Lecture 14

1 Hybrid Encryption

Let $\left(G_{1}, E_{1}, D_{1}\right)$ be a one message indistinguishable asymmetric encryption scheme. Let $\left(E_{2}, D_{2}\right)$ be a one message indistinguishable symmetric encryption scheme. Define (G, E, D) as follows:

- $G\left(1^{k}\right)=G_{1}\left(1^{k}\right)$
- $E\left(1^{k}, p k, m\right)=$

Sample $s k_{2}$ for $\left(E_{2}, D_{2}\right)$
output $\left(E_{1}\left(1^{k}, p k, s k_{2}\right), E_{2}\left(1^{k}, s k, m\right)\right)$

- $D\left(1^{k}, s k, c\right)=$

$$
\begin{aligned}
& s k_{2} \leftarrow D_{1}\left(1^{k}, s k, c_{1}\right) \\
& m \leftarrow D_{2}\left(1^{k}, s k_{2}, c_{2}\right)
\end{aligned}
$$

Theorem $1(G, E, D)$ is a one message indistinguishable asymmetric encryption scheme

Proof: Assume $\exists \operatorname{ppt} A,\left\{m_{k}^{(0)}, m_{k}^{(1)}\right\}$ such that $\delta(k)=\left|\operatorname{Pr}\left[A\left(p k, E\left(p k, m_{k}^{(0)}\right)\right)=1\right]-\operatorname{Pr}\left[A\left(p k, E\left(p k, m_{k}^{(1)}\right)\right)=1\right]\right|$ is nonnegligible.

$$
\begin{align*}
& \Longrightarrow \delta(k)=\left|\operatorname{Pr}\left[A\left(p k, E\left(p k, m_{k}^{(0)}\right)\right)=1\right]-\operatorname{Pr}\left[A\left(p k, E\left(p k, m_{k}^{(1)}\right)\right)=1\right]\right| \\
& =\mid \operatorname{Pr}\left[A\left(p k,\left(E_{1}\left(p k, s k_{2}\right), E_{2}\left(s k_{2}, m_{k}^{(0)}\right)\right)=1\right]-\operatorname{Pr}\left[A\left(p k,\left(E_{1}\left(p k, s k_{2}\right), E_{2}\left(s k_{2}, m_{k}^{(1)}\right)\right)=1\right] \mid\right.\right. \\
& \leq \mid \operatorname{Pr}\left[A\left(p k,\left(E_{1}\left(p k, s k_{2}\right), E_{2}\left(s k_{2}, m_{k}^{(0)}\right)\right)=1\right]-\operatorname{Pr}\left[A\left(p k,\left(E_{1}\left(p k, 0^{k}\right), E_{2}\left(s k_{2}, m_{k}^{(0)}\right)\right)=1\right] \mid\right.\right. \tag{1}\\
& +\mid \operatorname{Pr}\left[A\left(p k,\left(E_{1}\left(p k, 0^{k}\right), E_{2}\left(s k_{2}, m_{k}^{(0)}\right)\right)=1\right]-\operatorname{Pr}\left[A\left(p k,\left(E_{1}\left(p k, 0^{k}\right), E_{2}\left(s k_{2}, m_{k}^{(1)}\right)\right)=1\right] \mid\right.\right. \tag{2}\\
& +\mid \operatorname{Pr}\left[A\left(p k,\left(E_{1}\left(p k, 0^{k}\right), E_{2}\left(s k_{2}, m_{k}^{(1)}\right)\right)=1\right]-\operatorname{Pr}\left[A\left(p k,\left(E_{1}\left(p k, s k_{2}\right), E_{2}\left(s k_{2}, m_{k}^{(1)}\right)\right)=1\right] \mid\right.\right. \tag{3}
\end{align*}
$$

If (1) is nonnegligible, then we can attack $\left(G_{1}, E_{1}, D_{1}\right)$. Let $B\left(1^{k}, p k, c\right)=A\left(p k, c, E_{2}\left(s k_{2}^{*}, m_{k}^{(b)}\right)\right)$, where $c=E_{1}\left(p k, 0^{k}\right)$ or $E_{1}\left(p k, s k_{2}^{*}\right)$. Then B breaks $\left(G_{1}, E_{1}, D_{1}\right)$ with nonnegligible probability. By symmetry, if (3) is nonnegligible, then we can also break $\left(G_{1}, E_{1}, D_{1}\right)$ with nonnegligible probability.

If (2) is nonnegligible, then we can attack E_{2}. Let $C(c)=A\left(p k^{*},\left(E_{1}\left(p k^{*}, 0^{k}\right), c\right)\right)$, for some fixed public key $p k^{*}$, where $c=E_{2}\left(s k_{2}, m^{(0)}\right)$ or $E_{2}\left(s k_{2}, m^{(1)}\right)$. Then C breaks $\left(E_{2}, D_{2}\right)$ with nonnegligible probability. This completes the proof.

2 DDH Assumption

The Decisional Diffie Hellman (DDH) assumption is a computational hardness assumption about the discrete \log problem in a cyclic group.

Definition 2 A cyclic group sampler is a ppt algorithm S such that $\forall k \in \mathbb{N}, S\left(1^{k}\right)$ is a distribution over tuples (\mathbb{G}, q, g), where $|\mathbb{G}|=q$, and $\mathbb{G}=\langle g\rangle$.

Definition 3 DDH holds for S if
$\left\{\left(1^{k}, \mathbb{G}, q, g, g^{x}, g^{y}, g^{x y}\right) \mid(\mathbb{G}, q, g) \leftarrow S\left(1^{k}\right), x, y \leftarrow\{0,1, \ldots, q-1\}\right\}$ and $\left\{\left(1^{k}, \mathbb{G}, q, g, g^{x}, g^{y}, g^{r}\right) \mid(\mathbb{G}, q, g) \leftarrow S\left(1^{k}\right), x, y, r \leftarrow\{0,1, \ldots, q-1\}\right\}$ are computationally indistinguishable

2.1 El Gamal Encryption Scheme

Suppose S satisfies DDH.

- $G\left(1^{k}\right)=$

$$
(\mathbb{G}, q, g) \leftarrow S\left(1^{k}\right)
$$

$$
x \leftarrow\{0,1, \ldots, q-1\}
$$

$$
h=g^{x}
$$

$$
p k=(\mathbb{G}, q, g, h)
$$

$$
s k=(\mathbb{G}, q, g, x)
$$

output $(p k, s k)$

- $E\left(1^{k}, p k, m\right)=$
$y \leftarrow\{0,1, \ldots, q-1\}$
$c \leftarrow\left(g^{y}, h^{y} m\right)$
- $D\left(1^{k}, s k, c\right)=c_{2} \cdot c_{1}^{-x}$

Theorem 4 If $D D H$ holds for S, then (G, E, D) is one message indistinguishable

Proof: \quad Suppose $\exists \operatorname{ppt} A, m_{0}, m_{1}$, such that $\left|\operatorname{Pr}\left[A\left(g^{x}, g^{y}, g^{x y} m_{0}\right)=1\right]-\operatorname{Pr}\left[A\left(g^{x}, g^{y}, g^{x y} m_{1}\right)=1\right]\right|$ is nonnegligible. Then
$\left|\operatorname{Pr}\left[A\left(g^{x}, g^{y}, g^{x y} m_{0}\right)=1\right]-\operatorname{Pr}\left[A\left(g^{x}, g^{y}, g^{x y} m_{1}\right)=1\right]\right| \leq\left|\operatorname{Pr}\left[A\left(g^{x}, g^{y}, g^{x y} m_{0}\right)=1\right]-\operatorname{Pr}\left[A\left(g^{x}, g^{y}, g^{r} m_{0}\right)=1\right]\right|$
$+\left|\operatorname{Pr}\left[A\left(g^{x}, g^{y}, g^{r} m_{0}\right)=1\right]-\operatorname{Pr}\left[A\left(g^{x}, g^{y}, g^{r} m_{1}\right)=1\right]\right|+\left|\operatorname{Pr}\left[A\left(g^{x}, g^{y}, g^{r} m_{1}\right)=1\right]-\operatorname{Pr}\left[A\left(g^{x}, g^{y}, g^{x y} m_{1}\right)=1\right]\right|$
Note that $\left|\operatorname{Pr}\left[A\left(g^{x}, g^{y}, g^{r} m_{0}\right)=1\right]-\operatorname{Pr}\left[A\left(g^{x}, g^{y}, g^{r} m_{1}\right)=1\right]\right|=0$, so either $\left|\operatorname{Pr}\left[A\left(g^{x}, g^{y}, g^{x y} m_{0}\right)=1\right]-\operatorname{Pr}\left[A\left(g^{x}, g^{y}, g^{r} m_{0}\right)=1\right]\right|$ or $\left|\operatorname{Pr}\left[A\left(g^{x}, g^{y}, g^{r} m_{1}\right)=1\right]-\operatorname{Pr}\left[A\left(g^{x}, g^{y}, g^{x y} m_{1}\right)=1\right]\right|$ is nonnegligible. Since one of these is nonnegligible, we can construct $B\left(1^{k}, \mathbb{G}, q, g, a, b, c\right)=A\left(1^{k}, \mathbb{G}, q, g, a, b, c m_{\sigma}\right)$, where $\sigma=0$ or 1 , depending on which term is large. The existence of B contradicts the DDH assumption for S, completing the proof.

2.2 Remarks on DDH

- If DDH holds for S, then discrete \log assumption holds for S
- There are examples of S where we know DDH is false, but DL is believed to be true

2.3 Example: \mathbb{Z}_{p}^{*}

DDH does not hold for \mathbb{Z}_{p}^{*} (see homework 1). However, we believe that DDH holds for $Q R_{p} \subset \mathbb{Z}_{p}^{*}$, the subgroup of quadratic residues. $\left|Q R_{p}\right|=\frac{\left|\mathbb{Z}_{p}^{*}\right|}{2}=\frac{p-1}{2}$. If $p=2 q+1$ for some prime q, then p is called a safe prime, and $\left|Q R_{p}\right|=q$.

3 CCA2 Security in the Asymmetric Case

El Gamal is not CCA2 secure. If $\left(c_{1}, c_{2}\right)$ in an encryption of m, then $\left(c_{1}, 2 c_{2}\right)$ is an encryption of $2 m$.

In the symmetric setting, $\mathrm{CPA}+\mathrm{MAC}=\mathrm{CCA} 2$. In the asymmetric setting, $\mathrm{CPA}+\mathrm{DS} \neq \mathrm{CCA} 2$.
Some approaches:

- Cramer-Shoup: variant of El-Gamal that is CCA2 secure only under DDH assumption
- Naor-Yung: CPA + NIZK $=$ CCA2
- CCA2 symmetric scheme + TOWP + Random Oracle Model $=$ CCA2

We will focus on the 3rd approach. The construction and proof are covered in the next lecture.

