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Abstract

Retiming is a transformation that optimizes a sequential
circuit by relocating the registers. When the circuit has an
initial state, one must compute an equivalent initial state for
the retimed circuit. In this paper we propose a new efficient
retiming algorithm for performance optimization. The re-
timing determined by the algorithm is the best with respect
to initial state computation. It is the easiest retiming for
finding an equivalent initial state, and if logic modification
is required, it incurs the minimum amount of modification.

1 Introduction

Retiming is a transformation that relocates the registers
in a (sequential) circuit while preserving functionality [1, 2].
Retiming has been used to optimize performance, area, and
power [1, 3, 4]. It has also been combined with other ways
of design optimization [5, 6, 7]. Retiming for level-sensitive
latches has also been addressed [8, 9].

Fig. 1 shows an example of retiming. The circuit in
Fig. 1(b) is obtained from the one in (a) by retiming gatesg2
andg4. Forg2, the register at its input is movedforward to
its output; forg4 the register at its output is movedbackward
to its input. Assuming each gate has one unit of delay, the
retimed circuit has a cycle time equal to one as opposed to
three in the original circuit. Thecycle timeof a circuit is the
maximum combinational path delay in the circuit.

A retiming of a circuit can be represented by a mapping
r from the nodes (gates, PIs or POs) to integers, wherer(v)
denotes the number of registers moved from each output of
nodev to each input ofv. For the example in Fig. 1,r(g4) =
1 while r(g2) = �1. For all other nodes, the values are
zero. In general, whenr(v) is positive, registers are moved
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Figure 1. Retiming: (a) original circuit, (b) re-
timed circuit.

backward acrossv, and registers are moved forward across
v whenr(v) is negative.r(v) is also called thelag atv.

The initial state of a circuit consists of the initial val-
ues of the registers in the circuit. When the initial state is
an integral part of the behavior, it is necessary to find an
equivalent initial state for the retimed circuit. Anequiva-
lent initial stateof a retimed circuit is a state such that for
any given input sequence, the circuit and the retimed one
produce the same output sequence if both circuits start from
their respective initial states. For the example in Fig. 1, the
initial states are specified by the values in the registers and
they are equivalent.

For forward retiming across a node, the initial values in
the registers can be propagated to the new registers by eval-
uating the function of the node using the initial values, i.e.,
forward logic simulation. For the example in Fig. 1, when
f3 is moved forward across the inverterg2 to f5, the initial
value off3 is inverted and the resulting value is assigned
to f5 as its initial value. On the other hand, for backward
retiming across a node, determining the initial values for
the new registers requires backward justification. Backward
justification is NP-hard. Moreover, a solution may not ex-
ist. If this occurs, circuit modification is required to ensure
the existence of an equivalent initial state. As an exam-
ple, Fig. 2(a) shows another retimed circuit of the one in
Fig. 1(a). This retimed circuit also has a cycle time one,
but it cannot be initialized to have the same behavior as the



original circuit. This is becausef12 is a result of moving
bothf1 andf2 backward, but their initial values cannot be
both propagated tof12. Fig. 2(b) is a modified circuit with
an equivalent state. Here a resetANDgate is added to force
the correct value at one of the POs in the first clock cycle.
Note that the cycle time of the modified circuit is increased
back to two again, in addition to the extra gate and register.
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Figure 2. Maintaining initial state with circuit
modification.

A method for computing an equivalent initial state when
given a retiming was proposed in [10]. Supposek is the
maximum lag of the retiming. The method first extracts the
state machine of the original circuit to find a sequence of
k transitions that can lead to the initial state. If such a se-
quence exists, the method finds an equivalent initial state for
the retimed circuit by a sequence of forward logic simula-
tion. If there is no such sequence, the circuit is modified to
ensure such a sequence exists. Existence of such sequence
is only a sufficient condition. For the example in Fig. 1, the
maximum lag is one. It is also obvious that the initial state
cannot be reached from another state since registersf1 and
f2 always have the same value except at the very beginning.
The retimed circuit, however, does have an equivalent initial
state as shown in Fig. 1(b), without circuit modification.

Recently, a retiming algorithm calledreverse retiming
was proposed that tries to reduce the chance of circuit mod-
ification by finding a retiming with minimum maximum lag
[11]. As we just showed, the maximum lag of a retiming
does not correlate well with the existence of an equivalent
initial state. In fact, reverse retiming may find a retiming
that does not admit an equivalent state even when such a re-
timing exists. For example, for the circuit in Fig. 1(a) with
the target cycle time equal to one, reverse retiming produces
exactly the retimed circuit in Fig. 2, which, as mentioned
earlier, does not admit an equivalent initial state.

In this paper, we propose an efficient new retiming algo-
rithm. The algorithm finds a retiming such that the retimed
circuit meets a given cycle time, if such a retiming exists. In
addition, the retiming has minimum lag at every node. As
will be shown in Section 2, such a retiming is thebestwith
respect to initial state computation. It is the easiest retim-
ing for finding an equivalent initial state. It has minimum
chance of requiring logic modification, and if logic modifi-
cation cannot be avoided, it requires the minimum amount

of logic modification. We point out that the authors of [11]
also noticed the drawbacks of their algorithm and proposed
an iterative retiming method to selectively bound individual
lags, when the retiming obtained by their algorithm does not
admit an equivalent initial state. The method is enumerative
and has exponential time cost. One the other hand, the algo-
rithm proposed in this paper is polynomial and has the same
complexity as the best known retiming algorithm FEAS [1].

Finally, we introduce a few notations. We represent a
synchronous sequential circuit as a directed graph. Each
node in the graph represents either a primary input (PI), pri-
mary output (PO) or a gate, and each edgeu

e
! v represents

an interconnection from nodeu to nodev. An edgee has
a weight,w(e), which is the number of registers on the in-
terconnection. Each nodev has a delayd(v). The circuit
obtained after applying retimingr to a circuitN will be de-
noted byNr. The number of registers on edgeu

e
! v in

Nr, wr(e) = w(e) + r(v) � r(u). The rest of the paper
is organized as follows: In Section 2, we present a method
to determine the new locations of a register after retiming.
Our algorithm for finding a retiming that meets a given cy-
cle time and has minimum lags is given in Section 3. We
present our experimental results in Section 4 and conclude
the paper in Section 5.

2 Determining register locations after retim-
ing

In this section, we present a method to determine the new
locations of a register after retiming. From this method, we
will see why a retiming with minimum lag at every node is
the best retiming for initial state computation.

Let f be a register on edgev0
e0
! v (see Fig. 3). Let

W0 denote the number of registers to the left off on e0,
including f . If r(v0) � W0, thenf is moved backward
out of e0 by the retiming sincer(v0) registers are moved
backward acrossv0. Similarly, if r(v) < �w(e0) + W0,
f is moved forward out ofe0 by the retiming since there
are w(e0) � W0 registers to the right off on e0, and
�r(v) registers are moved forward acrossv by the retim-
ing. Note that only one of these cases can happen since
wr(e0) = w(e0) + r(v) � r(v0) must be non-negative. If
neither case happens,f stays one0 in Nr.
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Figure 3. Retiming a register along a path.



Since forward retiming moves are not a concern in initial
state computation, we only consider the case thatf is moved
backward out ofe0, i.e., r(v0) � W0. Consider a pathp
extending out ofv0 to a PI as shown in Fig. 3. LetWi be
the number of registers on the path fromvi to f , including
f , namely,W1 = W0 + w(e1), W2 = W1 + w(e2), � � �,
Wi = Wi�1 + w(ei), � � �. If r(vi) � Wi thenf is moved
backward out ofvi. Let t be the minimum integeri such
thatr(vi) < Wi. Then,f is moved backward out ofvt�1,
but notvt. Hence in the retimed circuit,f is right on edge
et. Since the lag of each PI is zero, such at always exists.

Now supposer0 is another retiming ofN such that
r(u) � r0(u) for every nodeu in the pathp. Then,
r(vi) � Wi impliesr0(vi) � Wi for anyvi in p. In other
words, iff is moved backward acrossvi in Nr, it is also in
Nr0 . Thus, we have the following result:

Theorem 1 Let r and r0 be two retimings ofN such that
r(v) � r0(v) for every nodev in N , thenr moves every
register backward along any path by a smaller or equal dis-
tance thanr0.

As mentioned before, propagating the initial value off

that is retimed backward to the registers at its new locations
is a backward justification problem. The logic used in the
justification process consists of all the nodes betweenf and
its new locations. We will refer this logic as thejustification
coneof f . The edges going into the cone are the new loca-
tions off in the retimed circuit, and the edge coming out of
the cone is wheref is, in the original circuit.
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Figure 4. Relation between justification
cones.

Letr andr0 be two retimings ofN such thatr(v) � r0(v)
for each nodev in N . From Theorem 1, the justification
cone of any registerf from r, Cf , is containedby the jus-
tification cone off from r0, C 0f , as indicated in Fig. 4. On
the way to propagate the initial value off to the edges going
into C 0f , the edges going intoCf are also assigned values.
Therefore, if the initial value off can be propagated to the
registers in the new locations forr0 without logic modifica-
tion, it is also the case forr. Suppose logic modification
is required andC 0f is modified by the standard technique of
adding reset logic [10, 12]. SinceCf is a subset ofC 0f , if

Cf is modified the same way as inC 0f , the initial value of
f is also propagated to the new locations fromr. As a re-
sult, the cost of modification required byr is always smaller
than or equal to that required byr0, and if no modification
is required forr0, then it is not needed forr either. Thus,r
is a better retiming thanr0 as far as equivalent initial state
computation is concerned.

3 Retiming for minimum lags

As the discussions in the last section conclude, the
smaller the lags of a retiming are, the easier the backward
justification problem will be. In this section, we present a
retiming algorithm that produces a retiming with minimum
lag at every node while achieving a target cycle time�. We
will refer to such retiming as themin-lag retiming(for the
given cycle time�).

We first examine existing retiming algorithms to see why
they fail to minimize the lags. The best known retiming
algorithm FEAS is iterative [1]. At each iteration, it com-
putes the maximum combinational path delay ending at each
node. Then it moves registers backward across each node
with a path delay exceeding the target cycle time. The prob-
lem with FEAS is that some of backward retiming moves
are actually not necessary. For example, for the simple cir-
cuit in Fig. 5, to achieve a cycle time of one, FEAS moves
f2 backward acrossg2 since the combinational path delay
ending atg2 is two, exceeding the target cycle time. How-
ever, the move is not necessary since the path delay atg2
can also be reduced by movingf1 forward acrossg1.

ff1 2
g g1 2

Figure 5. Unnecessary backward retiming in
FEAS.

On the other hand, the reverse retiming algorithm pro-
posed recently only move registers forward [11]. Backward
retiming is done by moving registers forward from the POs
to the PIs in a wrap-around fashion. In reverse retiming, reg-
isters are moved forward only when path delays exceed the
target cycle time. This may cause problem when registers
are moved forward from the POs to the PIs. Moving reg-
isters forward from the POs to the PIs has the same effect
of moving registers at the POs all the way backward to the
PIs. Reverse retiming tries to leave those registers moved
to the PIs right there. This can be illustrated by considering
the circuit in Fig. 1(a). For this circuit, to realize a cycle
time of one, reverse retiming first movesf3 forward across



g2 andg3. Then, it movesf1, f2 andf4 at the POs to the PI.
The register at the PI will be moved further forward on the
path containingg2 to reduce the path delay. However, on the
paths containingg1 the register at the PI will not be moved
forward as the path delays already meet the cycle time. This
results in exactly the circuit in Fig. 2. The actual effect is
thatf1 andf2 are moved backward tof12 and the resulting
circuit cannot be initialized.

We now describe the details of our algorithm. LetLv

denote the minimum number of registers on the paths from
the PIs to the nodev. The path delays (or arrival times) of
the nodes in the circuit are defined as follows:

a(v) =

�
0; v is a PI or register output
d(v) + max

u
e

!v;w(e)=0
a(u); otherwise,

here we assume a dummy node is introduced at the output
of each register.

Our algorithm will be referred to as MINLAG. MINLAG

maintains alabel at each node, which intuitively is a lower
bound on the minimum lag at the node. It then iteratively
improves the labels until they reach the respective minimum
lags. An outline of MINLAG is given in Fig. 6, where the
label of nodev is l(v). Note thatl is NOT a valid retiming
in that it may assign a non-zero value to a PO. Nevertheless,
we treatl as it were a retiming and use it to re-weight the
circuit. Using the same notation for retiming, we denote the
circuit “retimed” according tol byNl.

MINLAG initializes the label of each nodev to �Lv. It
then increments the labels at those nodes whose arrival times
in Nl exceed the target cycle time�. This process is re-
peated until all arrival times are within the target cycle time,
at which time we generate the min-lag retiming from the
labels. If the number of iterations exceeds the number of
nodes in the circuit, the target cycle time is not achievable.
MINLAG also stops and reports FAILURE if there is a PO
with a label larger than 0.

MINLAG(N;�)
foreachnodev in N do
l(v) = �Lv;

i = 0;
do
i = i+ 1;
Calculate the arrival timea(v) for each nodev in Nl;
if (8v a(v) � �) then return SUCCESS;
foreachv such thata(v) > � do
l(v) = l(v) + 1;
if (v is a PO andl(v) > 0) then return FAILURE;

while (i is less than the number of nodes inN )
return FAILURE;

Figure 6. Computing the labels.

One way to understand MINLAG is that it separates for-
ward retiming from backward retiming. The initial values of
the labels represent a forward retiming (note that�Lv � 0
for every nodev), and this is the only forward retiming ever
performed by MINLAG. After that, only backward retiming
is performed as MINLAG only increments labels. The initial
forward retiming ensures all later backward retiming moves
are necessary ones.

If M INLAG stops with SUCCESS, we derive a retiming
r from the final labels as follows:r(v) = l(v) for each
internal nodev, and ifv is a PO or PI,r(v) is zero. The cor-
rectness of MINLAG is summarized in the following result:

Theorem 2 (i) If MINLAG returns SUCCESS,Nr has a
cycle time of�.

(ii) If MINLAG returns FAILURE, thenN cannot be re-
timed to a cycle time of�.

(iii) If MINLAG returns SUCCESS, then for any retimingr0

such thatNr0 has a cycle time of�, r(v) � r0(v) for
eachv.

Statements (i) and (ii) guarantee that MINLAG deter-
mines a retiming that meets the cycle time� whenever such
a retiming exists. Statement (iii) says that if there is a retim-
ing that meets the cycle time�, MINLAG will find the one
with minimum lag at every node, the best retiming for initial
state computation. The proof of Theorem 2 is omitted here
due to space limitation.

Let n andm denote the number of nodes and the num-
ber of edges inN , respectively. We now estimate the time
complexity of MINLAG. We first note that allLv can be
determined by a single-source shortest path algorithm with
edge weightw(e). Sincew(e) � 0 for everye, Dijkstra’s
shortest path algorithm can be used [13]. Thus, allLv can be
determined inO(m+n logn) time. Thedo loop has at most
n iterations. In each iteration the main task is to find the ar-
rival times of the nodes, which is a single source longest
path problem in a DAG and can be done inO(n+m) time.
Thus, the time complexity of MINLAG isO(n2 + nm), the
same as FEAS’s. In practice, our algorithm is faster as our
experiments show. The main reason is that MINLAG can
detect an infeasible target cycle time much faster because of
the infeasibility test within thedo loop.

4 Experimental results

We implemented a program that minimizes the cycle time
of a sequential circuit under the condition that a equivalent
initial state can be found without logic modification. The
core of the program is MINLAG presented in this paper.
The program carries out binary search on the target cycle
time. For each target cycle time, MINLAG is called to find



the min-lag retiming that meets the target cycle time. If we
cannot find an equivalent initial state for the retimed cir-
cuit without logic modification, we increase the target cycle
time. Backward justification in the program is done by a
PODEM-like algorithm used in test pattern generation [14].

We tested the program on all sequential benchmark
circuits in ISCAS89 suite (including Addendum93) from
MCNC. In the experiment, the unit delay model is assumed.
For each circuit, we tried two initial states: one with all ini-
tial values of the register being zero (all-zero), and the other
with all values being one (all-one). In this section, we de-
scribe our experiments and summarize the results.

Among all the benchmarks (43 of them), 36 circuits have
their cycle times reduced by retiming. For each of these
circuits, our program is able to achieve the the same optimal
cycle time that can be obtained without considering initial
states, for bothall-zeroandall-oneinitial states. The results
are reported in Table 1. In the table, we list the number of
gates, the number of registers and the cycle time of each
circuit. For each optimized circuit from our program, we
list the cycle time and the number of registers. Also listed
in the table are the CPU time of our program in seconds, on
an UltraSPARC 2 workstation. The CPU times for finding
equivalent initial states are listed underinit, and the times
for searching the optimal cycle time are listed undermin. As
can be seen, our program is very efficient. The CPU times
for computing equivalent initial states are extremely small.
MINLAG may also contribute to such small CPU times as
the backward justification effort is minimum.

For comparison purpose, we also tested the benchmarks
on FEAS [1] and the recent reverse retiming algorithm (de-
noted REVE) [11]. Our main interest in the comparison lies
in the minimum cycle time retimings found by these algo-
rithms. Although all retimings achieve the same minimum
cycle time, they differ in terms of the feasibility and cost
for finding equivalent initial states. As we have shown, the
retiming from MINLAG is the best in this regard. To show
that FEAS and REVE may miss the best retiming, we count
the number of nodes with positive retiming values in each
retiming. The results are also listed in Table 1. Note that
a positive value at a node means backward retiming is per-
formed at the node. For the table it is evident that for quite a
number of circuits, the retiming from FEAS has more posi-
tive nodes than that from MINLAG. There are some circuits
for which backward retiming can be totally avoided for the
minimum cycle time, but FEAS fails to find such retimings.

REVE is able to avoid introducing positive lags when-
ever they can be avoided completely, as it minimizes the
maximum lag. However, when backward retiming is neces-
sary, REVE performed considerably worse than even FEAS.
For example, for circuit s9234.1, both MINLAG and FEAS
introduce only 5 nodes with positive lags, but the retiming
from REVE has 4427 nodes with positive lags (about four-

fifth of the total number of nodes in the circuit), and the
justification logic has a depth of 38 as opposed to a mere 5
from MINLAG.

The logic synthesis tool SIS [15] has a routine for com-
puting equivalent initial states. This routine is based on the
method in [10]. The routine has a very time-consuming step
to check whether the initial state can be reached again. This
is done through state machine extraction. As a result, it is
impractical to apply the routine to even moderate-sized cir-
cuits. We were able to run the routine for the benchmark cir-
cuits down to s1269 in the table. Among the 15 circuit with
backward retiming from FEAS, the routine found equiva-
lent initial states for only two of them: s991 and s1269, for
the all-one initial states. On the other hand, our program
successfully found the equivalent initial states for all bench-
mark circuits for bothall-zeroandall-oneinitial states.

5 Conclusions

We have proposed a new retiming algorithm. For a given
cycle time, the algorithm finds a retiming that meets the cy-
cle time. Moreover, the retiming produced by the algorithm
has minimum lag at every node, so it is the best retiming as
far as equivalent initial state computation is concerned. The
algorithm has the same time complexity as the best retiming
algorithm that does not consider initial states.
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