
CS294: Probabilistically Checkable and Interactive Proofs January 19, 2017

Introduction to Interactive Proofs & The Sumcheck Protocol
Instructor: Alessandro Chiesa & Igor Shinkar Scribe: Pratyush Mishra

1 Introduction

Traditional mathematical proofs are static objects: a prover P writes down a sequence of mathematical
statements, and then at some later time a verifier V checks that these statements are consistent and correct.
Over the years, computer science has changed the notion of a mathematical proof. The first such change was
the observation that for all practical purposes, the verification procedure should be efficient; V should not
have to expend large amounts of effort to verify the proof of a claim (at least much less than P expended to
find the proof). This notion of “efficient verification” corresponds to the complexity class NP:

Definition 1 A language L belongs to the class NP if and only if there exists an efficient algorithm V such
that the following conditions hold.

COMPLETENESS:

For all x ∈ L, there exists a proof π that makes V accept: V(x, π) = 1.

SOUNDNESS:

For all x 6∈ L, for all claimed proofs π∗, V rejects: V(x, π∗) = 0.

Even though the verification procedure is now efficient, the proof is still a static object. Computer scientists in
the 80’s and 90’s changed this view by introducing interaction and randomness into the mix: the prover and
verifier were no longer required to be deterministic, and could now talk to each other. How did this change
things? As we shall see, introducing interaction allows a computationally bounded (but randomized) verifier
to check extraordinary claims efficiently. For instance, Lund, Fortnow, Karloff and Lund (LFKN) showed
that an unbounded prover interacting with an efficient verifier can convince the verifier that a boolean formula
is unsatisfiable [LFKN92]. Assuming that CoNP = NP, an efficient verifier cannot verify such a claim in the
static proof model described above.

Now we formalize the “interactive proof” model, and then describe (and prove correct) the LFKN protocol,
thus showing that all of CoNP has an interactive proof.

Definition 2 A language L has an interactive proof (and belongs to the class IP) if there exists an efficient,
randomized, interactive algorithm V that satisfies the following conditions:

COMPLETENESS:

For all x ∈ L, there exists an unbounded interactive ‘prover’ algorithm P such that V interacts with
P and accepts with high probability:

Pr [〈P,V〉(x) = 1] ≥ 2

3

I-1



SOUNDNESS:

For all x 6∈ L, for all algorithms P∗, V interacts with P∗ and rejects with high probability:

Pr [〈P∗,V〉(x) = 1] ≤ 1

3

Here 〈·, ·〉 denotes interaction.

2 The Sumcheck protocol

Which languages have interactive proofs? The discussion above indicates that CoNP ⊆ IP, but do we have
a tight characterization of the power of interactive proof systems? Yes. In fact, we’ll see in the next lecture
that interactive proof systems are extraordinarily powerful: Shamir, building on the LFKN protocol, proved
that every language in PSPACE has an interactive proof system [Sha92]!

For now, we will describe the core ingredient of the LFKN protocol, called the Sumcheck Protocol.

Theorem 3 ([LFKN92])
CoNP ⊆ IP.

Proof: We proceed by demonstrating an interactive proof system for the CoNP-complete language UNSAT,
which is the language of all unsatisfiable 3CNF boolean formulae.

Assume the prover P and verifier V are given a 3CNF boolean formula ϕ having n variables and m clauses.
P’s task is to convince V that ϕ is unsatisfiable. The first step to doing this is to arithmetize the formula.

Arithmetization. Arithmetization is the technique of ‘converting’ a boolean formula ϕ (over {0, 1}) to an
equivalent polynomial p (over some field F) such that the polynomial has certain properties if and only if the
formula is satisfiable. In particular, we want p to be 0 if and only if ϕ is unsatisfiable. One such transformation
is as follows:

• x ∨ y 7→ x+ y: Convert every disjunction to addition.

• x ∧ y 7→ x× y: Convert every conjunction to multiplication.

• ¬x 7→ (1− x): Convert every negation as indicated.

Thus under this mapping, the clause (x ∨ y ∨ ¬z) gets transformed to the polynomial (x + y + (1 − z)).
Notice now that if a formula is satisfied by an assignment, then the corresponding polynomial (evaluated at
the same points) takes on only positive values. If it is not satisfied, the polynomial (on the same assignment)
evaluates to zero. For example, plugging in x = 1, y = 1, z = 1 into the previous clause and its polynomial,
we get values 1 and 2 respectively. However, if we plug in x = 0, y = 0, z = 1, the clause and polynomial
both evaluate to 0.

Let us fix a formula ϕ having n variables and m clauses. Let the arithmetization of this formula result in a
polynomial p in n variables. The formula is unsatisfiable if and only if p takes on the value 0 at all possible
evaluations over the Boolean hypercube {0, 1}n. This means that the summation of all such evaluations
should also be 0, and this gives us a new way to attack the problem: we can reduce the problem of interactively

I-2



proving that ϕ is unsatisfiable to the problem of interactively proving that evaluations of p over the Boolean
hypercube sum up to zero, i.e. that ∑

x1,...,xn∈{0,1}

p(x1, . . . , xn) = 0 .

Notice that the maximum value of the arithmetization of each clause is 3, and thus the maximum value of the
above summation is at most 2n3m. Hence we do not need to work over Z, but can instead work over the field
Zq , where q is a prime number greater than 2n3m. The above condition is thus equivalent to:

ϕ ∈ UNSAT ⇐⇒
∑

x1,...,xn∈{0,1}

p(x1, . . . , xn) = 0 (mod q) .

The benefit of this is that we do not have to worry about intermediate computations resulting in large numbers
(results will wrap around).

Finally, notice that the degree of p is at most m. This property will come in handy later. We are now ready
to present an interactive protocol for the following problem:

Definition 4 The Sumcheck problem is the problem of proving that evaluations of the arithmetization of a
boolean formula over the Boolean hypercube sum up to a value s. All arithmetic is performed in a finite field
Zq that is large enough to represent the result of the summation.

The Sumcheck protocol (see Figure 1) solves the Sumcheck problem. Informally, the protocol proceeds as
follows:

1. The prover P and verifier V are given as input a boolean formula ϕ and a field element s. Both
arithmetize ϕ to obtain a polynomial p in n variables x1, . . . , xn.

2. V generates a random prime q that is greater than 2n3m and sends it to P .

3. V initializes the 0th check-value v0 := s.

4. The following interaction is repeated for all i = 1 to n:

(a) Leaving xi free, P evaluates p at xi+1 ∈ {0, 1} , . . . , xn ∈ {0, 1} to obtain polynomial pi in xi:

pi(xi) :=
∑

xi+1,...,xn∈{0,1}

p(r1, r2, . . . , xi, . . . , xn) .

P sends pi over to V .
(b) V checks that pi(0) + pi(1) = vi−1. If so, it samples a random field element ri, computes the

next check-value vi := pi(ri), and sends ri to P .

5. In the final round, instead of sending rn over to P , V checks that p(r1, . . . , rn) = vn.

Theorem 5 The sumcheck protocol solves the sumcheck problem with completeness 1 and soundness nm/q.

Proof: We analyze the completeness and soundness of the sumcheck protocol.

• COMPLETENESS:
If polynomial p indeed does some up to s over the Boolean hypercube, then at each step P can evaluate
the polynomial correctly, and thus every test of the verifier will pass.
For each i = 1 to n, let pi(xi) :=

∑
xi+1,...,xn∈{0,1} p(r1, r2, . . . , xi, . . . , xn). Then we show that if

in the ith round, P sends pi, V will always accept.

I-3



PROVER(ϕ, s) VERIFIER(ϕ, s)
ARITHMETIZE ϕ.
ϕ 7→ p

ARITHMETIZE ϕ.
ϕ 7→ p

GENERATE PRIME AND INITIALIZE v0 .

Sample a prime q > 2n3m.
v0 = s

ROUND 1: GENERATE p1 .

p1(x1) :=
∑

x2,...,xn∈{0,1} p(x1, x2, . . . , xn).

q
C−−−−−−−−−−

p1(·)
−−−−−−−−−−B CHECK CORRECTNESS OF p1 .

p1(0) + p1(1)
?
= v0.

SAMPLE NEXT MESSAGE r1 AND INITIALIZE v1 .

Sample a random field element r1.
Set v1 := p1(r1).

ROUND 2: GENERATE p2 .

p2(x2) :=
∑

x3,...,xn∈{0,1} p(r1, x2, . . . , xn).

r1
C−−−−−−−−−−

p2(·)
−−−−−−−−−−B

...

ROUND n: GENERATE pn .

pn(xn) := p(r1, r2, . . . , rn−1, xn).

rn−1
C−−−−−−−−−−

pn(·)
−−−−−−−−−−B CHECK CORRECTNESS OF pn .

pn(0) + pn(1)
?
= vn−1.

SAMPLE rn AND INITIALIZE vn .

Sample a random field element rn.
Set vn := pn(rn).

CHECK THAT pn IS CONSISTENT WITH p.

p(r1, . . . , rn)
?
= vn.

Figure 1: The Sumcheck protocol.

I-4



Base case. When i = 1, if the prover sends p1, then

p1(0) + p1(1) =
∑

x1∈{0,1}

(
∑

x2,...,xn∈{0,1}

p(x1, x2, . . . , xn)) = v0 = s .

Inductive step. Assume that for all 1 ≤ i ≤ k, the prover’s ith message was the polynomial pi. Then,
we have that

pk(0) + pk(1) =
∑

xi∈{0,1}

(
∑

xi+1,...,xn∈{0,1}

p(r1, r2, . . . , ri−1, xi, . . . , xn)) = pi−1(ri−1) = vi−1 .

For k = n, we additionally have that pn(rn) = p(r1, . . . , rn) = vn (by assumption), and so all checks
pass, and the verifier accepts.

• SOUNDNESS.

Let Ei be the event that the malicious prover P∗ sends a polynomial p̃i = pi in the ith round. Let W be
the event that P∗ wins. Notice that Pr [W | E1 ∧ · · · ∧ En] = 0. This is because if P sends the correct
polynomial in the last step, then pn(0) + p̃n(1) 6= vn−1.

Claim 6

Pr [W ] ≤ nm

q
+ Pr [W | E1 ∧ · · · ∧ En]

≤ nm

q

Proof: We proceed by induction, proving the following hypothesis:

Pr [W ] ≤ (n− j + 1)m

q
+ Pr [W | Ej ∧ . . . ∧ En]

Base case: j = n.

Pr [W ] ≤ Pr
[
W | En

]
+ Pr [W | En]

≤ m

q
+ Pr [W | En] (Schwartz-Zippel Lemma)

Inductive step:

Pr [W ] ≤ (n− j + 1)m

q
+ Pr [W | Ej ∧ . . . ∧ En]

Pr [W ] ≤ (n− j + 1)m

q
+ Pr

[
W | Ej−1 ∧ Ej ∧ . . . ∧ En

]
+ Pr [W | Ej−1 ∧ Ej ∧ . . . ∧ En]

≤ (n− j + 1)m

q
+
m

q
+ Pr [W | Ej−1 ∧ Ej ∧ . . . ∧ En] (Schwartz-Zippel Lemma)

≤ (n− j)m
q

+ Pr [W | Ej−1 ∧ Ej ∧ . . . ∧ En]

≤ (n− j)m
q

+ 0 (pj−1(0) + pj−1(1) 6= vj−2)

�

� �

I-5



3 Stronger results via different arithmetizations

The arithmetization we used to prove that CoNP ∈ IP was very coarse: if the formula was satisfiable, then
its arithmetization was positive; otherwise, it was zero. However, with more precise arithmetizations, we can
do better:

• x ∨ y 7→ (1− (1− x)(1− y)): Convert every disjunction as indicated.

• x ∧ y 7→ x× y: Convert every conjunction to multiplication.

• ¬x 7→ (1− x): Convert every negation as indicated.

Thus a clause (x ∨ y ∨ ¬z) gets arithmetized to (1 − (1 − x)(1 − y)(z)). This arithmetization evaluates to
1 if a satisfying assignment to the clause is plugged in, and 0 otherwise. Thus, by summing over the values
taken by the arithmetization of a formula when evaluated on the Boolean hypercube, we can get the number
of satisfying assignments for the formula, thus putting #P inside IP. This is a powerful result, because
PH ⊆ P#P ⊆ IP.

4 Upper bounds on the power of interactive proofs

So far, we have described the classes that have interactive proofs, but what is the limit to the power of
interactive proofs? As it turns out, IP is contained in PSPACE. To see this, consider any language L in IP.
It has a particular proof system where the verifier accepts with probability greater than 2/3. Our approach is
to show that a polynomial-space machine can check that over 2/3 of the prover-verifier interactions accept if
an instance x ∈ L, and at most 1/3 interactions accept if x 6∈ L. To do this, we model the prover-verifier
interaction as a game. Because each message is of polynomial size, there are at most 2poly(n) choices at
each node of the game tree. Furthermore, the depth of the tree is also at most poly(n). Thus, to perform
depth-first search on the tree, a machine needs at most poly(n) bits. Thus the language can be recognized by
a poly-space machine.

I-6



References

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan, Algebraic methods for inter-
active proof systems, Journal of the ACM 39 (1992), no. 4, 859–868.

[Sha92] Adi Shamir, IP = PSPACE, Journal of the ACM 39 (1992), no. 4, 869–877.

I-7


