
CS276: Cryptography Due Date: November 2, 2017

Problem Set 4
Instructor: Alessandro Chiesa GSI: Benjamin Caulfield

Problem 1

The DSA (Digital Signature Algorithm) was proposed by the National Institute of Standards and
Technology (NIST) in August 1991 for use in their Digital Signature Standard (DSS). In this problem,
we try to break the DSA under various attacks. For starters, the DSA works as follows:

• Key-Generation: G(1n). Pick primes p, q such that p = 2q + 1. Pick a generator h of the
multiplicative group Z∗p, and set g = h2(mod p). (Thus, g is a generator of a subgroup of order
q of Z∗p.) Pick a random element x ∈ Z∗p. The public (verification) key is (p, g, gx), and the
secret (signing) key is x.

• To sign a message m: Choose k at random in Z∗q . Let r = gk(mod p). Solve the equation
rx− ks ≡ m(mod q) to find (the unique) solution s. Output (r, s). (Note: k is kept secret.)

• To verify a signature (r, s) of a message m: Check if (gx)rr−s
?≡ gm(mod p). If this

equation checks, then output “signature verified” else output “fail”.

(Before starting on the problems, convince yourself that this is indeed a correct signature scheme;
that is, that valid signatures will pass verification.)

(a) Why does the k need to be secret in the signing algorithm? Find a way to recover the secret
signing key, given a single signature (r, s) of a message m, along with the randomness k used to
generate the signature.

(b) Usually (in practice), the k used for signing is not generated completely at random, but by using
a pseudorandom generator. Again, in practice, people use a simple “pseudorandom” generator
such as the linear congruential generator. A linear congruential generator LCG, on input a
seed s0 outputs a sequence (s1, s2, . . . , sn) such that si = asi−1 + b(mod q). (where a and b are
assumed to be public parameters).

Show that if the k’s are generated using an LCG, then given two signatures (of two messages),
one can recover the secret signing key. (“Lesson”: Beware of using unproven, patched-up pseu-
dorandom generators).

(c) Finally, assume that the k’s are generated by a cryptographically strong pseudorandom generator
(e.g. start with a truly random seed, and apply G to get a pseudorandom value twice as long
as the k values. Use the first half as k1 and the second half as the next seed.). Prove that the
DSA remains secure.

(In other words, show that if there is an adversary A that breaks the DSA that uses a PRG, then
there is an adversary B that uses the original DSA – one where k’s are generated randomly)

4-1

Problem 2

Consider the following interactive commitment scheme based on any pseudorandom generator G :
{0, 1}n → {0, 1}3n (which, recall, exists based on any one-way function). In this description, Alice
plays the role of the sender (the person committing), and Bob is the receiver.

Let b ∈ {0, 1} be the input of Alice.

Commitment Phase:

Bob selects a random string R← {0, 1}3n and sends R to Alice.

Alice samples a random seed s← {0, 1}n for the PRG. If b = 0, Alice sets C = G(s); if b = 1,
Alice sets C = G(s)⊕R. Alice sends C to Bob.

Reconstruction Phase:

To decommit, Alice sends her input b together with the seed s to Bob, who accepts if the
previously received commitment message C is equal to G(s)⊕ b ·R.

(a) Prove that the scheme is computationally hiding. That is, at the conclusion of the commitment
phase, no PPT malicious Bob can guess with non-negligible advantage (over the random coins
of Alice) whether Alice committed to 0 or 1.

(b) Prove that the scheme is statistically binding. That is, for all adversarial Alice (not necessarily
computationally bounded), it holds in the reconstruction phase that

Pr
Bob′s coins

[Alice outputs (s, s′) s.t. Bob accepts both (0, s) and (1, s′)] < ε(n),

for some negligible function ε.

Problem 3

Consider the language L = {(p, g) : p ∈ PRIMES ∧ g ∈ GEN(Z∗p)}. Without using any complexity
assumption, prove that there exists a zero-knowledge proof system for the language L.

Problem 4

Given a language L, for each k ∈ N define the two languages Lk and Lk as follows:

Lk = {x : x ∈ L ∧ |x| = k} ,
Lk = {x : x 6∈ L ∧ |x| = k} .

Suppose that L has a zero-knowledge proof system (P, V). Moreover, suppose that some (possibly
cheating) verifier Ṽ can use his view to convince a third party, i.e., there exists a probabilistic
polynomial-time algorithm DL and a positive constant cL such that for all sufficiently large k the
following conditions hold:

1. For all x ∈ Lk,

Pr
[
DL(x, P Ṽ [x]) = 1

]
>

1

2
+

1

kcL
.

4-2

2. For all x ∈ Lk and for all probabilistic polynomial-time algorithms B,

Pr
[
DL(x,B(x)) = 1

]
<

1

2
− 1

kcL
.

Prove that L ∈ BPP.

Remark. This problem answers the question of whether there is a possibly cheating verifier Ṽ that,
after communicating with the prover P , is able to use his own view for x ∈ L to convince a third
party (who was not present when P and Ṽ communicated) that x ∈ L. In particular, this says that,
if L 6∈ BPP, then, even if x 6∈ L, Ṽ may still be able to generate a fake view for x ∈ L that looks
good to any third party; because of this, Ṽ will not be able to use his real view for x to convince
anybody else.

4-3

