October 13, 2015

Lecture 14

Scribe: Peter Manohar

1 Hybrid Encryption

Let (G_1, E_1, D_1) be a one message indistinguishable asymmetric encryption scheme. Let (E_2, D_2) be a one message indistinguishable symmetric encryption scheme. Define (G, E, D) as follows:

- $G(1^k) = G_1(1^k)$
- $E(1^k, pk, m) =$ Sample sk_2 for (E_2, D_2) output $(E_1(1^k, pk, sk_2), E_2(1^k, sk, m))$
- $D(1^k, sk, c) =$ $sk_2 \leftarrow D_1(1^k, sk, c_1)$ $m \leftarrow D_2(1^k, sk_2, c_2)$

Theorem 1 (G, E, D) is a one message indistinguishable asymmetric encryption scheme

Proof: Assume $\exists \operatorname{ppt} A$, $\{m_k^{(0)}, m_k^{(1)}\}$ such that $\delta(k) = \left| \Pr[A(pk, E(pk, m_k^{(0)})) = 1] - \Pr[A(pk, E(pk, m_k^{(1)})) = 1] \right|$ is nonnegligible.

$$\Rightarrow \delta(k) = \left| \Pr[A(pk, E(pk, m_k^{(0)})) = 1] - \Pr[A(pk, E(pk, m_k^{(1)})) = 1] \right|$$

$$= \left| \Pr[A(pk, (E_1(pk, sk_2), E_2(sk_2, m_k^{(0)})) = 1] - \Pr[A(pk, (E_1(pk, sk_2), E_2(sk_2, m_k^{(1)})) = 1] \right|$$

$$\leq \left| \Pr[A(pk, (E_1(pk, sk_2), E_2(sk_2, m_k^{(0)})) = 1] - \Pr[A(pk, (E_1(pk, 0^k), E_2(sk_2, m_k^{(0)})) = 1] \right|$$
(1)
$$+ \left| \Pr[A(pk, (E_1(pk, 0^k), E_2(sk_2, m_k^{(0)})) = 1] - \Pr[A(pk, (E_1(pk, 0^k), E_2(sk_2, m_k^{(1)})) = 1] \right|$$
(2)

$$+ \left| \Pr[A(pk, (E_1(pk, 0^k), E_2(sk_2, m_k^{(1)})) = 1] - \Pr[A(pk, (E_1(pk, sk_2), E_2(sk_2, m_k^{(1)})) = 1] \right|$$
(3)

If (1) is nonnegligible, then we can attack (G_1, E_1, D_1) . Let $B(1^k, pk, c) = A(pk, c, E_2(sk_2^*, m_k^{(b)}))$, where $c = E_1(pk, 0^k)$ or $E_1(pk, sk_2^*)$. Then B breaks (G_1, E_1, D_1) with nonnegligible probability. By symmetry, if (3) is nonnegligible, then we can also break (G_1, E_1, D_1) with nonnegligible probability.

If (2) is nonnegligible, then we can attack E_2 . Let $C(c) = A(pk^*, (E_1(pk^*, 0^k), c))$, for some fixed public key pk^* , where $c = E_2(sk_2, m^{(0)})$ or $E_2(sk_2, m^{(1)})$. Then C breaks (E_2, D_2) with nonnegligible probability. This completes the proof.

2 DDH Assumption

The Decisional Diffie Hellman (DDH) assumption is a computational hardness assumption about the discrete log problem in a cyclic group.

Definition 2 A cyclic group sampler is a ppt algorithm S such that $\forall k \in \mathbb{N}$, $S(1^k)$ is a distribution over tuples (\mathbb{G}, q, g) , where $|\mathbb{G}| = q$, and $\mathbb{G} = \langle g \rangle$.

Definition 3 DDH holds for S if $\{(1^k, \mathbb{G}, q, g, g^x, g^y, g^{xy}) \mid (\mathbb{G}, q, g) \leftarrow S(1^k), x, y \leftarrow \{0, 1, ..., q-1\}\}$ and $\{(1^k, \mathbb{G}, q, g, g^x, g^y, g^r) \mid (\mathbb{G}, q, g) \leftarrow S(1^k), x, y, r \leftarrow \{0, 1, ..., q-1\}\}$ are computationally indistinguishable

2.1 El Gamal Encryption Scheme

Suppose S satisfies DDH.

•
$$G(1^{k}) =$$

$$(\mathbb{G}, q, g) \leftarrow S(1^{k})$$

$$x \leftarrow \{0, 1, \dots, q - 1\}$$

$$h = g^{x}$$

$$pk = (\mathbb{G}, q, g, h)$$

$$sk = (\mathbb{G}, q, g, x)$$
output (pk, sk)

•
$$E(1^k, pk, m) =$$

 $y \leftarrow \{0, 1, ..., q - 1\}$
 $c \leftarrow (g^y, h^y m)$

• $D(1^k, sk, c) = c_2 \cdot c_1^{-x}$

Theorem 4 If DDH holds for S, then (G, E, D) is one message indistinguishable

Proof: Suppose \exists ppt A, m_0 , m_1 , such that $|\Pr[A(g^x, g^y, g^{xy}m_0) = 1] - \Pr[A(g^x, g^y, g^{xy}m_1) = 1]|$ is nonnegligible. Then

$$\begin{aligned} |\Pr[A(g^x, g^y, g^{xy}m_0) = 1] - \Pr[A(g^x, g^y, g^{xy}m_1) = 1]| &\leq |\Pr[A(g^x, g^y, g^{xy}m_0) = 1] - \Pr[A(g^x, g^y, g^rm_0) = 1]| \\ + |\Pr[A(g^x, g^y, g^rm_0) = 1] - \Pr[A(g^x, g^y, g^rm_1) = 1]| + |\Pr[A(g^x, g^y, g^rm_1) = 1] - \Pr[A(g^x, g^y, g^{xy}m_1) = 1]| \end{aligned}$$

Note that $|\Pr[A(g^x, g^y, g^r m_0) = 1] - \Pr[A(g^x, g^y, g^r m_1) = 1]| = 0$, so either $|\Pr[A(g^x, g^y, g^{xy}m_0) = 1] - \Pr[A(g^x, g^y, g^r m_0) = 1]|$ or $|\Pr[A(g^x, g^y, g^r m_1) = 1] - \Pr[A(g^x, g^y, g^{xy}m_1) = 1]|$ is nonnegligible. Since one of these is nonnegligible, we can construct $B(1^k, \mathbb{G}, q, g, a, b, c) = A(1^k, \mathbb{G}, q, g, a, b, cm_\sigma)$, where $\sigma = 0$ or 1, depending on which term is large. The existence of B contradicts the DDH assumption for S, completing the proof.

2.2 Remarks on DDH

- If DDH holds for S, then discrete log assumption holds for S
- There are examples of S where we know DDH is false, but DL is believed to be true

2.3 Example: \mathbb{Z}_p^*

DDH does not hold for \mathbb{Z}_p^* (see homework 1). However, we believe that DDH holds for $QR_p \subset \mathbb{Z}_p^*$, the subgroup of quadratic residues. $|QR_p| = \frac{|\mathbb{Z}_p^*|}{2} = \frac{p-1}{2}$. If p = 2q + 1 for some prime q, then p is called a *safe prime*, and $|QR_p| = q$.

3 CCA2 Security in the Asymmetric Case

El Gamal is not CCA2 secure. If (c_1, c_2) in an encryption of m, then $(c_1, 2c_2)$ is an encryption of 2m.

In the symmetric setting, CPA + MAC = CCA2. In the asymmetric setting, CPA + DS \neq CCA2. Some approaches:

- Cramer-Shoup: variant of El-Gamal that is CCA2 secure only under DDH assumption
- Naor-Yung: CPA + NIZK = CCA2
- CCA2 symmetric scheme + TOWP + Random Oracle Model = CCA2

We will focus on the 3rd approach. The construction and proof are covered in the next lecture.