
CS294: Probabilistically Checkable and Interactive Proofs February 2, 2017

Doubly-Efficient Interactive Proofs
Instructor: Alessandro Chiesa & Igor Shinkar Scribe: Lynn Chua

1 Introduction

In Shamir’s protocol, the running time of an honest prover on a QBF with n variables and m clauses
is 2O(n). Consider a machineM that runs in time T and space S. We would like an interactive proof
to demonstrate to the verifier that M(x) = 1. The recursion for this computation has depth log T ,
and at each level there are S possiblities. Hence an honest prover runs in time ≥ 2S log T , which is
inefficient.

Our meta-goal is to delegate tractable computations to untrusted parties, and for the verification that
the computation was executed correctly to be considerably faster than performing the computation.
For x ∈ L ∈ TimeSpace(T, S), ideally in an interactive proof system we would like the prover to run
in poly(T, S) and verifier to run in poly log(T, S).

Theorem 1 (Goldwasser, Kalai, Rothblum, 08, [GKR15]) Let L be a language that is decid-
able by a family of O(logS(n))-space uniform circuits of size S(n) and depth D(n). Then L has an
interactive proof such that the following properties are satisfied.

• Prover runs in time poly(S,D).

• Verifier runs in time npoly(D, logS).

• Communication complexity (number of rounds) is poly(D, logS).

• Public coin.

The proof of this theorem will take a few lectures. For today we remove the assumption of uniformity.
Instead, we assume that the verifier has oracle access to information about the wires of the circuit.
This is the “bare-bones protocol” in the paper [GKR15][Section 3].

2 Preliminaries

We assume that the circuit C : Fn → F is an arithmetic circuit over a field F. We also assume that
C is a layered arithmetic circuit with size S, depth D and fan-in 2, as illustrated below. We use the
notation [m] = {0, 1, . . . ,m− 1} for all m ∈ Z>0.

5-1

[h] Layer #Gates Wire connections Wire values
0 (output)

· · ·
· · ·

· · ·
...

...
...

...

1 V ∗0 ∈ F
1 S add1,mul1 V ∗1 : [S]→ F
2 S add2,mul2 V ∗2 : [S]→ F
...

...
...

D − 1 S addD−1,mulD−1 V ∗D−1 : [S]→ F
D (input) n addD,mulD V ∗D : [n]→ F

In a layered arithmetic circuit of depth D, the gates are divided into (D + 1) layers, and the wires
only connect gates in adjacent layers. Layer 0 is the output layer with 1 output gate, and layer D
is the input layer with n input gates. For simplicity, we assume that layers 1 to D − 1 all have S
gates. The wire value functions V ∗i , for 0 ≤ i ≤ D, map the gates at the i-th layer to their values.

For each layer i, 1 ≤ i ≤ D, we define functions addi,muli : [S]
3 → {0, 1}.

addi(a, b, c) =

{
1 if a is add gate in layer i− 1 and b, c, (b ≤ c) are its inputs in layer i
0 otherwise

(1)

muli(a, b, c) =

{
1 if a is multiply gate in layer i− 1 and b, c, (b ≤ c) are its inputs in layer i
0 otherwise

.

(2)

We can identify [S] with the boolean hypercube {0, 1}logS , but this gives worse running times than
in the theorem statement. A better choice would be to use Reed-Muller codes. Let H ⊂ F be a
subfield such that |H| = logS and let m = logS

log |H| . We identify [S] with Hm in the rest of this
section.

We define the arithmetizations of addi,muli as ˆaddi, m̂uli : F3m → F. These are polynomials of
degree at most δ in each variable, where |H|−1 ≤ δ < |F|. We also define the functions Vi : Fm → F
corresponding to the wire values V ∗i , where 1 ≤ i ≤ D − 1. The functions Vi have degree at most
|H| − 1 in each variable. Similarly, we define V0 ∈ F. As the last layer has n gates, we identify [n]
with Hm′

, where m′ = logn
log |H| ≤ m, and we define VD : Fm′ → F.

3 Bare-bones protocol

We now describe the bare-bones protocol. The prover and verifier have as input x ∈ Fn, and are
given oracle access to the functions { ˆaddi, m̂uli}1≤i≤D, which specify the circuit C. The goal is for
the prover to prove to the verifier that C(x) = 0. This is done in D phases.

We describe the protocol starting from the output layer, which is the first phase of the protocol. By
the definitions above, we have

V0 =
∑

w1,w2∈Hm

ˆadd1(0, w1, w2) · (V1(w1) + V1(w2)) + m̂ul1(0, w1, w2) · (V1(w1) · V1(w2)) (3)

V1(z) =
∑

w1,w2∈Hm

ˆadd2(z, w1, w2) · (V2(w1) + V2(w2)) + m̂ul2(z, w1, w2) · (V2(w1) · V2(w2)) (4)

where z ∈ Hm. Each summand on the right hand side, when treated as a polynomial in w1, w2, has
degree at most δ + |H| − 1 ≤ 2δ in each variable.

5-2

The goal of the prover is to show that V0 = y0 for a claimed y0 ∈ F. This is done using the sum-check
protocol. However, in the usual sum-check protocol the verifier would have to compute

ˆadd1(0, w
v
1 , w

v
2) · (V1(wv1) + V1(w

v
2)) + m̂ul1(0, w

v
1 , w

v
2) · (V1(wv1) · V1(wv2)) = y1 , (5)

for random wv1 , w
v
2 ∈ Fm (chosen by the verifier). The verifier has oracle access to ˆadd1, m̂ul1, but

the computation of V1(wv1), V1(wv2) would require time poly(S), which breaks the assumption of the
verifier’s computational power in Theorem 1. Instead, the verifier sends wv1 , wv2 to the prover. The
prover sends y11, y12 to the verifier, with the claim that V1(wv1) = y11 and V1(wv2) = y12.

The next goal is to verify that V1(wv1) = y11 and V1(w
v
2) = y12. This reduces the task of proving

V0 = y0 to proving these two claims. We further reduce these two claims to a single claim as follows.

• The verifier chooses s, t ∈ F and sends it to the prover.

• Let γ : F→ Fm be the unique line such that γ(s) = wv1 and γ(t) = wv2 . The prover sends the
function f = V1 ◦ γ : F→ F to the verifier. This is a polynomial of degree at most m(|H| − 1).

• The verifier checks that f(wv1) = y11 and f(wv2) = y12. If so, the verifier sends a random t ∈ F
to the prover.

• The prover and verifier proceed to the next phase, repeating the sum check protocol and the
additional interactive protocol described above with the goal of proving that V1(γ(t)) = f(t).

When the prover and verifier reach the last layer, they proceed in a similar way with a few modi-
fications as layer D has n gates whereas the previous layers have S gates. Thus in this phase the
sum-check protocol is over z, w1, w2 ∈ Hm′

.

After the last phase, the verifier has to verify on his own an equality of the form Vd(zd) = rd. We
can write VD as

VD(z) =
∑

w∈Hm′

EQH,m′(z, w)xw , (6)

where x is the input to the circuit and EQH,m′ denotes the equality polynomial

EQH,m′(z, w) =

m′∏
i=1

∑
a∈H

∏
γ∈H\{a}

(zi − γ)(wi − γ)
(γ − a)2

. (7)

We can check that if z ∈ Hm′
, w ∈ Hm′

, then EQH,m′(z, w) = 1 if z = w and is 0 otherwise. EQH,m′

can take any values outside Hm′ ×Hm′
. We observe that EQ has degree ≤ |H| in each coordinate,

and EQ can be evaluated efficiently at any point. Thus the verifier can perform this computation
on his own to complete the final verification step.

References

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum, Delegating computation:
Interactive proofs for muggles, Journal of the ACM 62 (2015), no. 4, 27:1–27:64.

5-3

