1 Introduction

Last time we talked about Indistinguishability obfuscation from $N C^{1}$ to all circuits. We also began to look at the strength of obfuscation, IO and VBB, as an assumption compared to that of the existence, which till now has been the weakest object we have seen (in that all other constructions imply their existence). We also cover a different version of obfuscation based on a different equality constraint for messages that are obfuscated.

2 Indistinguishability Obfuscation and One Way functions

Theorem $1 I O+(c o R P \neq N P) \Longrightarrow O W F$
Proof: Assume IO and show the contrapositive: $\overline{O W F} \Longrightarrow(N P \subseteq \operatorname{coRP})$
Let L be the NP relation defined by Circuit-SAT. Then we need to show:
There exists a probabilistic polynomial time algorithm D such that:

$$
\begin{gathered}
\forall C \in L: \mathbb{P}[D(C)=1]=1 \\
\forall C \notin L: \mathbb{P}[D(C)=1] \leq 1 / 2
\end{gathered}
$$

Consider the family of functions $F=\left\{f_{k}:\{0,1\}^{k} \rightarrow\{0,1\}^{*}\right\}_{k}$ where $f_{k}(x)=\theta\left(Z_{k, n}, x\right)$.
Here $Z_{k, n}$ is the identically zero circuit with n gates on k bits of input, and θ is an IO obfuscator. Since OWF does not exist by assumption, \exists ppt A that can invert f_{k} with non-negligible success:

$$
\mathbb{P}\left[f_{k}\left(A\left(\theta\left(Z_{k, n}, x\right)\right)\right)=\theta\left(Z_{k, n}, x\right)\right] \geq \delta(k)
$$

Let $\Delta(C, Z):=|\mathbb{P}[f(A(\theta(C, x)))=\theta(C, x)]-\mathbb{P}[f(A(\theta(Z, x)))=\theta(Z, x)]|$. Then for any circuit with n gates $C:\{0,1\}^{k} \rightarrow\{0,1\}^{*}$:

$$
(C \equiv \text { False }) \equiv(C \notin L) \Longrightarrow \Delta(C, Z) \leq 1 / p(k)
$$

because IO security guarantees that no such distinguisher can exist between equivalent circuits.

$$
(C \not \equiv \text { False }) \equiv(C \in L) \Longrightarrow \mathbb{P}[f(A(\theta(C, x)))=\theta(C, x)]=0
$$

because $\theta(C)$ is not in the range of f , so there is no pre-image. Now we can construct the ppt decider for Circuit-SAT

```
def D(C): /* Decides if circuit C can be satisfied for some inputs */
    Sample x randomly such that |x| = k;
    Run the obfuscator y := O(C,x)
    Run the inverter x' := A(y)
    if f(x') == y: return 0
    else: return 1
```

In this algorithm, if C is satisfiable, A will never find a pre-image: $\mathbb{P}[D(C)=1]=1$
Otherwise, C is equivalent to $\mathrm{Z}: \mathbb{P}[D(C)=0] \geq \delta(k)-\operatorname{negl}(k)$

3 Virtual Black-box Obfuscation and One way function

Theorem $2 V B B \Longrightarrow O W F$

Proof: Let θ be a VBB Obfuscator
Consider $\alpha \in\{0,1\}^{k}, \beta \in\{0,1\}$, and the point function $C_{\alpha, \beta}(x):=\beta \cdot \delta_{\alpha}(x)$. Then the function $f(\alpha, \beta, x):=\theta\left(C_{\alpha, \beta}, x\right)$ is OWF, because the only success comes from randomly guessing the output or finding α :

$$
\mathbb{P}\left[S^{C_{\alpha, \beta}}\left(1^{k}\right)=\beta\right]=\frac{1}{2}+\operatorname{negl}(k)
$$

Then by the definition of f , and the VBB assumption:

$$
\mathbb{P}\left[A\left(\theta\left(C_{\alpha, \beta}, x\right)\right)=\beta\right]=\mathbb{P}[A(f(\alpha, \beta, x))=\beta]=\frac{1}{2}+\operatorname{negl}(k)
$$

So f has a hard-core bit β which means that f is OWF.

4 The Five Worlds of Impagliazzo

- Algorithmica: NP is easy in the worst case, $N P \subseteq P ; N P \subseteq B P P$; OWF don't exist
- Heuristica: NP is easy on average, $N P \neq P ; N P \neq B P P$; OWF don't exist
- Pessiland: NP is hard on average, but also OWF don't exist
- Minicrypt: OWF exist, but no public key cryptography (for example)
- Cryptomania: OWF exist, and Public key crypto systems exist

5 Differing Input Obfuscation

Now we define another type of obfuscation on circuits that can computationally be distinguished on their outputs, in order to produce a new idea of encryption.

Definition 3 A ppt θ is DIO if

1. Correctness: $\forall C \forall x: \theta(C)(x)=C(x)$
2. Efficiency: $\forall C:|\theta(C)| \in \operatorname{poly}(|C|)$
3. Security: \forall ppt A, \exists ppt E such that $\forall C_{1}, C_{2}$ with $\left|C_{1}\right|=\left|C_{2}\right|$:

Suppose $\left|\mathbb{P}\left[A\left(\theta\left(C_{1}\right)\right)=1\right]-\mathbb{P}\left[A\left(\theta\left(C_{2}\right)\right)=1\right]\right| \geq 1 / p(k)$
Then for circuits $C_{1}^{\prime} \equiv C_{1}, C_{2}^{\prime} \equiv C_{2},\left|C_{1}^{\prime}\right|=\left|C_{1}\right|=\left|C_{2}^{\prime}\right|=\left|C_{2}\right|$,
$x \leftarrow E\left(C_{1}^{\prime}, C_{2}^{\prime}\right)$ such that $C_{1}^{\prime}(x) \neq C_{2}^{\prime}(x)$.
In other words, if it is computationally hard to find a point at which two circuits differ, then it is computationally hard to distinguish between obfuscated versions of those circuits.

Definition 4 An EWE scheme for an $N P$-relation R is a pair (E, D) such that

1. Correctness: $\forall k \in \mathbb{N}, \forall m \in\{0,1\}, \forall(x, w) \in R$: $\mathbb{P}\left[D\left(1^{k}, E\left(1^{k}, x, m\right), w\right)=m\right]=1$
2. Extractable Security: \forall ppt A, \exists ppt Ext:
$\left|\mathbb{P}\left[A\left(E\left(1^{k}, x, 0\right)\right)=1\right]-\mathbb{P}\left[A\left(E\left(1^{k}, x, 1\right)\right)=1\right]\right| \geq 1 / p(k) \Longrightarrow$ $w \leftarrow \operatorname{Ext}\left(1^{k}, x\right)$ such that $(x, w) \in R$.
In other words, if an adversary can decrypt under some NP input x, then the adversary can also produce a witness for that input.
$I O \Longrightarrow D I O$ for circuits that differ at polynomial number of inputs.

Theorem 5 Last time, we showed that $I O \Longrightarrow W E$ (Witness Encryption). Now we can analogously show that $D I O \Longrightarrow E W E$.

Proof: Given DIO θ :
$E\left(1^{k}, x, m\right)=\theta\left(C_{x, m}\right)$ where $C_{x, m}(y)=m \cdot \delta_{(x, y) \in R}$ and \perp otherwise $D\left(1^{k}, c, w\right)=c(w)$
Now if $y \leftarrow \operatorname{Ext}\left(\theta\left(C_{x, 0}\right), \theta\left(C_{x, 1}\right)\right)$ such that $\theta\left(C_{x, 0}\right)(y) \neq \theta\left(C_{x, 1}\right)(y)$, then y is the witness for the input x, because the circuits return \perp for every non-witness by construction.

