
CS276: Cryptography September 17, 2015

Luby-Rackoff Construction and Commitment Schemes
Instructor: Alessandro Chiesa Scribe: Rohan Mathuria

1 Luby-Rackoff Contruction

From last lecture:

G = {Gk}k = {(gf4 ◦ gf3 ◦ gf2 ◦ gf1)|f4, f3, f2, f1 ← Fk}.

Where gf (x, y) = y|x⊕ f(y)

Theorem 1 If Fk is pseudorandom, G is strongly pseudorandom.

Proof:

Definition 2 R = {Rk}k where Rk = {(gu4
◦ gu3

◦ gu2
◦ gu1

)|u4, u3, u2, u1 ← Uk}

Our proof is composed of two parts:

1) (G,G−1) $ (R,R−1) (This was proved last lecture using a hybrid argument)

2) (R,R−1) $ (Π,Π−1) will be subsequently proven:

Let D be any PPT distinguisher. Without loss of generality, assume D is non-repeating, since
any repeating distinguisher can be wrapped with a cache that responds to repeat queries. Its
distinguishing probability is:

|Pr[DRk,R
−1
k (1k) = 1]− Pr[DΠk,Π

−1
k = 1]|

By the triangle inequality,

≤ |Pr[DRk,R
−1
k (1k) = 1]− Pr[D$(1k) = 1]|+ |Pr[D$(1k) = 1]− Pr[DΠk,Π

−1
k = 1]|

where $ is the random distribution.

The latter term: |Pr[D$(1k) = 1] − Pr[DΠk,Π
−1
k = 1]| ≤ time(D)2

2k which is negligible. This was
not proven in lecture, but the intuition for this argument was built last lecture. Thus we will only
concern ourselves with the first term.

Definition 3 A transcript τ of D is a representation of all of the queries D makes, and can be
represented as ((x1, y1, b1), ..., (xq, yq, bq)) such that if bi = 0, Rk was queried at xi and received yi,
and if bi = 1, R−1

k was queried at yi and received xi. The transcript of DRk,R
−1
k (1k)) is symbolized

as tr(DRk,R
−1
k (1k))
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Definition 4 T is set of all transcripts τ such that D seeing τ outputs 1. Note: here we are fixing
all of D’s coinflips to have the best possible distinguishing probability.

Definition 5 Let T ′ be set of all transcripts τ such that D seeing τ outputs 1, and τ is consistent
with the oracle being a permutation.

Then
|Pr[DRk,R

−1
k (1k) = 1]− Pr[D$(1k) = 1]|

= |
∑
τ∈T

Pr[DRk,R
−1
k (1k) = 1|tr(DRk,R

−1
k ) = τ ]Pr[tr(DRk,R

−1
k ) = τ ]−Pr[D$ = 1|tr(D$) = τ ]Pr[tr(D$) = τ ]|

= |
∑
τ∈T

Pr[tr(DRk,R
−1
k ) = τ ]− Pr[tr(D$) = τ ]|

≤ |
∑
τ∈T ′

Pr[tr(DRk,R
−1
k ) = τ ]− Pr[tr(D$) = τ ]|+ |

∑
τ /∈T ′

Pr[tr(DRk,R
−1
k ) = τ ]− Pr[tr(D$) = τ ]|

by the triangle inequality. The latter term is negligible since a negligible fraction of τ ∈ T are /∈ T ′.
This wasn’t proven in lecture.

Definition 6 xi = (L0
i , R

0
i ) −→u1

(L1
i , R

1
i ) −→u2

(L2
i , R

2
i ) −→u3

(L3
i , R

3
i ) −→u4

(L4
i , R

4
i ) = yi

Definition 7 u1 is good for τ if R1
1, ..., R

1
q has no repetitions.

Definition 8 u4 is good for τ if L3
1, ..., L

3
q has no repetitions.

Lemma 9 Pru1,u4
[u1 or u4 is not good for τ ] ≤ q2

2k ∀τ ∈ T ′

Proof: We need to show that Pr[R1
i = R1

j ] ≤ 1
2k ∀i 6= j and Pr[L3

i = L3
j ] ≤ 1

2k ∀i 6= j. We will
only prove the former; the latter follows from the same argument.

(R1
i = R1

j ) → L0
i ⊕ U1(R0

i ) = L0
j ⊕ U1(R0

j ). Our initial assumption that D is non-repeating affirms
that (L0

i , R
0
i ) 6= (L0

j , R
0
j ). Since (R0

i = R0
j ) → (L0

i = L0
j ), R0

i 6= R0
j . Thus, since U is a random

function, Pr[L0
i ⊕ U1(R0

i ) = L0
j ⊕ U1(R0

j )] ≤ 1
2k The rest of the argument follows similarly. �

Lemma 10 Pru2,u3[tr(DRk,R
−1
k ) = τ ] = Pr[tr(D$) = τ ] ∀τ, good u1, u4

Proof: For each i,
L3
i = R2

i = L1
i ⊕ u2(R1

i )

R3
i = L2

i ⊕ u3(R2
i ) = R1

i ⊕ u3(L3
i )

So
u2(R1

i ) = L1
i ⊕ L3

i
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u3(L3
i ) = R1

i ⊕R3
i

Thus, since u1 and u4 are good,

Pru2,u3[tr(DRk,R
−1
k ) = τ ] =

1

22qk
= Pr[tr(D$) = τ ]

�

So the initial expression that we’ve summed over, Pr[tr(DRk,R
−1
k ) = τ ]− Pr[tr(D$) = τ ]

= Pr[tr(DRk,R
−1
k ) = τ |u1, u4 are good]Pr[u1, u4 are good] + Pr[tr(DRk,R

−1
k ) = τ |u1or u4 is not

good]Pr[u1 or u4 is not good]− Pr[tr(D$) = τ ]

= Pr[u1 or u4 is not good for τ ](−Pr[tr(DRk,R
−1
k ) = τ |u1, u4 are good] + Pr[tr(DRk,R

−1
k ) = τ |u1or

u4 is not good])

Thus, the summed expression, |
∑
τ∈T ′ Pr[tr(D

Rk,R
−1
k ) = τ ]− Pr[tr(D$) = τ ]|, by lemma 9, is

= q2

2k |
∑
τ Pr[tr(D

Rk,R
−1
k ) = τ |u1or u4 is not good]− Pr[tr(DRk,R

−1
k ) = τ |u1, u4 are good]

which by lemma 10 is

≤ q2

2k−1 , which is negligible in k.

�

2 Commitment Schemes

Definition 11 A commitment scheme is a two-phase protocol between a sender and a receiver.

1) In the commitment phase, the sender commits to a message m to produce commitment c.

2) In the reveal phase, the sender reveals the message m in the commitment c.

There are two properties of a commitment scheme: hiding and binding. Conceptually, hiding requires
a commitment to m to leak nothing about m, and binding requires a commitment to not be openable
in two ways. Hiding and binding can each be done statistically or computationally.

Statistical Hiding Computational Hiding

Statistical Binding Impossible
Possible using one-way
permutations as we will
see later

Computational Binding Pedersen Commitment
Scheme Possible

Definition 12 A computationally hiding statistically binding commitment scheme is a pair of PPT
algorithms (Commit (C), Reveal(R)) satisfying the followin:

1) Completeness: ∀k,∀m ∈ {0, 1}l(k),∀s ∈ {0, 1}r(k), R(1k, s, C(1k, s,m)) = m

2) Hiding: ∀{m(1)
k }, {m

(2)
k } such that |m(1)

k | = |m
(2)
k |, {C(1k, ur(k),m

(1)
k )} $ {C(1k, ur(k),m

(2)
k )}
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3) Binding: ∀k, ∀s, s′ ∈ {0, 1}n(k),∀m ∈ {0, 1}l(k), R(1k, s′, C(1k, s,m)) ∈ {m,⊥}

Theorem 13 If One Way Permutations Exist, there exists a computationally hiding, statistically
binding encryption scheme with l(k) = 1

Proof: Let fk be a one way permutation mapping {0, 1}n(k) to {0, 1}n(k)

Let bk be a hardcore bit on fk

Let C(1k, s,m) = fk(s), bk(s)⊕m

Let R(1k, s, (c1, c2)) :=

if fk(s) 6= c1 → ⊥

else → c2 ⊕ bk(s)

Claim 14 (C,R) is a computationally hiding statistically binding commitment scheme.

Proof: ∀c1, c2,∃!s,m such that C(1k, s,m) = c1, c2 since s := f−1
k (c1),m := bk(f−1

k (c1)) ⊕ c2.
Thus (C,R) is statistically binding.

We didn’t finish the proof that the commitment scheme is computationally hiding. That will be
covered next lecture. �

�
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