous claims we now can prove soundness for the BLR test. There are two cases: either
Pr[rejection] ≥ 2

9 , or g is linear and so

Pr[rejection] ≥ 1

2
·∆(f, g) ≥ 1

2
∆(f,LIN)

This is exactly what the soundness theorem claims.

References

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld, Self-testing/correcting with applica-
tions to numerical problems, Journal of Computer and System Sciences 47 (1993), no. 3,
549–595.

[Mos10] Dana Moshkovitz, Pcp and hardness of approximation, lecture 5: Linearity testing, http:
//www.cs.utexas.edu/~danama/courses/approximability/linearity-testing.pdf,
2010.

9-5

http://www.cs.utexas.edu/~danama/courses/approximability/linearity-testing.pdf
http://www.cs.utexas.edu/~danama/courses/approximability/linearity-testing.pdf

	Introduction
	Linear PCPs
	Compiling a Linear PCP into a PCP
	A Linearity Test
	Preliminaries
	The Actual Test
	Proof of Soundness

