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1 Introduction

We begin with an interactive proof system for the Graph Non-Isomorphism (GNI) problem: given
a pair of graphs (G0, G1), decide if they are not isomorphic.

Proof System 1 (IP for GNI) The following is a private-coin, 2-round IP protocol for GNI,
with perfect completeness and soundness 1/2:

• The Verifier picks b ∈ {0, 1} and π ∈ Sn uniformly, and sends π(Gb) to the Prover.

• The Prover chooses b̃ ∈ {0, 1} such that Π(Gb) ≡ Gb̃, and sends b̃ to the Verifier.

• The Verifier accepts if and only if b̃ = b.

If G0 6≡ G1, then the Prover can determine whether π(Gb) ≡ G0 or π(Gb) ≡ G1, and return b̃ = b
accordingly. Otherwise, π(Gb) ≡ G0 ≡ G1, and the Prover can do no better (or worse) than guessing
randomly: Pr[ACCEPT] = Prb,π

[
b̃ = b

]
= 1/2. By repeating the protocol in parallel, the soundness

can be arbitrarily amplified.

That the randomness (b, π) is hidden from the Prover is essential to the soundness of this protocol,
which invites the following question: is there a public-coin IP protocol for GNI? After introducing
the requisite foundation, we will show such a protocol at the end of lecture.

Theorem 2 GNI has a public-coin interactive proof system with 2 rounds.

2 Arthur-Merlin Protocols

IP protocols as introduced by Goldwasser and Sipser [GS86] generalize the Arthur-Merlin protocols
previously introduced by Babai [Bab85]. In an Arthur-Merlin protocol, Arthur and Merlin take the
roles of the Verifier and Prover, respectively, and Arthur’s actions are limited either to rolling coins
and sending the result to Merlin or to deciding to terminate by accepting or rejecting. In a general
IP protocol, however, Arthur is allowed to keep the randomness private. Thus we have the following
complexity classes.

Definition 3 The class AM[k] (resp. MA[k]) is the set of languages that have a public-coin, k-round
interactive proof system in which the Verifier (resp. Prover) acts first.

(Note that there is no material difference between the definition given here and Babai’s original
in which the Verifier is constrained to sending only the randomness to the Prover.) In fact, this
Arthur-Merlin hierarchy almost completely collapses:
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Theorem 4 For all constant k ≥ 2, AM[2] = AM[k] = MA[k + 1]. [Bab85]

Corollary 5 MA ⊂ AM.

Therefore, we can unambiguously define AM , AM [2]. More generally, we have interactive proof
systems with private coins:

Definition 6 The class IP[k] is the set of languages that have a private-coin, k-round interactive
proof system.

There is another way of characterizing AM and MA that gives an interesting perspective into their
difference.

Fact 7 Let V : (x, π, r) 7→ {0, 1} be the predicate indicating whether the Verifier accepts, where x
is the instance, π is the proof sent by the Prover, and r is the randomness sampled by the Verifier.
Then

• AM =

{
L : ∃V

{
Prr [∃πV (x, π, r) = 1] > 2/3, x ∈ L,
Prr [∃πV (x, π, r) = 1] < 1/3, x /∈ L

}

• MA =

{
L : ∃V

{
∃πPrr [V (x, π, r) = 1] > 2/3, x ∈ L,
∀πPrr [V (x, π, r) = 1] < 1/3, x /∈ L

}

Note the distinction between whether or not the quantification of the proof is conditioned on the
randomness or not; in this sense, one difference between AM and MA is whether or not the predicate
V is deterministic or random, respectively.

2.1 Perfect completeness

Not only can we arbitrarily amplify completeness and soundness through parallel repetition, but it
can be shown that any AM system can be modified so that it has perfect completeness.

Definition 8 The class AMc,s is the set of languages with 2-round Arthur-Merlin protocols with
completeness c and soundness s.

Fact 9 AM 2
3 ,

1
3
⊂ AM1−2−n2 ,2−n2 and MA 2

3 ,
1
3
⊂ MA1−2−n2 ,2−n2 .

Theorem 10 AM 2
3 ,

1
3

= AM1, 12
= AM1,2−n = AM.

With this notation, we can state a more specific version of Theorem 2:

Theorem 11 ∃0 < s < c < 1 such that GNI ∈ AMc,s.
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2.2 Public versus private coins

While we won’t prove it here, we can make a much more general statement than Theorem 2: for
every language L with a k-round IP system, L has a k + 2 round public-coin IP system. More
formally, we have the following theorem due to Goldwasser and Sipser [GS86]:

Theorem 12 ∀k, IP[k] ⊂ AM[k + 2]

The main ideas of the proof of the above theorem are contained in the proof of Theorem 2. The
essence of the proof is to reformulate the problem as one about the size of a certain set. Given a
pair of graphs (G0, G1), let

S = {(H,π) : π ∈ aut(H) ∧ (H ≡ G0 ∨H ≡ G1)} . (1)

Then

|S| =

{
2 · n!, G0 6≡ G1,

n!, G0 ≡ G1.
(2)

Now, we would like an AM protocol that convinces the Verifier that |S| = N and not |S| = N/2,
where N = 2 · n!. We can do so using hashing.

3 Hashing

We’ll briefly introduce the relevent ideas from hashing that we’ll need to construct the AM system
for GNI.

Definition 13 A family of functions Hm,k =
{
h : {0, 1}m → {0, 1}k

}
, where k < m, is called a

pairwise independent hash family if for all x 6= x′ ∈ {0, 1}m and y, y′ ∈ {0, 1}k,

Pr
h∈Hm,k

[h(x) = y ∧ h(x′) = y′] = 2−2k. (3)

Lemma 14 There exists a pairwise independent hash family Hm,k of size 22m; therefore, a function
h ∈ Hm,k can be sampled using 2m bits.

Proof: Let
H =

{
ha,b(x) = a · x+ b mod 2k : a, b ∈ F2m

}
, (4)

where multiplication is within the field F2m . Fix x 6= x′ ∈ {0, 1}m and y, y′ ∈ {0, 1}k. Then

Pr
h∈Hm,k

[h(x) = y ∧ h(x′) = y′] = Pr
h∈Hm,k

[(
ax+ b = y mod 2k

)
∧
(
ax′ + b = y′ mod 2k

)]
= Pr
h∈Hm,k

[(
a = (y − y′)(x− x′)−1 mod 2k

)
∧
(
b = y − ax mod 2k

)]
= 2−2k.

(5)

�

Going forward, we will assume Hm,k is as defined in Equation 4.
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4 Goldwasser-Sipser Protocol

Now, we are prepared to complete our proof of Theorem 2, using a protocol due to Goldwasser and
Sipser. The protocol is for the general problem of determining whether a set S is of size N or at
most N/2. The only constraint on S is that membership therein can be efficiently determined given
a witness. Specializing to the case when the set is as defined in Equation 1 gives the desired result
for GNI.

Proof System 15 Goldwasser-Sipser The following is a public-coin, 2-round IP (i.e. AM) protocol
for determining whether the size of a set S ⊆ {0, 1}m is N or at most N/2. First, choose a k such
that 2k−2 ≤ N ≤ 2k−1, and let p = N · 2−k ∈ [1/4, 1/2]. S (implicitly), N , and k are known by both
the Verifier and the Prover.

• The Verifier picks a random hash function ha,b from Hm,k by uniformly sampling a, b ∈ F2m ,
as well as y ∈ F2k , then sends (a, b, y) to the Prover.

• The Prover finds an x ∈ S such that h(x) = y, and sends this x together with a proof π of its
membership in S back to the Verifier.

• The Verifier accepts iff the proof π certifies that x ∈ S.

The following claim implies the completeness and soundness of the above protocol.

Claim 16 • If |S| = N , then Prh,y [∃x ∈ S : h(x) = y] ≥ 3
4
|S|
2k

= 3
4p.

• If |S| ≤ N/2, then Prh,y [∃x ∈ S : h(x) = y] < |S|
2k

= p
2 .

Proof: Let S ⊂ {0, 1}m such that |S| ≤ 2k−1. Uniformly sample h ∈ Hm,k and y ∈ {0, 1}k. Then
3

4

|S|
2k
≤ Pr
h,y

[∃x ∈ S : h(x) = y] ≤ |S|
2k
, (6)

which immediately implies the claim. The upper bound is almost trivial; |h(S)| ≤ |S|. To show the
lower bound, fix y. Then

Pr
h

[∃x ∈ S : h(x) = y] ≥
∑
x∈S

Pr
h

[h(x) = y]−
∑

x 6=x′∈S

Pr
h

[h(x) = y ∧ h(x′) = y]

= |S| 1

2k
−
(
S

2

)
· 1

22k

≥ |S|
2k
− 1

2

(
|S|
2k

)2

≥ |S|
2k
− 1

4

|S|
2k

=
3

4

|S|
2k
.

(7)

Because this holds for all y, the lower bound follows. �

The relationship between the public-coin Goldwasser-Sipser protocol for GNI and the private-coin
one given at the beginning of lecture captures of the general proof that IP[k] ⊂ AM[k+ 2]. Consider
S as the set of possible messages from the Verifier to the Prover. If the two graphs are isomorphic,
then the message completely obscures the bit b that selects one of the graphs, while otherwise the
message completely reveals it. Therefore, if the graphs are isomorphic then the mapping from the
randomness to the message is 21, while otherwise it is 11. In the latter case, the set S of messages
is twice as large.
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