Problem 1

Two ensembles $X = \{X_k\}_{k \in \mathbb{N}}$ and $Y = \{Y_k\}_{k \in \mathbb{N}}$ are statistically indistinguishable, denoted $X \simeq Y$, if for all positive constants c and sufficiently large k,

$$\frac{1}{2} \sum_{\alpha \in \{0, 1\}^k} \left| \Pr[X_k = \alpha] - \Pr[Y_k = \alpha] \right| < \frac{1}{k^c}.$$

1. Prove that if X and Y are statistically indistinguishable, then they are computationally indistinguishable.

2. Show that there exist two ensembles X and Y that are computationally indistinguishable but not statistically indistinguishable. (Do not use any computational assumption!)

Solution:

1) We proceed by contradiction. Suppose X and Y are computationally distinguishable, i.e., there exists a family $D = \{D_k\}_{k \in \mathbb{N}}$ of polynomial-size circuits and a positive constant c such that, for infinitely many k,

$$\left| \Pr[D(X_k) = 0] - \Pr[D(Y_k) = 0] \right| \geq \frac{1}{k^c}.$$

For each $k \in \mathbb{N}$, consider the set

$$A_k = \left\{ \alpha \in \{0, 1\}^k : \Pr[X_k = \alpha] \geq \Pr[Y_k = \alpha] \right\}.$$
We can now compute the following:

$$\sum_{\alpha \in \{0,1\}^k} \left| \Pr[X_k = \alpha] - \Pr[Y_k = \alpha] \right|$$

$$= \sum_{\alpha \in A_k} \left| \Pr[X_k = \alpha] - \Pr[Y_k = \alpha] \right| + \sum_{\alpha \not\in A_k} \left| \Pr[Y_k = \alpha] - \Pr[X_k = \alpha] \right|$$

$$\geq \sum_{\alpha \in A_k} \left| \Pr[X_k = \alpha] - \Pr[Y_k = \alpha] \right| \cdot \Pr[D_k(\alpha) = 0] + \sum_{\alpha \not\in A_k} \left| \Pr[Y_k = \alpha] - \Pr[X_k = \alpha] \right| \cdot \Pr[D_k(\alpha) = 0]$$

$$= \sum_{\alpha \in A_k} \left(\Pr[X_k = \alpha] - \Pr[Y_k = \alpha] \right) \cdot \Pr[D_k(\alpha) = 0] + \sum_{\alpha \not\in A_k} \left(\Pr[Y_k = \alpha] - \Pr[X_k = \alpha] \right) \cdot \Pr[D_k(\alpha) = 0]$$

$$\geq \sum_{\alpha \in A_k} \left(\Pr[X_k = \alpha] - \Pr[Y_k = \alpha] \right) \cdot \Pr[D_k(\alpha) = 0] - \sum_{\alpha \not\in A_k} \left(\Pr[Y_k = \alpha] - \Pr[X_k = \alpha] \right) \cdot \Pr[D_k(\alpha) = 0]$$

$$= \sum_{\alpha \in \{0,1\}^k} \Pr[X_k = \alpha] \cdot \Pr[D_k(\alpha) = 0] - \sum_{\alpha \in \{0,1\}^k} \Pr[Y_k = \alpha] \cdot \Pr[D_k(\alpha) = 0]$$

$$= \Pr[D(X_k) = 0] - \Pr[D(Y_k) = 0]$$

$$\geq \frac{1}{k^{c/2}} ,$$

which is non-negligible, contradicting with the fact that X and Y are statistically indistinguishable. We conclude that X and Y must be computationally indistinguishable.

2) For each $k \in \mathbb{N}$, let Y_k be the uniform distribution over $\{0,1\}^k$. We claim that for all sufficiently large k, there exists a random variable X_k, with support over a set S_k of at most $2^{k/2}$ k-bit strings, such that for every circuit C_k of size $2^{k/8}$, it holds that

$$\left| \Pr[C_k(X_k) = 0] - \Pr[C_k(Y_k) = 0] \right| < 2^{-k/8} \, .$$

(1)

Following this claim, we know that for any family of polynomial-size circuits, the distinguishing gap is at most $2^{-k/8}$, which is negligible. Thus, $X = \{X_k\}_{k \in \mathbb{N}}$ and $Y = \{Y_k\}_{k \in \mathbb{N}}$ are computationally indistinguishable. On the other hand, X and Y are not statistically indistinguishable, because

$$\sum_{\alpha \in \{0,1\}^k} \left| \Pr[X_k = \alpha] - \Pr[Y_k = \alpha] \right| \geq (2^k - 2^{k/2}) \cdot \left| 0 - \frac{1}{2^k} \right| = 1 - \frac{1}{2^{k/2}} > \frac{1}{2} ,$$

which is non-negligible.

Now we prove the above claim. Specifically, we show that if we select uniformly a multi-set of $2^{k/2}$ strings in $\{0,1\}^k$ and let X_k be uniform over this multi-set, then (??) holds with overwhelmingly high probability (over the choices of the multi-set). In particular, there exists a random variable X_k with the required properties.

So let C_k be a circuit with k inputs and let $p_k \equiv \Pr[C_k(Y_k) = 0]$. Independently and uniformly select $2^{k/2}$ strings $s_1, \ldots, s_{2^{k/2}}$ in $\{0,1\}^k$. Define the random variables z_i by the rule $z_i \equiv C_n(s_i)$,
that is, the z_i depend on the random choices of the corresponding s_i. Hence, $\Pr[z_i = 0] = p_k$. Using the Chernoff bound, we get that

$$\Pr \left[\left| p_k - \frac{1}{2^{k/2}} \cdot \sum_{i=1}^{2^{k/2}} z_i \right| \geq 2^{-k/8} \right] \leq 2 \cdot e^{-2 \cdot 2^{k/2} \cdot (2^{-k/8})^2} < 2^{-2^{k/4}}.$$

Because there are at most $2^{2^{k/4}}$ different circuits of size $2^{k/8}$, it follows that there exists at least one sequence $s_1, \ldots, s_{2^{k/2}} \in \{0, 1\}^k$ such that for every circuit C_k of size $2^{k/8}$ it holds that

$$\left| p_k - \frac{\sum_{i=1}^{2^{k/2}} C_k(s_i)}{2^{k/2}} \right| < 2^{-k/8},$$

because the fraction of all sequences of s_i such that (3) does not hold for some C_k is less than $2^{-2^{k/4}} \cdot 2^{2^{k/4}} = 1$.

Fixing such a sequence of s_i and letting X_k be distributed uniformly over the elements in that sequence, the claim follows.

Remark. Above, we have used one of the formulations of the Chernoff bound, i.e.,

$$\Pr \left[\left| \frac{\sum_{i=1}^{n} X_i}{n} - p \right| > \epsilon \right] < 2 \cdot e^{-\epsilon^2 n/(2p(1-p))},$$

where the X_i are independent indicator random variables with $\Pr[X_i = 1] = p$. Other formulations of the Chernoff bound would have also worked in the analysis.

Problem 2

Let G be a pseudorandom generator with expansion factor ℓ and let h be any (not necessarily polynomial-time computable) length-preserving permutation over $\{0, 1\}^*$. (The expansion factor of a pseudorandom generator G is a positive polynomial ℓ such that $|G(x)| = \ell(k)$ for all $x \in \{0, 1\}^k$ and $k \in \mathbb{N}$.)

1) Is it always the case that $\{s \leftarrow \{0, 1\}^k : h(G(s))\}$ and the uniform distribution over $\{0, 1\}^{\ell(k)}$ are computationally indistinguishable? Is $G'(s) \equiv h(G(s))$ a pseudorandom generator?

2) Is it always the case that $\{s \leftarrow \{0, 1\}^k : G(h(s))\}$ and the uniform distribution over $\{0, 1\}^{\ell(k)}$ are computationally indistinguishable? Is $G'(s) \equiv G(h(s))$ a pseudorandom generator?

3) If you know that h is polynomial-time computable, do your answers to (1) and (2) change?

Solution:

1) It may not be the case that $\{s \leftarrow \{0, 1\}^k : h(G(s))\}$ and the uniform distribution over $\{0, 1\}^{\ell(k)}$ are computationally indistinguishable. To see that, let $\ell(k)$ be injective (e.g., $\ell(k) = k + 1$) and let h be defined as follows:

$$h(x) = \begin{cases} 0^{\ell(|x|) - |x|} s & \text{if } s \text{ is the lexicographically smallest value s.t. } G(s) = x \\ h'_{|x|}(x) & \text{if such an } s \text{ does not exist} \end{cases}$$

where $h'_{|x|}$ is any length-preserving bijection from the remaining domain in $\{0, 1\}^{\ell(|x|)}$ to the remaining range in $\{0, 1\}^{\ell(|x|)}$.

2-3
For the above choices of ℓ and h, it is easy to distinguish $\{s \leftarrow \{0,1\}^k : h(G(s))\}$ and the uniform distribution over $\{0,1\}^{\ell(k)}$. Indeed, consider the algorithm D that, on input $(1^k, y)$, does the following:

1. If y starts with $0^{\ell(k)-k}$, output pseudorandom.
2. Otherwise, output random.

On input a string σ drawn from $\{s \leftarrow \{0,1\}^k : h(G(s))\}$, D outputs pseudorandom with probability one; on input a string σ drawn from the uniform distribution over $\{0,1\}^{\ell(k)}$, D outputs random with probability $1 - 2^{k-\ell(k)}$.

We conclude that $h(G(s))$ is not pseudo-random; in particular, $h(G(s))$ is not a pseudo-random generator.

2) Since h is a length-preserving permutation, $\{s \leftarrow \{0,1\}^k : h(s)\}$ and the uniform distribution over $\{0,1\}^k$ are identical probability distributions. Therefore, $\{s \leftarrow \{0,1\}^k : G(s)\}$ and $\{s \leftarrow \{0,1\}^k : G(h(s))\}$ are identical probability distributions. Moreover, since the first is computationally indistinguishable from the uniform distribution over $\{0,1\}^{\ell(k)}$, so is the second.

Note, however, that $G'(s) \equiv G(h(s))$ is not necessarily a pseudo-random generator: a pseudo-random generator is required to be a deterministic polynomial-time algorithm, but h may not be polynomial-time computable.

3) If h is polynomial-time computable, then both of the previous constructions are pseudo-random generators.

Clearly, both $G(h(s))$ and $h(G(s))$ are polynomial-time computable. Moreover, we have already argued that $\{s \leftarrow \{0,1\}^k : G(h(s))\}$ is pseudo-random (regardless of whether h is polynomial-time computable or not). Hence, we are left to show that $\{s \leftarrow \{0,1\}^{\ell(k)} : h(G(s))\}$ is pseudo-random.

Suppose not, and let A be a successful distinguisher. Then, consider the algorithm B that, on input $(1^k, y)$, outputs $A(1^k, h(y))$. Note that B is polynomial-time, since h is polynomial-time computable. If y is drawn from the uniform distribution over $\{0,1\}^{\ell(k)}$, so is $h(y)$, and A is given a random $\ell(k)$-bit string. If y is drawn from $\{s \leftarrow \{0,1\}^{\ell(k)} : G(s)\}$, then $h(y)$ follows $\{s \leftarrow \{0,1\}^{\ell(k)} : h(G(s))\}$. By assumption, A distinguishes between the uniform distribution over $\{0,1\}^{\ell(k)}$ and $\{s \leftarrow \{0,1\}^{\ell(k)} : h(G(s))\}$, therefore B distinguishes between the uniform distribution over $\{0,1\}^{\ell(k)}$ and $\{s \leftarrow \{0,1\}^{\ell(k)} : G(s)\}$, contradicting the fact that G is a pseudo-random generator.

Problem 3

Let G_1 and G_2 be pseudorandom generators with respective expansion factors ℓ_1 and ℓ_2. For each of the candidates below, justify whether the function is a pseudorandom generator or not.

A: $G_A(x) = \text{reverse}(G_1(x))$, where reverse($\cdot$) reverses the bits of its argument.

B: $G_B(x) = G_1(x) \| G_2(x)$.

C: $G_C(x|y) = G_1(x) \| G_2(y)$, where $|x| = |y|$ or $|x| = |y| + 1$.

D: $G_D(x) = G_2(G_1(x))$.

E: $G_E(x) = G_1(x) \oplus (x|0^{\ell_1(|x|)-|x|})$.

2-4
Solution:

A) PRG. The reducibility argument is straightforward. Suppose G_A is not a pseudo-random generator, i.e., there is a PPT algorithm T that successfully distinguishes random outputs of G_A from truly random strings. Then, consider the PPT algorithm S that, on input $(1^k, y)$, outputs $T(1^k, \text{reverse}(y))$. The algorithm S succeeds in distinguishing exactly when T does.

B) NOT A PRG. Consider the case where G_1 and G_2 are the same generator, i.e., $G_1 = G_2$. Then, it is easy to distinguish random outputs of G_B from truly random strings: simply test if the two halves of the input string are equal; this occurs to outputs of G_B with probability one, and to random strings with negligible probability $2^{-\ell_1(k)}$.

C) PRG. The reducibility argument involves a simple hybrid argument. Suppose G_C is not a pseudo-random generator, i.e., there is a PPT algorithm T that successfully distinguishes random outputs of G_C from truly random strings for infinitely many string lengths k. (Assume without loss of generality that infinitely many of these k are even; otherwise, in the hybrid below we increase G_i’s seed length by one.)

Consider the following hybrids:

\[
H_0^k \equiv \{ x \leftarrow \{0,1\}^{\ell_1(k)} \ ; \ y \leftarrow \{0,1\}^{\ell_2(k)} \ ; \ x||y \} ,
\]

\[
H_1^k \equiv \{ s \leftarrow \{0,1\}^k \ ; \ y \leftarrow \{0,1\}^{\ell_2(k)} : G_1(s)||y \} ,
\]

\[
H_2^k \equiv \{ s \leftarrow \{0,1\}^k \ ; \ t \leftarrow \{0,1\}^k : G_1(s)||G_2(t) \} .
\]

Then, define the following probabilities:

\[
p_k^0 = \Pr [\sigma \leftarrow H_0^k : T(1^k, \sigma) = 0] ,
\]

\[
p_k^1 = \Pr [\sigma \leftarrow H_1^k : T(1^k, \sigma) = 0] ,
\]

\[
p_k^2 = \Pr [\sigma \leftarrow H_2^k : T(1^k, \sigma) = 0] .
\]

By assumption, $|p_k^0 - p_k^1|$ is non-negligible. Therefore, by the triangle inequality, at least one of $|p_k^0 - p_k^1|$ or $|p_k^1 - p_k^2|$ is non-negligible.

If $|p_k^0 - p_k^1|$ is non-negligible, then T can be used to break the pseudo-randomness of G_1 by using the algorithm S_1 that, on input $(1^k, z)$, draws y from $\{0,1\}^{\ell_2(k)}$ and returns $T(1^k, z||y)$. Indeed, if z is truly random, then T is called with a string $\sigma = z||y$ drawn from H_0^k; if z is a random output of G_1, then T is called with a string $\sigma = z||y$ drawn from H_1^k.

If $|p_k^1 - p_k^2|$ is non-negligible, then T can be used to break the pseudo-randomness of G_2 by using the algorithm S_2 that, on input $(1^k, z)$, draws s from $\{0,1\}^k$ and returns $T(1^k, G_1(s)||z)$. Indeed, if z is truly random, then T is called with a string $\sigma = G_1(s)||z$ drawn from H_1^k; if z is a random output of G_2, then T is called with a string $\sigma = G_1(s)||z$ drawn from H_2^k.

D) PRG. The reducibility argument involves a simple hybrid argument. Suppose G_D is not a pseudo-random generator, i.e., there is a PPT algorithm T that successfully distinguishes random outputs of G_D from truly random strings for infinitely many string lengths k.

Consider the following hybrids:

\[
H_0^k \equiv \{ x \leftarrow \{0,1\}^{\ell_2(\ell_1(k))} : x \} ,
\]

\[
H_1^k \equiv \{ t \leftarrow \{0,1\}^{\ell_1(k)} : G_2(t) \} ,
\]

\[
H_2^k \equiv \{ s \leftarrow \{0,1\}^k : G_2(G_1(s)) \} .
\]
Then, define the following probabilities:

\[p_k^0 \equiv \Pr[\sigma \leftarrow H^0_k: T(1^k, \sigma) = 0] , \]
\[p_k^1 \equiv \Pr[\sigma \leftarrow H^1_k: T(1^k, \sigma) = 0] , \]
\[p_k^2 \equiv \Pr[\sigma \leftarrow H^2_k: T(1^k, \sigma) = 0] . \]

By assumption, \(|p_k^0 - p_k^2| \) is non-negligible. Therefore, by the triangle inequality, at least one of \(|p_k^0 - p_k^1| \) or \(|p_k^1 - p_k^2| \) is non-negligible.

If \(|p_k^0 - p_k^2| \) is non-negligible, then \(T \) distinguishes between truly random strings of length \(\ell_2(\ell_1(k)) \) and random outputs of \(G_2 \) with seed length \(\ell_1(k) \), for infinitely many \(k \) (and hence, for infinitely many \(\ell_1(k) \)). This contradicts the pseudo-randomness of \(G_2 \).

If \(|p_k^1 - p_k^2| \) is non-negligible, then \(T \) can be used to break the pseudo-randomness of \(G_1 \) by using the algorithm \(S \) that, on input \((1^k, z) \), outputs \(T(1^k, G_2(z)) \). Indeed, if \(z \) is truly random, then \(T \) is called with a string \(\sigma = G_2(z) \) drawn from \(H^1_k \); if \(z \) is a random output of \(G_1 \), then \(T \) is called with a string \(\sigma = G_2(z) \) drawn from \(H^2_k \).

E) NOT A PRG. Consider the case where \(\ell_2(k) = k + 1 \) and \(G_1 \) is defined as follows:

\[G_1(x||r) = \begin{cases} x||G_2(r) & \text{if } |x| = |r| , \\ G_2(x||r) & \text{otherwise} . \end{cases} \]

Note that \(G_1 \) has expansion factor \(\ell_1(k) = k + 1 \).

We claim that, if \(G_2 \) is pseudo-random, so is \(G_1 \). Suppose not, i.e., there is a PPT algorithm \(T \) that successfully distinguishes random outputs of \(G_1 \) from truly random strings for infinitely many string lengths \(k \). Either \(T \) still works for infinitely many even \(k \) or for infinitely many odd \(k \) (or both).

In the first case, consider the PPT algorithm \(S_{\text{even}} \) that, on input \((1^k, z) \) with \(|z| = k + 1 \), draws \(x \) from \(\{0, 1\}^k \) and outputs \(T(1^{2k}, x||z) \). If \(z \) is a random \((k + 1) \)-bit string, then \(x||z \) is a random \((2k + 1) \)-bit string; if \(z \) is a random \((k + 1) \)-bit output of \(G_2 \), then \(x||z \) is a random \((2k + 1) \)-bit output of \(G_1 \). Therefore, \(S_{\text{even}} \) distinguishes exactly when \(T \) distinguishes.

In the second case, consider the PPT algorithm \(S_{\text{odd}} \) that, on input \((1^k, z) \) with \(|z| = k + 1 \), outputs \(T(1^k, z) \). Since for odd inputs \(G_1 = G_2 \), it is clear that \(S_{\text{odd}} \) distinguishes exactly when \(T \) distinguishes.

In either case, the pseudo-randomness of \(G_2 \) is contradicted, so \(G_1 \) must be pseudo-random.

On the other hand, we now argue that \(G_E \) is not pseudo-random. To see that, note that, for even \(k \)'s and \(|x| = |r| \),

\[G_E(x||r) = (x||G_2(r)) \oplus (x||r||0) = 0^{k/2}||G_2(r) \oplus (r||0) . \]

Truly random strings and random outputs of \(G_E \) can easily be distinguished by the PPT algorithm \(S \) that, on input \((1^k, z) \) with \(|z| = k + 1 \) and even \(k \), outputs pseudorandom if \(y \) starts with \(0^{k/2} \) and random otherwise. Indeed, on input a random output of \(G_E \), \(S \) outputs pseudorandom with probability one; on input a truly random string, \(S \) outputs random with probability \(1 - 2^{-k/2} \).

Problem 4

Let \(\mathcal{F} = \{ F_x \colon \{0, 1\}^k \to \{0, 1\}^k \}_{x \in \{0, 1\}^k} \) be a pseudorandom function. For each of the candidates below, justify whether the function is a pseudorandom function or not.
Solution:

1) NOT PSEUDO-RANDOM. Consider the test T that, on input 1^k and with oracle access to O that is equal to G or a truly random function, does the following:

1. Query O at point 0^k, and obtain answer $a||b$ with $|a| = |b| = k$.
2. Query O at point $0^k = 1^k$, and obtain answer $c||d$ with $|c| = |d| = k$.
3. If $c = b$ and $d = a$, then output pseudorandom.
4. Otherwise, output random.

If O is equal to G, then T outputs pseudorandom with probability one. If O equals a truly random function, then T outputs pseudorandom with probability 2^{-2k}, because $O(1^k)$ would be independent of $O(0^k)$. We conclude that the test T distinguishes between G and a truly random function with non-negligible probability (that is in fact almost 1).

2) NOT PSEUDO-RANDOM. Consider the test T that, on input 1^k and with oracle access to O that is equal to G or a truly random function, does the following:

1. Query O at some arbitrary point x^k, and obtain answer $a||b$ with $|a| = |b| = k$.
2. Compute $F_{0^k}(x)$ locally. (Note that this can be done by simply using the evaluator for F!)
3. If $a = F_{0^k}(x)$, then output pseudorandom.
4. Otherwise, output random.

If O is equal to G, then T outputs pseudorandom with probability one. If O equals a truly random function, then T outputs pseudorandom with probability 2^{-k}. We conclude that the test T distinguishes between G and a truly random function with non-negligible probability (that is in fact almost 1).

3) PSEUDO-RANDOM. The proof is by contradiction, via a hybrid argument. Consider the following hybrid function families:

$$G_0^0(x) = F_{F_s(0^k)}(x) || F_{F_s(1^k)}(x)$$
$$G_1^1(x) = F_u(x) || F_v(x)$$
$$G_2^2(x) = S_1(x) || F_s(x)$$
$$G_3^3(x) = S_1(x) || S_2(x)$$
In the above, u and v are random seeds that are independent of each other, and the δ_i represent truly-random functions. Note that G^1 is equal to G, and G^3 is equal to a truly random function. So suppose by contradiction that G is not pseudo-random, so that there exists some test T that distinguishes between G and a truly random function with non-negligible probability. By the triangle inequality, there must exist some $i \in \{0, 1, 2\}$ such that T distinguishes between G^i and G^{i+1} with non-negligible probability. We show that for any choice of i, this leads to a contradiction. (Actually, we show that only for $i = 0$, because that is the challenging case; the cases $i = 1$ and $i = 2$ are straightforward.)

Suppose T distinguishes between G^0 and G^1 with non-negligible probability. Consider the test S that, on input 1^k and with oracle access to O that is equal to F or a truly random function, does the following:

1. Query O at point 0^k, and obtain answer u.
2. Query O at point 1^k, and obtain answer v.
3. Run T, and when T makes a query x, reply with $F_u(x)||F_v(x)$.
4. Output the output of T.

If O is equal to F, then S gives answers to T exactly as if T were interacting with G^0. If O is equal to a truly random function, then u and v are random and independent, and S gives answers to T exactly as if T were interacting with G^1. Therefore, S distinguishes between F and a truly random function with non-negligible probability, which is a contradiction.

4) NOT PSEUDO-RANDOM. Let $H = \{H_s: \{0, 1\}^k \rightarrow \{0, 1\}^k\}_{s \in \{0, 1\}^k}$ be a pseudo-random function family. Define the function family F as follows:

$$F_s(x) = \begin{cases} 0^k & \text{if } s = 0^k \\ H_s(x) & \text{otherwise} \end{cases}$$

We claim that the function family F is pseudo-random. Indeed, the event $s = 0^k$ occurs with probability 2^{-k}, and whenever $s \neq 2^{-k}$ then F_s is equal to H_s. Hence, for any test T, the view of T^F is statistically close to the view of T^H. It follows that F and H are indistinguishable by any test T, and we conclude that F is pseudo-random.

On the other hand, note that G is not pseudo-random. Consider the test T that, on input 1^k and with oracle access to O that is equal to G or a truly random function, does the following:

1. Query O at point 0^k, and obtain answer z.
2. If $z = 0^k$, then output pseudorandom.
3. Otherwise, output random.

If O is equal to G, then T outputs pseudorandom with probability one, because $z = G_s(0^k) = F_{0^k}(s) = 0^k$. If O equals a truly random function, then T outputs pseudorandom with probability 2^{-k}. We conclude that the test T distinguishes between G and a truly random function with non-negligible probability (that is in fact almost 1).

5) NOT PSEUDO-RANDOM. Let $H = \{H_s: \{0, 1\}^{2k} \rightarrow \{0, 1\}^{2k}\}_{s \in \{0, 1\}^k}$ be a pseudo-random function family. (Assuming pseudo-random function families exist, a pseudo-random function family
such as \(\mathcal{H} \) is guaranteed to exist by an argument similar to Part (3) above.) Define the function family \(\mathcal{F} \) as follows: for even-length seeds \(s \) with \(s = s_1|s_2 \) and \(|s_1| = |s_2| \),

\[
F_s(x) = \begin{cases}
 s_1 | \text{half}(H_{s_2}(0^k)) & \text{if } x = 0^k \\
 H_{s_2}(x) & \text{otherwise},
\end{cases}
\]

and \(\text{half}(y) \) denotes the second half of string \(y \); for odd-length seeds \(s \), simply define \(F_s \) to be equal to some pseudo-random function family with \(k \)-bit seeds, inputs, and outputs.

We claim that the function family \(\mathcal{F} \) is pseudo-random. Suppose not, i.e., there is a test \(T \) that distinguishes between \(\mathcal{F} \) and a truly random function with non-negligible probability. Either \(T \) distinguishes between the two for even-length seeds or for odd-length seeds (or both). In the latter case, we get a contradiction because \(\mathcal{F} \) is exactly equal to a pseudo-random function family on odd-length seeds. So let us consider the even-length seeds case. Consider the test \(S \) that, on input \(1^{2k} \) and with oracle access to \(O \) that is equal to \(\mathcal{H} \) or a truly random function, does the following:

1. \(s_1 \leftarrow \{0,1\}^k \).
2. Run \(T \), and when \(T \) makes a query \(x \), check if \(x = 0^{2k} \); if so, reply \(s_1 | \text{half}(O(0^{2k})) \), otherwise, reply \(O(x) \).
3. Output the output of \(T \).

If \(O \) is equal to \(\mathcal{H} \), then \(S \) gives answers to \(T \) exactly as if \(T \) were interacting with \(\mathcal{F} \). If \(O \) is equal to a truly random function, then \(S \) is just replacing the first half of \(O(0^k) \) with fresh random bits, and \(S \) gives answers to \(T \) exactly as if \(T \) were interacting with a truly random function. Therefore, the distinguishing advantage of \(S \) on input \(1^{2k} \) is the distinguishing advantage of \(T \) on input \(1^k \), which is non-negligible in \(k \); thus, \(S \) distinguishes between \(\mathcal{H} \) and a truly random function with non-negligible probability, which is a contradiction.

On the other hand, note that \(\mathcal{G} \) is not pseudo-random. For all even-length seeds \(s = s_1|s_2 \) with \(|s_1| = |s_2| \),

\[
G_s(0^{2k}) = F_s(0^{2k}) \oplus (s_1|s_2) = \left(s_1 | \text{half}(H_{s_2}(0^{2k})) \right) \oplus (s_1|s_2) = 0^k | z ,
\]

for some \(k \)-bit string \(z \). The distinguishing test is then obvious: query the oracle on point \(0^{2k} \), and see if the result starts with \(0^k \).

6) PSEUDO-RANDOM. The proof is by contradiction, via a hybrid argument. Consider the following hybrid function families:

\[
\begin{align*}
G_{s_1,s_2}(x) &= (F_{s_1}(x) \oplus s_2)||F_{s_2}(x) \\
H_{s_2}(x) &= s_1(x)||F_{s_2}(x) \\
R(x) &= s_1(x)||s_2(x)
\end{align*}
\]

In the above, \(s_1 \) and \(s_2 \) are random seeds that are independent of each other, and the ‘\(s_1 \)’ represent truly-random functions.

So suppose by contradiction that \(\mathcal{G} \) is not pseudo-random, so that there exists some test \(T \) that distinguishes between \(\mathcal{G} \) and a truly random function with non-negligible probability. By the triangle inequality, either \(T \) distinguishes between \(\mathcal{G} \) (the first hybrid) and the middle hybrid, or between the middle hybrid and a truly random function (the third hybrid), or both. We show that either case leads to a contradiction.
Suppose that T distinguishes between the first hybrid and the middle hybrid. Consider the statistical test S that, on input 1^k and using T as a subroutine, does the following:

1. $s_2 \leftarrow \{0,1\}^k$.
2. Run T, and when T makes a query x, query O on input x to obtain answer z, and reply $(z \oplus s_2)||F_{s_2}(x)$ to T.
3. Output the output of T.

If O is equal to F, then S gives answers to T exactly as if T were interacting with G (the first hybrid). If O is equal to a truly random function, then $z \oplus s_2$ is a truly random value for each query, and so S gives answers to T exactly as if T were interacting with the middle hybrid. Therefore, the distinguishing advantage of S on input 1^k is the distinguishing advantage of T on input 1^k, which is non-negligible in k; thus, S distinguishes between F and a truly random function with non-negligible probability, which is a contradiction.

Suppose that T distinguishes between the middle hybrid and the third hybrid. The reduction in this case is straightforward, and leads to a contradiction of the pseudo-randomness of F.

Remark. The other obvious choice of hybrid does not work. If we define the middle hybrid as:

$$H_{s_1,s_2}(x) = (F_{s_1}(x) \oplus s_2)||S(x),$$

the reduction between the first and middle hybrid does not go through. The reason is that, given an oracle that is equal to either F_{s_2} or a truly random function, we cannot prepend the correct value of $(F_{s_1}(x) \oplus s_2)$ to the oracle’s responses, because we do not know what s_2 is.

7) **PSEUDO-RANDOM.** Define the function family $\mathcal{H} = \{H_S\}_{S \in \mathcal{U}}$ by the rule:

$$H(x) = F_{S(x)}(x),$$

where S denotes a truly-random function. It is easy to show that no statistical test can distinguish between \mathcal{H} and \mathcal{G}. Hence, we are left to show that \mathcal{H} is pseudo-random.

Suppose not, i.e., there is a statistical test T that distinguishes between \mathcal{H} and truly random functions. Without loss of generality, assume that T never queries the same input more than once (as T knows that it will get the same answer). Let p be a polynomial such that the number of queries made by $T(1^k)$ is at most $p(k)$. By a hybrid argument, for each k, there exists a j (depending on k) in $\{0, \ldots, p(k) - 1\}$ such that T distinguishes two experiments: in the first experiment, the first j queries of T are answered according to $F_{S_1}(x)$, and the remaining queries are answered according to a truly random function S_2; in the second experiment, the first $j + 1$ queries of T are answered according to $F_{S_1}(x)$ and the remaining queries are answered according to a truly random function S_2. (Note that the experiments corresponding to $j = 0$ and $j = p(k)$ correspond to the original experiments, i.e., answering all queries according to \mathcal{H} or a truly random function, respectively.)

Consider the statistical test S that, on input 1^k and using T as a subroutine, does the following:

1. $j \leftarrow \{0, \ldots, p(k) - 1\}$, where $p(k)$.
2. Run T, and when T asks its i-th query x_i:

 (a) $i < j + 1$: compute $s_i = S_1(x_i)$ and reply with $F_{s_i}(x_i)$.

 (b) $i = j + 1$: query the oracle O on input x_i, and reply with $O(x_i)$.

2-10
In the above, “computing” s_1 (resp., s_2) means toss k coins to get a random k-bit string.

With probability $1/p(k)$, S guesses a “good” j for k. Now condition on S guessing a good j. If O is equal to \mathcal{H}, then S gives answers to T exactly as if T were interacting with the j-th hybrid. If O is equal to a truly random function, then S gives answers to T exactly as if T were interacting with the $(j+1)$-th hybrid. Therefore S distinguishes between \mathcal{H} and a truly random function, as desired.

Problem 5

In this problem we consider two other ways of modeling what it means to be a pseudorandom function family, and investigate how these new definitions compare to the one we discussed.

1. In the definition of a PRF, we allow for an adversary to adaptively query its oracle in order to distinguish whether the oracle is truly random or pseudorandom. Suppose we now consider non-adaptive tests: an adversary provides a list of testing points, then receives the values of the oracle at each of those testing points, and finally makes a decision (without consulting the oracle again).

Definition 1 (Non-Adaptive Pseudo-Random Function Families) A function family is non-adaptively pseudorandom if a random member of the family is indistinguishable from a random function, under all polynomial-time non-adaptive tests.

Is the above definition of PRF strictly stronger, strictly weaker, equivalent, or incomparable to our original adaptive notion? Prove your answer.

2. Now we consider a different kind of test in which we see if not being able to predict an output of a function is equivalent to the function seeming random. A predictor is allowed to adaptively query the oracle on several points, and then outputs a pair (x, y). The predictor succeeds in the test if: (1) it has not already queried the oracle on point x, and (2) the value of the oracle at x is equal to y.

Definition 2 (Unpredictable Function Family) A function family is unpredictable if no polynomial-time oracle machine can succeed in the prediction experiment with non-negligible advantage over random guessing.

Is the above definition of PRF strictly stronger, strictly weaker, equivalent, or incomparable to our original adaptive notion? Prove your answer.

Solution:

1) Non-adaptive pseudo-randomness is strictly weaker than adaptive pseudo-randomness. (Of course, assuming non-adaptive pseudorandom function families exist at all.)

First, note that any non-adaptive test can be written as an adaptive test, just by getting the list of points to query and then querying them individually. Therefore non-adaptive pseudo-randomness is no stronger than adaptive pseudo-randomness.
Next, we construct a function family that is non-adaptively pseudo-random, but not adaptively pseudo-random. Suppose \(F = \{F_s : \{0,1\}^k \rightarrow \{0,1\}^k\}_{s \in \{0,1\}^k} \) is a non-adaptively pseudorandom function family. Define \(G = \{G_s : \{0,1\}^k \rightarrow \{0,1\}^k\}_{s \in \{0,1\}^k} \) as follows: for all strings \(s \),

\[
G_s(x) := \begin{cases}
0^k & \text{if } x = F_s(0^k) \\
F_s(x) & \text{otherwise}
\end{cases}
\]

The function \(G_s \) is well-defined for all strings \(s \): if it happens that \(F_s(0^k) = 0^k \), then \(G_s \) is exactly \(F_s \); otherwise it differs at only one point. Moreover, given \(s \) and \(x \), \(G_s \) is poly-time computable, because \(F_s \) is polynomial-time computable and the check on \(x \) is efficient.

We claim that \(G \) is non-adaptively pseudorandom. Suppose not, i.e., there exists a non-adaptive test \(T_G \) that distinguishes \(G \) from truly random functions. Consider the non-adaptive test \(T_F \) that, with oracle access to \(O \) and using \(T_G \) as a subroutine, does the following:

1. Run \(T_G \) and get the list \(x_1, \ldots, x_\ell \) of its queries.
2. Query the oracle \(O \) on the point \(0^k \), and receive \(z \) as answer.
3. If \(z \) appears in the list \(x_1, \ldots, x_\ell \), output \texttt{pseudorandom}; otherwise output \texttt{random}.

The probability that the set of queries \(x_1, \ldots, x_\ell \) of \(T_G(1^k)^G \) contains \(z = F_s(0^k) \) is non-negligible (when taking the probability over \(s \in \{0,1\}^k \) and the coin tosses of \(T \)), because if that were not the case we could use \(T_G \) to (non-adaptively) distinguish between \(F \) and truly random functions (without querying \(F_s(0^k) \), the views of \(T_G(1^k)^G \) and \(T_G(1^k)^F \) are equal), which is a contradiction.

Hence, if \(O \) is equal to \(F \), then \(T_F \) outputs \texttt{pseudorandom} with non-negligible probability. On the other hand, if \(O \) is equal to a truly random function, \(z \) is truly random and independent of all of \(T \)'s queries, and hence \(S \) outputs \texttt{pseudorandom} with negligible probability. We conclude that \(S \) (non-adaptively) distinguishes between \(F \) and truly random functions, which is a contradiction.

On the other hand, \(G \) is clearly \texttt{not} adaptively pseudo-random. Indeed, an adaptive test \(T \) may do the following:

1. Query the oracle \(O \) on the point \(0^k \), and receive \(z \) as answer.
2. Query the oracle \(O \) on the point \(z \), and receive \(y \) as answer.
3. If \(y = 0^k \), output \texttt{pseudorandom}; otherwise output \texttt{random}.

Clearly, if \(O \) equals \(G_s \), then \(T^O \) always outputs \texttt{pseudorandom}. However, if \(O \) is a truly random function, then \(T^O \) outputs \texttt{pseudorandom} only if \(O(0^k) = 0^k \) or \(O(z \neq 0^k) = 0^k \); this occurs with probability at most \(2 \cdot 2^{-k} \), which is negligible. We conclude that the adaptive test \(T \) distinguishes \(G \) from truly random functions.

2) Unpredictability is \textbf{strictly weaker} than adaptive pseudo-randomness. (Of course, assuming unpredictable function families exist at all.)

First, we argue that pseudo-randomness implies unpredictability, and we do so by contradiction. Suppose that \(F \) is a predictable function family and let \(P \) be a predictor for \(F \). Consider the adaptive test \(T \) that, with oracle access to \(O \) and using \(P \) as a subroutine, does the following:

1. Run \(P \) and, whenever \(P \) makes a query, pass the query to \(O \) and send back the result to \(P \).
2. When \(P \) outputs a pair \((x,y)\) such that \(x \) has not yet been queried, query \(O \) on \(x \) and test whether the result equals \(y \).

3. If so, output \textit{pseudorandom}; otherwise output \textit{random}.

If the oracle \(O \) equals \(F \), then \(T \) outputs \textit{pseudorandom} with non-negligible probability; this follows by the assumption on the predictor \(P \). If the oracle \(O \) is a truly random function, then \(P \) is correct only with probability \(2^{-k} \), because \(x \) has not been queried. We conclude that the adaptive test \(T \) is a distinguisher, and hence \(F \) is not pseudo-random. (We remark that this argument works even if the function family \(F \) has a 1-bit output instead of a \(k \)-bit output, by replacing \(2^{-k} \) above with \(1/2 \).)

Next, we construct a function family that is unpredictable, but \textit{not} adaptively pseudo-random. Suppose \(\mathcal{F} = \{F_s : \{0,1\}^k \to \{0,1\}^k\}_{s \in \{0,1\}^k} \) is an unpredictable function family. Define \(\mathcal{G} = \{G_s : \{0,1\}^k \to \{0,1\}^k\}_{s \in \{0,1\}^k} \) as follows: for all strings \(s \), \(G_s(x) := 1 || F_s(x) \).

We claim that \(\mathcal{G} \) is unpredictable. Suppose not, i.e., there exists a predictor \(P_{\mathcal{G}} \) that succeeds in the prediction game for \(\mathcal{G} \) with non-negligible probability. Without loss of generality, we can assume that the predicted value of \(P \) always begins with a 1, because the actual value of \(\mathcal{G} \) does. Now consider the predictor \(P_{\mathcal{F}} \) that, on input \(1^k \) and with oracle access to \(F_s \) for some \(s \in \{0,1\}^k \), does the following:

1. Run \(T \), and when \(T \) queries \(x \), query \(x \) to obtain \(F_s(x) \), and reply with \(1 || F_s(x) \) (which is equal to \(G_s(x) \)).

2. When \(T \) outputs the prediction \((a,1||b)\), output \((a,b)\).

By the assumption on \(P_{\mathcal{G}} \), with non-negligible probability \((a,1||b)\) is a correct prediction for \(G_s \), and therefore with non-negligible probability \((a,b)\) is a correct prediction for \(F_s \). Thus, \(P_{\mathcal{F}} \) succeeds in the prediction game for \(\mathcal{F} \) with non-negligible probability, which is a contradiction.

On the other hand, \(\mathcal{G} \) is clearly \textit{not} adaptively pseudo-random: the first bit of its output on any \(x \) is always 1!