Luby-Rackoff Construction and Commitment Schemes

Instructor: Alessandro Chiesa

1 Luby-Rackoff Contruction

From last lecture:
$\mathcal{G}=\left\{G_{k}\right\}_{k}=\left\{\left(g_{f_{4}} \circ g_{f_{3}} \circ g_{f_{2}} \circ g_{f_{1}}\right) \mid f_{4}, f_{3}, f_{2}, f_{1} \leftarrow F_{k}\right\}$.
Where $g_{f}(x, y)=y \mid x \oplus f(y)$

Theorem 1 If F_{k} is pseudorandom, \mathcal{G} is strongly pseudorandom.

Proof:

Definition $2 \mathcal{R}=\left\{R_{k}\right\}_{k}$ where $R_{k}=\left\{\left(g_{u_{4}} \circ g_{u_{3}} \circ g_{u_{2}} \circ g_{u_{1}}\right) \mid u_{4}, u_{3}, u_{2}, u_{1} \leftarrow U_{k}\right\}$

Our proof is composed of two parts:

1) $\left(G, G^{-1}\right) \doteq\left(R, R^{-1}\right)$ (This was proved last lecture using a hybrid argument)
2) $\left(R, R^{-1}\right) \stackrel{\circ}{\doteq}\left(\Pi, \Pi^{-1}\right)$ will be subsequently proven:

Let D be any PPT distinguisher. Without loss of generality, assume D is non-repeating, since any repeating distinguisher can be wrapped with a cache that responds to repeat queries. Its distinguishing probability is:

$$
\left|\operatorname{Pr}\left[D^{R_{k}, R_{k}^{-1}}\left(1^{k}\right)=1\right]-\operatorname{Pr}\left[D^{\Pi_{k}, \Pi_{k}^{-1}}=1\right]\right|
$$

By the triangle inequality,

$$
\leq\left|\operatorname{Pr}\left[D^{R_{k}, R_{k}^{-1}}\left(1^{k}\right)=1\right]-\operatorname{Pr}\left[D^{\$}\left(1^{k}\right)=1\right]\right|+\left|\operatorname{Pr}\left[D^{\S}\left(1^{k}\right)=1\right]-\operatorname{Pr}\left[D^{\Pi_{k}, \Pi_{k}^{-1}}=1\right]\right|
$$

where $\$$ is the random distribution.
The latter term: $\left|\operatorname{Pr}\left[D^{\$}\left(1^{k}\right)=1\right]-\operatorname{Pr}\left[D^{\Pi_{k}, \Pi_{k}^{-1}}=1\right]\right| \leq \frac{\text { time }(D)^{2}}{2^{k}}$ which is negligible. This was not proven in lecture, but the intuition for this argument was built last lecture. Thus we will only concern ourselves with the first term.

Definition $3 A$ transcript τ of D is a representation of all of the queries D makes, and can be represented as $\left(\left(x_{1}, y_{1}, b_{1}\right), \ldots,\left(x_{q}, y_{q}, b_{q}\right)\right)$ such that if $b_{i}=0, R_{k}$ was queried at x_{i} and received y_{i}, and if $b_{i}=1, R_{k}^{-1}$ was queried at y_{i} and received x_{i}. The transcript of $\left.D^{R_{k}, R_{k}^{-1}}\left(1^{k}\right)\right)$ is symbolized as $\operatorname{tr}\left(D^{R_{k}, R_{k}^{-1}}\left(1^{k}\right)\right)$

Definition $4 T$ is set of all transcripts τ such that D seeing τ outputs 1. Note: here we are fixing all of D 's coinflips to have the best possible distinguishing probability.

Definition 5 Let T^{\prime} be set of all transcripts τ such that D seeing τ outputs 1, and τ is consistent with the oracle being a permutation.

Then

$$
\begin{gathered}
\left|\operatorname{Pr}\left[D^{R_{k}, R_{k}^{-1}}\left(1^{k}\right)=1\right]-\operatorname{Pr}\left[D^{\$}\left(1^{k}\right)=1\right]\right| \\
=\left|\sum_{\tau \in T} \operatorname{Pr}\left[D^{R_{k}, R_{k}^{-1}}\left(1^{k}\right)=1 \mid \operatorname{tr}\left(D^{R_{k}, R_{k}^{-1}}\right)=\tau\right] \operatorname{Pr}\left[\operatorname{tr}\left(D^{R_{k}, R_{k}^{-1}}\right)=\tau\right]-\operatorname{Pr}\left[D^{\S}=1 \mid \operatorname{tr}\left(D^{\S}\right)=\tau\right] \operatorname{Pr}\left[\operatorname{tr}\left(D^{\S}\right)=\tau\right]\right| \\
=\left|\sum_{\tau \in T} \operatorname{Pr}\left[\operatorname{tr}\left(D^{R_{k}, R_{k}^{-1}}\right)=\tau\right]-\operatorname{Pr}\left[\operatorname{tr}\left(D^{\$}\right)=\tau\right]\right| \\
\leq\left|\sum_{\tau \in T^{\prime}} \operatorname{Pr}\left[\operatorname{tr}\left(D^{R_{k}, R_{k}^{-1}}\right)=\tau\right]-\operatorname{Pr}\left[\operatorname{tr}\left(D^{\S}\right)=\tau\right]\right|+\left|\sum_{\tau \notin T^{\prime}} \operatorname{Pr}\left[\operatorname{tr}\left(D^{R_{k}, R_{k}^{-1}}\right)=\tau\right]-\operatorname{Pr}\left[\operatorname{tr}\left(D^{\S}\right)=\tau\right]\right|
\end{gathered}
$$

by the triangle inequality. The latter term is negligible since a negligible fraction of $\tau \in T$ are $\notin T^{\prime}$. This wasn't proven in lecture.

Definition $6 x_{i}=\left(L_{i}^{0}, R_{i}^{0}\right) \underset{u_{1}}{\longrightarrow}\left(L_{i}^{1}, R_{i}^{1}\right) \underset{u_{2}}{\longrightarrow}\left(L_{i}^{2}, R_{i}^{2}\right) \underset{u_{3}}{\longrightarrow}\left(L_{i}^{3}, R_{i}^{3}\right) \underset{u_{4}}{\longrightarrow}\left(L_{i}^{4}, R_{i}^{4}\right)=y_{i}$

Definition $7 u_{1}$ is good for τ if $R_{1}^{1}, \ldots, R_{q}^{1}$ has no repetitions.

Definition $8 \quad u_{4}$ is good for τ if $L_{1}^{3}, \ldots, L_{q}^{3}$ has no repetitions.

Lemma $9 \operatorname{Pr}_{u_{1}, u_{4}}\left[u_{1}\right.$ or u_{4} is not good for $\left.\tau\right] \leq \frac{q^{2}}{2^{k}} \forall \tau \in T^{\prime}$

Proof: We need to show that $\operatorname{Pr}\left[R_{i}^{1}=R_{j}^{1}\right] \leq \frac{1}{2^{k}} \forall i \neq j$ and $\operatorname{Pr}\left[L_{i}^{3}=L_{j}^{3}\right] \leq \frac{1}{2^{k}} \forall i \neq j$. We will only prove the former; the latter follows from the same argument.
$\left(R_{i}^{1}=R_{j}^{1}\right) \rightarrow L_{i}^{0} \oplus U_{1}\left(R_{i}^{0}\right)=L_{j}^{0} \oplus U_{1}\left(R_{j}^{0}\right)$. Our initial assumption that D is non-repeating affirms that $\left(L_{i}^{0}, R_{i}^{0}\right) \neq\left(L_{j}^{0}, R_{j}^{0}\right)$. Since $\left(R_{i}^{0}=R_{j}^{0}\right) \rightarrow\left(L_{i}^{0}=L_{j}^{0}\right), R_{i}^{0} \neq R_{j}^{0}$. Thus, since U is a random function, $\operatorname{Pr}\left[L_{i}^{0} \oplus U_{1}\left(R_{i}^{0}\right)=L_{j}^{0} \oplus U_{1}\left(R_{j}^{0}\right)\right] \leq \frac{1}{2^{k}}$ The rest of the argument follows similarly.

Lemma $10 \operatorname{Pr}_{u 2, u 3}\left[\operatorname{tr}\left(D^{R_{k}, R_{k}^{-1}}\right)=\tau\right]=\operatorname{Pr}\left[\operatorname{tr}\left(D^{\$}\right)=\tau\right] \forall \tau$, good u_{1}, u_{4}

Proof: For each i,

$$
\begin{gathered}
L_{i}^{3}=R_{i}^{2}=L_{i}^{1} \oplus u_{2}\left(R_{i}^{1}\right) \\
R_{i}^{3}=L_{i}^{2} \oplus u_{3}\left(R_{i}^{2}\right)=R_{i}^{1} \oplus u_{3}\left(L_{i}^{3}\right)
\end{gathered}
$$

So

$$
u_{2}\left(R_{i}^{1}\right)=L_{i}^{1} \oplus L_{i}^{3}
$$

$$
u_{3}\left(L_{i}^{3}\right)=R_{i}^{1} \oplus R_{i}^{3}
$$

Thus, since u_{1} and u_{4} are good,

$$
\operatorname{Pr}_{u 2, u 3}\left[\operatorname{tr}\left(D^{R_{k}, R_{k}^{-1}}\right)=\tau\right]=\frac{1}{2^{2 q k}}=\operatorname{Pr}\left[\operatorname{tr}\left(D^{\S}\right)=\tau\right]
$$

So the initial expression that we've summed over, $\operatorname{Pr}\left[\operatorname{tr}\left(D^{R_{k}, R_{k}^{-1}}\right)=\tau\right]-\operatorname{Pr}\left[\operatorname{tr}\left(D^{\$}\right)=\tau\right]$
$=\operatorname{Pr}\left[\operatorname{tr}\left(D^{R_{k}, R_{k}^{-1}}\right)=\tau \mid u_{1}, u_{4}\right.$ are good $] \operatorname{Pr}\left[u_{1}, u_{4}\right.$ are good $]+\operatorname{Pr}\left[\operatorname{tr}\left(D^{R_{k}, R_{k}^{-1}}\right)=\tau \mid u_{1}\right.$ or u_{4} is not good $] \operatorname{Pr}\left[u_{1}\right.$ or u_{4} is not good $]-\operatorname{Pr}\left[\operatorname{tr}\left(D^{\$}\right)=\tau\right]$
$=\operatorname{Pr}\left[u_{1}\right.$ or u_{4} is not good for $\left.\tau\right]\left(-\operatorname{Pr}\left[\operatorname{tr}\left(D^{R_{k}, R_{k}^{-1}}\right)=\tau \mid u_{1}, u_{4}\right.\right.$ are good $]+\operatorname{Pr}\left[\operatorname{tr}\left(D^{R_{k}, R_{k}^{-1}}\right)=\tau \mid u_{1}\right.$ or u_{4} is not good])

Thus, the summed expression, $\left|\sum_{\tau \in T^{\prime}} \operatorname{Pr}\left[\operatorname{tr}\left(D^{R_{k}, R_{k}^{-1}}\right)=\tau\right]-\operatorname{Pr}\left[\operatorname{tr}\left(D^{\$}\right)=\tau\right]\right|$, by lemma 9 , is
$\left.=\frac{q^{2}}{2^{k}} \right\rvert\, \sum_{\tau} \operatorname{Pr}\left[\operatorname{tr}\left(D^{R_{k}, R_{k}^{-1}}\right)=\tau \mid u_{1}\right.$ or u_{4} is not good $]-\operatorname{Pr}\left[\operatorname{tr}\left(D^{R_{k}, R_{k}^{-1}}\right)=\tau \mid u_{1}, u_{4}\right.$ are good $]$
which by lemma 10 is
$\leq \frac{q^{2}}{2^{k-1}}$, which is negligible in k.

2 Commitment Schemes

Definition 11 A commitment scheme is a two-phase protocol between a sender and a receiver.

1) In the commitment phase, the sender commits to a message m to produce commitment c.
2) In the reveal phase, the sender reveals the message m in the commitment c.

There are two properties of a commitment scheme: hiding and binding. Conceptually, hiding requires a commitment to m to leak nothing about m , and binding requires a commitment to not be openable in two ways. Hiding and binding can each be done statistically or computationally.

	Statistical Hiding	Computational Hiding
Statistical Binding	Impossible	Possible using one-way permutations as we will see later
Computational Binding	Pedersen Commitment Scheme	Possible

Definition 12 A computationally hiding statistically binding commitment scheme is a pair of PPT algorithms (Commit (C), Reveal(R)) satisfying the followin:

1) Completeness: $\forall k, \forall m \in\{0,1\}^{l(k)}, \forall s \in\{0,1\}^{r(k)}, R\left(1^{k}, s, C\left(1^{k}, s, m\right)\right)=m$
2) Hiding: $\forall\left\{m_{k}^{(1)}\right\},\left\{m_{k}^{(2)}\right\}$ such that $\left|m_{k}^{(1)}\right|=\left|m_{k}^{(2)}\right|,\left\{C\left(1^{k}, u_{r(k)}, m_{k}^{(1)}\right)\right\} \stackrel{\circ}{=}\left\{C\left(1^{k}, u_{r(k)}, m_{k}^{(2)}\right)\right\}$
3) Binding: $\forall k, \forall s, s^{\prime} \in\{0,1\}^{n(k)}, \forall m \in\{0,1\}^{l(k)}, R\left(1^{k}, s^{\prime}, C\left(1^{k}, s, m\right)\right) \in\{m, \perp\}$

Theorem 13 If One Way Permutations Exist, there exists a computationally hiding, statistically binding encryption scheme with $l(k)=1$

Proof: Let f_{k} be a one way permutation mapping $\{0,1\}^{n(k)}$ to $\{0,1\}^{n(k)}$
Let b_{k} be a hardcore bit on f_{k}
Let $C\left(1^{k}, s, m\right)=f_{k}(s), b_{k}(s) \oplus m$
Let $R\left(1^{k}, s,\left(c_{1}, c_{2}\right)\right):=$

$$
\begin{aligned}
& \text { if } f_{k}(s) \neq c_{1} \rightarrow \perp \\
& \text { else } \rightarrow c_{2} \oplus b_{k}(s)
\end{aligned}
$$

Claim $14(C, R)$ is a computationally hiding statistically binding commitment scheme.

Proof: $\quad \forall c_{1}, c_{2}, \exists!s, m$ such that $C\left(1^{k}, s, m\right)=c_{1}, c_{2}$ since $s:=f_{k}^{-1}\left(c_{1}\right), m:=b_{k}\left(f_{k}^{-1}\left(c_{1}\right)\right) \oplus c_{2}$. Thus (C, R) is statistically binding.

We didn't finish the proof that the commitment scheme is computationally hiding. That will be covered next lecture.

