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1 Pspace ⊆ IP

The first proof that Pspace ⊆ IP is due to Shamir, and a simplified proof was given by Shen. These
notes discuss the simplified version in [She92], though most of the ideas are the same as those in
[Sha92]. Notes by Katz also served as a reference [Kat11].

Theorem 1 ([Sha92]) Pspace ⊆ IP.

To show the inclusion of Pspace in IP, we need to begin with a Pspace-complete language.

1.1 True Quantified Boolean Formulas (tqbf)

Definition 2 A quantified boolean formula (QBF) is an expression of the form

∀x1∃x2∀x3 . . . ∃xnφ(x1, . . . , xn), (1)

where φ is a boolean formula on n variables.

Note that since each variable in a QBF is quantified, a QBF is either true or false.

Definition 3 tqbf is the language of all boolean formulas φ such that if φ is a formula on n
variables, then the corresponding QBF (1) is true.

Fact 4 tqbf is Pspace-complete (see section 2 for a proof).

Hence to show that Pspace ⊆ IP, it suffices to show that tqbf ∈ IP.

Claim 5 tqbf ∈ IP.

In order prove claim 5, we will need to present a complete and sound interactive protocol that decides
whether a given QBF is true. In the sum-check protocol we used an arithmetization of a 3-CNF
boolean formula. Likewise, here we will need a way to arithmetize a QBF.

1.2 Arithmetization of a QBF

We begin with a boolean formula φ, and we let n be the number of variables and m the number
of clauses of φ. We may assume that φ is in 3-CNF, since if not, we can find an equivalent 3-CNF
boolean formula φ′ and reassign values to n and m accordingly.
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1.2.1 Arithmetization of a 3-CNF Boolean Formula

To arithmetize φ, we use the arithmetization technique wherein we map φ(x1, . . . , xn) to a polynomial
p(x1, . . . , xn) such that for any assignment of boolean values vi ∈ {0, 1} to the xi,

φ(v1, . . . , vn) = p(v1, . . . , vn).

We define the arithmetization map A as follows for variables xi, single-variable expressions x, y, and
z, and clauses c1, . . . , cm:

xi 7→ xi
¬xi 7→ 1− xi

x ∨ y ∨ z 7→ 1− (1−A(x))(1−A(y))(1−A(z))
c1 ∧ · · · ∧ cm 7→

∏m
i=1A(ci)

Applying the map A to φ, we obtain an arithmetization p(x1, . . . , xn) with the desired property.

1.2.2 Arithmetization of ∀ and ∃

It remains to find an arithmetization of the quantifiers ∀ and ∃. For the purposes of arithmetization,
∀ is similar ∧ in that the statement ∀xψ(x) is true if and only if the statement ψ(0) ∧ ψ(1) is true.
Hence if ψ is the part of the QBF following ∀xi and A(ψ) = p, then our arithmetization map A
should be

∀xi ψ(x1, . . . , xn) 7→
∏
xi

p(x1, . . . , xn)

= p(x1, . . . , xi−1, 0, xi+1, . . . , xn)p(x1, . . . , xi−1, 1, xi+1, . . . , xn).

Likewise, ∃ is similar to ∨ since ∃xψ(x) ⇐⇒ ψ(0) ∨ ψ(1). This gives the arithmetization

∃xi ψ(x1, . . . , xn) 7→
∐
xi

p(x1, . . . , xn)

= 1− (1− p(x1, . . . , xi−1, 0, xi+1, . . . , xn))(1− p(x1, . . . , xi−1, 1, xi+1, . . . , xn)).

It would simplify the arithmetic to take all computations over a finite field Fq for some prime number
q. Since our arithmetization can only evaluate to values in {0, 1}, any prime number will suffice
without affecting our computations.

Thus, if we are given the QBF

∀x1∃x2∀x3 . . . ∃xnφ(x1, . . . , xn), (2)

our arithmetization maps it to ∏
x1

∐
x2

. . .
∐
xn

p(x1, . . . , xn) mod q. (3)
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1.2.3 Degree Reduction

Our goal is to develop an interactive protocol that determines whether a given QBF is true. Now
that we have a way to arithmetize a QBF, a natural idea is to adapt the sum-check protocol for this
problem, i.e. to strip off the operators

∏
and

∐
one at a time, from the outside in. Proceeding in

this way, we will quickly encounter a problem.

Recall that in each round of the sum-check protocol, the prover sends the polynomial pi to the verifier,
where pi(x1, . . . , xn) =

∑
ai+1,...,an

p(r1, . . . , ri−1, x, ai+1, . . . , an). This polynomial has degree at
most m if we arithmetize ∨ to addition, or 3m if we use the multiplicative arithmetization of ∨
described in section 1.2.1. However, if in the protocol for tqbf we likewise define pi to be our
arithmetization with the first i operators stripped off and with xj evaluated at a random rj for
j < i, we get

pi(x) =
∏
xi+1

. . .
∐
xn

p(r1, . . . , ri−1, x, xi+1, . . . , xn). (4)

This polynomial could have degree up to 2n−i3m, since each
∏

or
∐

doubles the degree. The
exponential degree of this polynomial is too large for the verifier to handle.

The solution to this problem is due to Shen [She92]. Observe that we plan to evaluate all polynomials
in this protocol only on the boolean hypercube, that is, xi ∈ {0, 1} for all i. Since for any k > 0
and a ∈ {0, 1} we have ak = a, we can reduce all exponents greater than 1 appearing in these
polynomials to 1. For example, we could reduce the polynomial x31x23 + x52x

4
4 to x1x3 + x2x4 for the

purposes of this protocol, since these two polynomials agree on the boolean hypercube.

Define the degree reduction operator Rxi
, which reduces all positive exponents of xi appearing in

an expression to 1. Then in order to ensure that the degree of the arithmetization remains small,
we need to perform degree reduction on all variables prior to each

∏
or
∐
. This gives the final

improvement to our arithmetization, so the QBF ∀x1∃x2∀x3 . . . ∃xnφ(x1, . . . , xn) is arithmetized to∏
x1

Rx1

∐
x2

Rx1
Rx2

∏
x3

. . .
∏
xn−1

Rx1
. . . Rxn−1

∐
xn

Rx1
. . . Rxn

p(x1, . . . , xn) mod q. (5)

1.3 Interactive Protocol for tqbf

Let l = 1
2 (n2 + 3n) and write the arithmetization of a given QBF as

O1 . . .Ol p(x1, . . . , xn) mod q, Ok ∈
{∏

xi

,
∐
xi

, Rxi : 1 ≤ i ≤ n
}
. (6)

The overall goal of the interactive protocol is for the prover to convinve the verifier that

O1 . . .Ol p(x1, . . . , xn) mod q = 1. (7)

In round k of the protocol, the verifier stores some value vk. The prover then sends the verifier a
proof that vk = Ok+1 . . .Ol pk mod q for some polynomial pk. The verifier calls a sub-protocol to
check this and then computes and stores a value vk+1 to send to the prover. Next, the prover sends
the verifier a proof that vk+1 = Ok+1 . . .Ol pk+1 mod q for some polynomial pk+1, and the process
repeats until l rounds have been completed. Initially, p0 = p and the verifier stores the value v0 = 1,
so that the claim to be checked is the claim in (7).

The sub-protocol that the verifier calls in round k must check the type of the operator Ok (
∏
,
∐
,

or R) and act accordingly.
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1.3.1 Case 1: Ok+1 =
∏

xi
for some i

In this case, the verifier has already stored the value vk, which the prover claims is equal to∏
xi

Rx1 . . . Rxi

∐
xi+1

. . .
∐
xn

Rx1 . . . Rxn p(r1, . . . , ri−1, xi, . . . , xn) (8)

for some random r1, . . . , ri−1 ∈ Fq previously generated by the verifier. The claim that vk is equal
to the value in (8) is the input claim. The prover sends the verifier some polynomial p̃k(xi). If the
proof is correct, then p̃k(xi) should be the expression in (8) with the operator

∏
xi

removed. Hence,
to check the prover’s claim, the verifier must check whether vk =

∏
xi
p̃k(xi) = p̃k(0)p̃k(1). If p̃k fails

this check, the verifier rejects the proof and the protocol halts. Otherwise, the verifier randomly
samples ri from Fq, stores the value vk+1 = p̃k(ri), and sends ri to the prover. This ends round k of
the sub-protocol. In the next round, the prover tries to convince the verifier that

vk+1 = Rx1 . . . Rxi

∐
xi+1

. . .
∐
xn

Rx1 . . . Rxn p(r1, . . . , ri, xi+1, . . . , xn), (9)

which is called the output claim.

To determine completeness of this sub-protocol, consider the prover that always sends the polynomial

pk(xi) = Rx1
. . . Rxi

∐
xi+1

. . .
∐
xn

Rx1
. . . Rxn

p(r1, . . . , ri−1, xi, . . . , xn). (10)

Then if the input claim is true, we will always have pk(0)pk(1) = vk, so the verifier will continue
with the protocol. After sampling ri, the verifier will store vk+1 = pk(ri), and it follows from (10)
that the output claim in (9) will be true with probability 1.

For soundness, suppose the input claim is false. Then any prover that sends the polynomial in (10)
will always fail to convince the verifier, since if vk is not equal to the value in (8), then it follows
immediately that vk 6=

∏
xi
pk(xi). Now consider any prover that sends a polynomial p̃k(xi) 6= pk(xi).

From (9) and (10), we see that we can write the output claim as vk+1 = pk(ri). Since p̃k(xi) and
pk(xi) are both polynomials of degree 1 and p̃k 6= pk, they may agree at at most one point in Fq.
The probability that ri is this point is 1

q . Hence the output claim will be true with probability 1
q

and false with probability 1− 1
q . Since

1
q is small, the sub-protocol is sound.

1.3.2 Case 2: Ok+1 =
∐

xi
for some i

This case is almost identical to Case 1 (see section 1.3.1). The only difference is that the verifier
must check whether vk =

∐
xi
p̃k(xi) = 1− (1− p̃k(0))(1− p̃k(1)). The analyses of completeness and

soundness for this sub-protocol are the same as for
∏
.

1.3.3 Case 3: Ok+1 = Rxi for some i

In this case, the verifier has the value vk stored. The input claim is that

vk = Rxi
Ok+2 . . .

∐
xn

Rx1
. . . Rxn

p(r1, . . . rj , xj+1, . . . , xn), j ≥ i. (11)

Next, the prover sends the verifier some polynomial p̃k(xi). The verifier should check that (Rxi
p̃k(xi))(ri) =

vk, that is, that vk is equal to the value obtained after applying degree reduction to p̃k(xi) and then
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evaluating at xi = ri. The verifier then randomly samples rnewi from Fq, stores vk+1 = p̃k(rnewi ),
and sends rnewi to the prover. The output claim is that

vk+1 = Ok+2 . . .
∐
xn

Rx1
. . . Rxn

p(r1, . . . , ri−1, r
new
i , ri+1, . . . , rj , xj+1, . . . , xn). (12)

To argue completeness of this sub-protocol, consider the prover that always sends

pk(xi) = Ok+2 . . .
∐
xn

Rx1 . . . Rxn p(r1, . . . , ri−1, xi, ri+1, . . . , rj , xj+1, . . . , xn). (13)

If the input claim in (11) is true, then it follows that (Rxi
pk(xi))(ri) = vk, so the output claim in

(12) will be true with probability 1.

For soundness, suppose (11) is false. Then any prover that sends the polynomial in (13) will fail
to convince the verifier, so assume that the prover sends some polynomial p̃k(xi) 6= pk(xi). If the
reduction operator Rxi

that we removed in this round is among the innermost n reduction operators,
then the polynomial prior to reduction has degree at most 3m. Otherwise, the polynomial has degree
2. Since two polynomials of degree d over Fq may agree at at most d points in Fq, the output claim
will be true with probability either 2

q or 3m
q (depending on the location of Rxi

in the expression.
Both of these probabilities are small, so the sub-protocol is sound.

1.3.4 Total Soundness Error

Together, the completeness analysis for the three cases describes a prover that convinces the verifier
with probability 1, so it only remains to calculate the soundness error of the entire protocol. There
are n total

∏
and

∐
operators, and the sub-protocol for each of these has soundness error 1

q (see
sections 1.3.1 and 1.3.2), giving soundness error n

q for the
∏

and
∐

parts of the protocol. The
sub-protocol for the innermost n Rxi

operators has soundness error 3m
q for each operator (section

1.3.3), for a total of 3mn
q . The sub-protocol for the remaining reduction operators has soundness

error 2
q for each operator (section 1.3.3), giving a total of 2

q

∑n−1
i=1 i. Hence, the entire protocol has

soundness error

n

q
+

3mn

q
+

2

q

n−1∑
i=1

i =
3mn+ n2

q
. (14)

By choosing q to be sufficiently large, we can make this error value as small as we desire. Hence the
overall protocol is sound.

We have demonstrated a complete and sound interactive protocol for tqbf. Thus tqbf ∈ IP, and
since tqbf is Pspace-complete, we have proved theorem 1 and we may conclude that IP = Pspace.

2 tqbf is Pspace-complete

Our proof that IP = Pspace relies on fact 4, which says that tqbf is Pspace-complete. It remains
to prove this. To show that a language is Pspace-complete, we must show that the language is in
Pspace and that the language is Pspace-hard. Feigenbaum [Fei12] provides very clear notes on this
subject, which served as a reference for sections 2.1 and 2.2.
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Ψ = Ψn

Ψn−1(0)

Ψn−2(0, 0)

...

Ψ0(0, . . . , 0)

Ψn−2(1, 0)

...

· · ·

Ψn−1(1)

Ψn−2(0, 1)

...

· · ·

Ψn−2(1, 1)

...

Ψ0(1, . . . , 1)

Figure 1: Recursively evaluating a QBF Ψ

2.1 tqbf ∈ Pspace

Suppose we are given a QBF Ψ = Q1x1Q2x2 . . . Qnxn φ(x1, . . . , xn) for some quantifiers Qi ∈ {∀,∃}
and some boolean formula φ on n variables with m clauses. For each i, define

Ψi(a1, . . . , an−i) = Qn−i+1xn−i+1 . . . Qnxn φ(a1, . . . , an−1, xn−i+1, . . . , xn) (15)

and let S(φ, i) be the amount of space necessary to evaluate Ψi at the point (a1, . . . , an−i) ∈ {0, 1}n−i.
Since Ψ = Ψn, the total space complexity is S(φ, n).

We can recursively evaluate Ψ as shown in Figure 1, beginning with Ψn. At level i of the tree, we
strip off Qi from Ψn−i+1 and evaluate the resulting boolean statement at xi = 0 and xi = 1. If
Qi = ∀, we accept only if both values are 1; if Qi = ∃, we accept if at least one value is 1. The
key is that after we evaluate the statement at xi = 0, we can reuse the same space to evaluate the
statement at xi = 1.

In the base case, we need to evaluate Ψ0(a1, . . . , an) = φ(a1, . . . , an). Since φ has n variables and m
clauses, the total space S(φ, 0) required to evaluate φ is O(mn). At step i we have

S(φ, i) = S(φ, i− 1) +O(mn), (16)

since S(φ, i− 1) is the amount of space needed to evaluate the statement at 0 and 1, and O(mn) is
the amount of space needed to store the unevaluated statement. Evaluating the recursion in (16),
we can conclude that S(φ, n) = O(mn2). Thus this algorithm evaluates Ψ in polynomial space, and
tqbf ∈ Pspace.

2.2 tqbf is Pspace-hard

Let L ∈ Pspace, so there exists some polynomial S and S(n)-space machineM that decides whether
an input x ∈ L of length n is in Pspace. Let G be the configuration graph of M(x). Then G has
roughly 2S(n) vertices representing states of M , with a directed edge between two vertices if there
exists a transition from one state to the other. Let Cstart and Caccept be vertices corresponding to
the starting and accepting states of M , respectively. Then x ∈ L if and only if there exists a path
in G from Cstart to Caccept.
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We will construct a collection of QBFs Φi such that Φi(C,C
′) ⇐⇒ there exists a path in G from

C to C ′ of length at most 2i. For the base case, Φ0(C,C ′) for distinct vertices C and C ′ means that
C and C ′ are connected by an edge in G, that is, applying the transition function of M to C gives
C ′. We know by the Cook-Levin Theorem that such a formula exists and that it can be constructed
in poly(n) time. In general, if we have a path from C to C ′ of length at most 2i, we can choose a
vertex C ′′ approximately halfway between C and C ′ so that there exist paths of length 2i−1 from C
to C ′′ and from C ′′ to C ′. Hence,

Φi(C,C
′) ⇐⇒ ∃C ′′ Φi−1(C,C ′′) ∧ Φi−1(C ′′, C ′). (17)

Unfortunately, with this recursive formulation, we get that |Φi| ≥ 2|Φi−1|, which would cause |Φi|
to grow exponentially. To avoid this, we can reformulate the statement in (17) as follows:

Φ(C,C ′) ⇐⇒
(
∃C ′′∀D1, D2

(
(D1 = C ∧D2 = C ′′) ∨ (D1 = C ′′ ∧D2 = C ′)

)
⇒ Φi−1(D1, D2)

)
(18)

With this formulation, we have that |Φi| = |Φi−1| + poly(S(n)), which is polynomial in n. Thus,
we have reduced the problem of deciding L to tqbf, which shows that tqbf is Pspace-hard and is
therefore Pspace-complete.
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