1 CCA2 from Combining Encryption and Authentication

Theorem (has a bug). $C P A(E, D)+M A C(T, V) \rightarrow C C A 2\left(E^{\prime}, D^{\prime}\right)$
Proof. We use a construction called "encrypt then authenticate".

$$
\begin{gathered}
E^{\prime}\left(1^{k}, s k, m\right):=\left[\begin{array}{ll}
1 . & c \leftarrow E\left(1^{k}, s k_{1}, m\right) \\
2 . & t \leftarrow T\left(1^{k}, s k_{2}, c\right) \\
3 . & \text { output }(c, t)
\end{array}\right. \\
D^{\prime}\left(1^{k}, s k, c^{\prime}\right):=\left[\begin{array}{ll}
1 . & c, t \leftarrow c^{\prime} \\
2 . & \text { check if } V\left(1^{k}, s k_{2}, c, t\right)=1 \\
3 . & \text { if so, output } D\left(1^{k}, s k_{1}, c\right) \\
4 . & \text { otherwise, output } \perp
\end{array}\right.
\end{gathered}
$$

The idea here is to quantify over all $\left\{m_{k}^{(0)}\right\}_{k}$ and $\left\{m_{k}^{(1)}\right\}_{k}$, so that if they were chosen by A, we are still guaranteed security.
Suppose \exists ppt $A,\left\{m_{k}^{(0)}\right\},\left\{m_{k}^{(1)}\right\}$ s.t.
$\mid \mathbb{P}[A^{E^{\prime}\left(1^{k}, s k, \cdot\right), D^{\prime}\left(1^{k}, s k, \cdot\right)}(\overbrace{\left(E^{\prime}\left(1^{k}, s k, m_{k}^{(0)}\right)\right.}^{\text {not }})=1]-\mathbb{P}[A^{E^{\prime}\left(1^{k}, s k, \cdot\right), D^{\prime}\left(1^{k}, s k, \cdot\right)} \overbrace{\left(E^{\prime}\left(1^{k}, s k, m_{k}^{(1)}\right)\right.}^{\text {not }})=1] \mid$
is not negl (k).
WLOG, assume that A does not query D^{\prime} on cipher text received from E^{\prime}.
Construct B to attack (E, D),

$$
B^{\mathcal{O}=E(s k, \cdot)}(c):=\left[\begin{array}{ll}
1 . & \text { sample } s k_{2} \text { for }(T, V) \text { at random } \\
2 . & t \leftarrow T\left(1^{k}, s k_{2}, c\right) \\
3 . & \text { output } A^{\mathcal{O}_{1}, \mathcal{O}_{2}}(c, t), \text { where } \\
& \mathcal{O}_{1}\left(m_{i}\right):=\left[\begin{array}{ll}
1 . & c_{i} \leftarrow \mathcal{O}\left(m_{i}\right) \\
2 . & t_{i} \leftarrow T\left(s k_{2}, c_{i}\right) \\
3 . & \text { output }\left(c_{i}, t_{i}\right)
\end{array}\right. \\
\mathcal{O}_{2}\left(c_{i}\right):=\perp
\end{array}\right.
$$

For $b \in\{0,1\}$, let b represent $E^{\prime}\left(m_{b}\right)$. We have

$$
\begin{aligned}
&\left|\mathbb{P}\left[A^{E^{\prime}, D^{\prime}}(0)=1\right]-\mathbb{P}\left[A^{E^{\prime}, D^{\prime}}(1)=1\right]\right| \leq \mid \mathbb{P} {\left[A^{E^{\prime}, D^{\prime}}(0)=1\right]-\mathbb{P}\left[B^{E}(0)=1\right] \mid } \\
&+\left|\mathbb{P}\left[B^{E}(0)=1\right]-\mathbb{P}\left[B^{E}(1)=1\right]\right| \\
&+\left|\mathbb{P}\left[B^{E}(1)=1\right]-\mathbb{P}\left[A^{E^{\prime}, D^{\prime}}(1)=1\right]\right|
\end{aligned}
$$

1. If $\left|\mathbb{P}\left[B^{E}(0)=1\right]-\mathbb{P}\left[B^{E}(1)=1\right]\right|$ is non-negligible, B breaks CPA. Contradiction.
2. If $\left|\mathbb{P}\left[A^{E^{\prime}, D^{\prime}}(b)=1\right]-\mathbb{P}\left[B^{E}(b)=1\right]\right|$ is non-negligible for a $b \in\{0,1\}$, then A must call D^{\prime} and get an output other than \perp. Moreover, the query isn't from E^{\prime}. Construct C to attack (T, V),

$$
C^{\mathcal{O}=T(s k, \cdot)}\left(1^{k}\right):=\left[\begin{array}{ll}
1 . & \text { pick } j \text { at random } \\
2 . & \text { sample } s k_{1} \text { for }(\mathrm{E}, \mathrm{D}) \text { at random } \\
3 . & c \leftarrow E\left(1^{k}, s k_{1}, m_{k}^{(b)}\right) \\
4 . & t \leftarrow \mathcal{O}(c) \\
5 . & c^{\prime} \leftarrow(c, t) \\
6 . & \text { run } A^{\mathcal{O}_{1}, \mathcal{O}_{2}}\left(c^{\prime}, t\right), \text { where } \\
\\
\quad \mathcal{O}_{1}\left(m_{i}\right):=\left[\begin{array}{ll}
1 . & c_{i} \leftarrow E\left(1^{k}, s k, m_{i}\right) \\
2 . & t_{i} \leftarrow \mathcal{O}\left(c_{i}\right) \\
3 . & \text { output }\left(c_{i}, t_{i}\right)
\end{array}\right. \\
\quad \mathcal{O}_{2}\left(c_{i}^{\prime}\right):=\perp
\end{array} \quad \text { if } i=j, \text { stop simulation and output } c_{i}^{\prime}=\left(c_{i}, t_{i}\right) .\right.
$$

Observation. Problem with the construction: attacks can modify parts of the tag and still have a valid tag (e.g. random garbage at the beginning of the tag), but D as an oracle can decrypt if for the attacker. Specifically, C can query (m, t) and output $\left(m, t^{\prime}\right)$, and thus fails to attack (T, V).

Theorem (Fix the bug). $C P A(E, D)+M A C$ with unique $\operatorname{tags}(T, V) \Longrightarrow C C A 2\left(E^{\prime}, D^{\prime}\right)$
Definition (MAC with unique tags). A MAC (T, V) has unique tags if

$$
\forall s k, \forall m, \exists!t \text { s.t. } V\left(1^{k}, s k, m, t\right)=1
$$

Remark. To make a MAC with unique tags, we can

1. make T deterministic: randomness $\leftarrow \operatorname{PRF} f_{s k}(m)$, and
2. make V canonical: use T to verify.

2 Other Forms of CPA+MAC

1. Construction: "Encrypt and authenticate"

$$
E:=\left[\begin{array}{ll}
1 . & c \leftarrow E\left(1^{k}, s k_{1}, m\right) \\
2 . & t \leftarrow T\left(1^{k}, s k_{2}, m\right) \\
3 . & \text { output }(c, t)
\end{array}\right.
$$

Problem: (T, V), as a MAC, can be secure even if
(a) T is deterministic, and/or
(b) T includes message in output.

So this construction can be completely insecure.
2. Construction: "Authenticate then encrypt"

$$
E:=\left[\begin{array}{ll}
1 . & t \leftarrow T\left(1^{k}, s k_{2}, m\right) \\
2 . & c \leftarrow E\left(1^{k}, s k_{1}, t\right) \\
3 . & \text { output } c
\end{array}\right.
$$

Problem: This construction is at least CPA secure, but not CCA2 secure. e.g. E puts garbage bits at beginning of output.

3 Collision Resistant Function (CRF)

An efficient function for which collisions are hard to find.
Definition. $\mathcal{F}:=\left\{F_{k}\right\}_{k}$ is CRF if \forall ppt A,

$$
\mathbb{P}\left[\begin{array}{c|c}
x \neq x^{\prime} & f \leftarrow F_{k} \\
f(x)=f\left(x^{\prime}\right) & \left(x, x^{\prime}\right) \leftarrow A\left(1^{k}, f\right)
\end{array}\right] \text { is } \operatorname{negl}(k)
$$

Observation. Here we hand to the adversary the function description rather than only oracle access. Remark. Any injection is a CRF! CRFs are more interesting when f is length decreasing.

Lemma. length decreasing $C R F \Longrightarrow O W F$
Intuition. Suppose not. We can have

$$
\exists A \text { s.t. } \mathbb{P}\left[A(f(y)) \in f^{-1}(f(y)) \backslash\{y\}\right]>\operatorname{negl}(k)
$$

3.1 Attack CRF

For CRF $f:\{0,1\}^{n(k)} \rightarrow\{0,1\}^{k}, n(k)>k$,

3.1.1 Enumeration Attack

$2^{k}+1$ trials at most. Attack takes time $O\left(\operatorname{Time}(f) \times 2^{k}\right)$.

3.1.2 Birthday Attack

Pick $x_{1}, x_{2}, \ldots, x_{m}$ at random and check for collisions across all pairs.

$$
\mathbb{P}[\text { collision }] \geq 1-e^{-\frac{m^{2}}{2 k+1}}
$$

3.2 Merkle-Damgård Transform

Given CRF $\mathcal{F}=\left\{F_{k}\right\}_{k}$ with $f:\{0,1\}^{2 k} \rightarrow\{0,1\}^{k}$, construct CRF $\mathcal{G}=\left\{G_{k}\right\}_{k}$ with $g:\{0,1\}^{*} \rightarrow$ $\{0,1\}^{k}$.

Proof. Suppose $\exists \operatorname{ppt} A$ that finds collision for \mathcal{G} with non-negligible probability δ.
Let \vec{m} and \vec{m}^{\prime} be the output of A s.t. $g(\vec{m})=g\left(\vec{m}^{\prime}\right)$ but $\vec{m} \neq \vec{m}^{\prime}$.
If

1. $|\vec{m}| \neq\left|\vec{m}^{\prime}\right|, l \neq l^{\prime}$, then collision in last block.
2. $l=l^{\prime}$, then $\exists i$ s.t. $m_{i} \neq m_{i}^{\prime}$ and $\left(m_{i+1}, \ldots, m_{l}\right)=\left(m_{i+1}^{\prime}, \ldots, m_{l^{\prime}}\right)$, collision somewhere earlier.

Construct B to attack \mathcal{F},

$$
B\left(1^{k}, f\right):=\left[\begin{array}{ll}
1 . & \text { construct } g \text { from } f \\
2 . & \vec{m}, \vec{m}^{\prime} \leftarrow A\left(1^{k}, g\right) \\
3 . & \text { compute } g(\vec{m}) \text { and } g\left(\vec{m}^{\prime}\right) \text { to find the collision and output it }
\end{array}\right.
$$

