
Optimal Clock Period FPGA Technology
Mapping for Sequential Circuits

PEICHEN PAN
Clarkson University, Potsdam, NY
and
C. L. LIU
University of Illinois at Urbana-Champaign, Urbana, IL

We study the technology mapping problem for sequential circuits for look-up table (LUT)
based field programmable gate arrays (FPGAs). Existing approaches to the problem simply
remove the flip-flops (FFs), then map the remaining combinational logic, and finally put the
FFs back. These approaches ignore the sequential nature of a circuit and assume the positions
of the FFs are fixed. However, FFs in a sequential circuit can be repositioned by a
functionality-preserving transformation called retiming. As a result, existing approaches can
only consider a very small portion of the available solution space. We propose in this paper a
novel approach to the technology mapping problem. In our approach, retiming is integrated
into the technology mapping process so as to consider the full solution space. We then present
a polynomial technology mapping algorithm that, for a given circuit, produces a mapping
solution with the minimum clock period among all possible ways of retiming. The effectiveness
of the algorithm is also demonstrated experimentally.

Categories and Subject Descriptors: B.6.1 [Hardware]: Design Styles—sequential circuits;
B.6.3 [Hardware]: Design Aids—automatic synthesis; optimization

General Terms: algorithms, performance

Additional Key Words and Phrases: Clock period, field–programmable gate arrays, FPGAs,
logic replication, look–up tables, retiming, sequential synthesis, technology mapping

1. INTRODUCTION

FPGA has evolved rapidly to become an important ASIC technology. The
most conspicuous features of FPGAs are: a low manufacturing cost for

The work was partially supported by the National Science Foundation under grants MIP-
9222408 and MIP-9612184. An abridged version of this paper appeared in Proceedings of the
ACM/IEEE Design Automation Conference, 1996.
Authors’ addresses: Peichen Pan, Department of Electrical and Computer Engineering,
Clarkson University, Potsdam, NY 13699; email: panp@clarkson.edu; C. L. Liu, Department of
Computer Science, University of Illinois at Urbana–Champaign, Urbana, IL 61801; email:
liucl@cs.uiuc.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 1084-4309/99/0700–0437 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998, Pages 437–462.

low–volume designs, a short design cycle, and reprogrammability. These
features make FPGAs particularly attractive for such applications as
design prototyping and hardware emulation.

In this article we consider the popular LUT-based FPGA architectures
[Altera 1995; AT&T Microelectronics 1995; Xilinx 1993]. A LUT-based
FPGA chip consists of an array of programmable logic blocks together with
programmable interconnects. The core of a programmable logic block is a
k-input LUT (k-LUT) that can implement any combinational logic with up
to k inputs and a single output, where k is a positive integer ranging
usually from 3 to 9. There are also a few flip-flops (FFs) in each program-
mable logic block that can be connected to the inputs and the output of the
LUT to realize sequential behavior.

The technology mapping problem for LUT-based FPGAs is to produce, for
a given circuit, an equivalent circuit comprised of k-LUTs. This problem
has been studied extensively. However, almost all mapping algorithms
designed were for combinational circuits. Mapping algorithms for combina-
tional circuits have been proposed to target various optimization criteria:
performance,1 area,2 routability [Bhat and Hill 1992; Schlag et al. 1994],
and combinations of those [Cong and Ding 1994; Sawkar and Thomas
1992]. We mention here particularly FlowMap [Cong and Ding 1994]. Given
a k-bounded combinational circuit, FlowMap produces a mapping solution
with the minimum level.

Although most circuits are sequential in practice, there have been limited
research efforts in technology mapping for sequential circuits [Murgai et al.
1993; Weinmann and Rosenstiel 1993]. Most existing approaches are based
on mapping algorithms for combinational circuits. Specifically, all the FFs
in a circuit are removed to obtain a combinational network. Then, the
combinational network is mapped. Finally, the FFs are replaced. These
approaches have two serious drawbacks: (1) they fail to consider signal
dependencies across FF boundaries, and (2) they do not consider the
possibility of exposing the combinational logic between the FFs in different
ways. Note that the positions of the FFs in a sequential circuit are not fixed
and can be changed by a technique called retiming [Leiserson and Saxe
1991]. As a result, existing approaches only consider a very small portion of
the available solution space.

In this article, we propose a new approach to the technology mapping
problem for sequential circuits. In this approach, technology mapping is
carried out directly, without resorting to a mapping algorithm for combina-
tional circuits. Since FFs are not removed there is no circuit segmentation,
and signal dependencies across FF boundaries are exploited fully. More-
over, the FF positions are assumed to be dynamic in that they can be
arbitrarily repositioned through retiming. We focus on the performance

1[Cong and Ding 1993; Cong and Ding 1994; Francis et al. 1991; Mathur and Liu 1994; Sawkar
and Thomas 1993; Woo 1991]
2[Farrahi and Sarrafzadeh 1994; Francis et al. 1990; Francis et al. 1991; Karplus 1991;
Murgai et al. 1990; Murgai et al. 1991; Woo 1991]

438 • P. Pan and C. L. Liu

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

aspect of the problem. Our main objective is to obtain mapping solutions
with a minimum clock period, which is defined as the maximum number of
LUTs between any two successive FFs.3 We present a polynomial technol-
ogy mapping algorithm that produces minimum clock period mapping
solutions.

1.1 Motivating Examples

This example shows the advantage of repositioning FFs in technology
mapping. Consider the circuit in Fig. 1a and assume k 5 3. One possible
mapping solution, without repositioning the FFs, is shown in Fig. 1b, where
each LUT consists of the gates enclosed by a dashed circle in Fig. 1a. This
mapping solution uses two LUTs and has a clock period equal to two.
Retiming at this stage cannot reduce the clock period of this mapping
solution since there is a cycle with two LUTs but only one FF. In fact, it can
be shown that without retiming, any mapping solution of this circuit
contains at least two LUTs and has a clock period at least two, no matter
how the combinational logic is mapped. On the other hand, if the FF f at
the output of gate b is moved to the inputs of b as shown in Fig. 1c, all the
gates can be mapped to a single 3-LUT to form the mapping solution in Fig.
1d, which only has a clock period of one.

We further notice that to fully exploit the potential of retiming, logic
replication is necessary. Replication can help produce mapping solutions
which are impossible to obtain otherwise. Consider the circuit in Fig. 2a
with k 5 4. It can be shown that any mapping solution must use at least
six 4-LUTs and must have a clock period at least two, even with retiming.
However, if we duplicate a (to become a and a9), b (to become b and b9),
and c (to become c and c9) and then retime the FFs across gates a9, b9, and
c9 as shown in Fig. 2b, we can map all the gates (including the duplicated
ones) to a single 4-LUT to obtain the mapping solution in Fig. 2c. This
mapping solution has a clock period of one.

It should be noted that logic replication as used here has a purpose
different from that in technology mapping for combinational circuits. As
can be seen from the example in Fig. 2, replication is needed in forming just

3The unit-delay model is used here in which interconnect delays are ignored. The algorithm in
this paper can be generalized to work for the general delay model. The generalized algorithm
can produce mapping solutions with clock periods provably close to minimum.

Fig. 1. Advantage of combining technology mapping with retiming.

FPGA Technology Mapping • 439

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

a single LUT. This is not necessary for combinational circuits, where
replication means simply logic overlapping between different LUTs.

2. OVERVIEW OF THE NEW APPROACH

We examine the technology mapping problem in the general setting in
which both retiming and replication are considered in this article. It is
obvious that by incorporating retiming and replication the solution space
becomes enormous as there are too many ways to retime and replicate a
circuit.

Our problem formulation can be illustrated by the diagram in Fig. 3.
That is, the solution space consists of all the circuits that can be obtained
by retiming and replicating the circuit to be mapped, mapping the logic
between the FFs, and then another retiming and replication.4 Note that in
existing approaches, Steps 1 and 3 in Fig. 3 are missing. As a result,
existing approaches only consider a much smaller solution space than the
one shown here.

We should emphasize that Fig. 3 shows the potential solution space that
can be explored by our approach, and not the steps that our algorithm will
take to solve the problem. In fact, mapping algorithms based on existing
approaches may try to exploit retiming by carrying out these conceptual
steps in sequence. However, such algorithms most likely arrive at sub-
optimal solutions, since it is impossible to foresee which retiming and
replication to use in Step 1 before actually mapping the combinational
logic. Moreover, the best solution to the combinational logic of a sequential
circuit may not lead to the best solution to the sequential circuit [Pan
1997].

The algorithm we propose, on the other hand, finds the best mapping
solution in the solution space shown in Fig. 3 without actually resorting to
mapping algorithms for combinational logic. The algorithm operates di-

4Theoretically speaking, the retiming and replication after mapping the combinational logic
can be merged with the one before the mapping. However, there are two reasons for having
them separated: One is to make the formulation more general. The other is to allow the
flexibility of having several steps of retiming. In fact, separating retiming for different
purposes is one of the contributions of this paper.

Fig. 2. Advantage of combining technology mapping with logic replication.

440 • P. Pan and C. L. Liu

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

rectly on the sequential circuit. It seamlessly and globally integrates
retiming, replication, and logic mapping to obtain mapping solutions with
the ultimately best clock periods.

As we mentioned earlier, a mapping solution is a circuit comprised of
LUTs. As a result, we need to address the following two issues:

—How to form LUTs for nodes in a sequential circuit in the presence of
retiming and replication; and

—How to choose a “best” LUT for each node from among all possible ones to
form a mapping solution.

Although LUT formation is rather simple for combinational circuits, it is
much more complicated for sequential circuits because of the presence of
retiming and replication. In fact, we no longer have a fixed circuit to work
on. Instead, there is a family of circuits: all circuits that can be obtained by
retiming and replicating the initial one. We derive a method for forming
LUTs in sequential circuits based on expanded circuits, an important
concept introduced in this article.

Our algorithm is based on dynamic programming in which a labeling
scheme is used to guide the selection of LUTs to include in the final
mapping solutions. We need a labeling scheme that takes into consider-
ation both the number and the positions of the FFs, so we introduce a
labeling scheme in which labels are tied to the minimum clock period of the
mapping solutions. The final solution of the problem is based on repeated
network flow computation.

The remainder of this article is organized as follows: In Section 3, we
introduce some preliminaries and give a precise description of the problem.
In Section 4, we discuss LUT formation in sequential circuits. In Section 5,
we present a technology mapping algorithm for a target clock period.
Section 6 describes the algorithm for finding a mapping solution with
minimum clock period. Section 7 shows our experimental results. Finally,
Section 8 concludes this article.

3. PRELIMINARIES AND PROBLEM DEFINITION

A (sequential) circuit can be modeled as an edge-weighted directed (multi-
)graph. The nodes are the primary inputs (PIs), the primary outputs (POs),
and the combinational processing elements (PEs). (A PE is either a gate or
a k-LUT depending on whether the circuit is unmapped or a mapping
solution.) The edges represent interconnections. There is an edge e from u

to v (denoted u ¡
e

v) with weight t if the output of u, after passing through
t FFs, is an input to v. We use N to denote the circuit to be mapped and

Fig. 3. Solution space after integrating retiming and replication.

FPGA Technology Mapping • 441

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

w(e) to denote the weight of edge e in N. We assume N is k-bounded, i.e.,
each gate has at most k inputs. We also assume that every node in N can
reach at least one PO and can be reached from at least one PI.

Retiming is a transformation that relocates the FFs in a circuit without
changing its functionality or structure [Leiserson and Saxe 1991]. Retiming
a node by a value i is an operation that removes i FFs from each fan-out
edge and adds i FFs to each fan-in edge of the node. Essentially, this
operation delays the output of the node by i clock cycles. Of course, if i is
negative, the output of the node is actually advanced by 2i clock cycles.
Fig. 4 shows the case where i 5 1 and 21. In general, all nodes in a circuit
can be retimed simultaneously (a retiming of the circuit). It has been shown
that the retimed circuit and the original one have the same functionality if
the PIs and POs are not retimed (i.e., the retiming values of the PIs and
POs are zero).

A retiming r can be represented by a mapping from the nodes to integers,
where r(v) denotes the retiming value for node v. In the circuit retimed
according to r, the weight of an edge u ¡

e
v becomes w(e) 1 r(v) 2 r(u).

The clock period of a circuit is the maximum delay on the combinational
paths (paths without FFs) in the circuit. The retimed clock period is the
minimum circuit clock period that can be obtained by retiming the circuit.
Polynomial algorithms for computing the retimed circuit clock period and a
corresponding retiming can be found in Leiserson and Saxe [1991].

Unlike retiming, which does not modify the structure of a circuit, logic
replication, on the other hand, is a transformation that structurally modi-
fies a circuit while preserving the functionality. Replicating a node means
to create several copies of the node and distribute the fan-outs of the node
among the copies. Fig. 5 illustrates the duplication of a node. Note that all
the fan-in edges of the node are duplicated too.

To introduce the new formulation of the technology mapping problem, we
first specify the mapping solutions in the new formulation. Refer again to
Fig. 3. Let N9 be a circuit obtained from N using replication and retiming.
Let N0 be a mapping solution of the combinational logic of N9 (i.e., a k-LUT
covering of the combinational logic of N9, see Cong and Ding [1994] for
more details), and S be the circuit obtained by placing the FFs in N9 back
to N0 and then following this by another retiming and replication.5 Then, S
is a mapping solution of N in the new formulation. The performance-driven
technology mapping problem we address is:

5Actually, replication at this stage turns out to be unnecessary, but we list it here for the sake
of completeness.

Fig. 4. Retiming a node.

442 • P. Pan and C. L. Liu

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

Problem 1. Find a mapping solution with minimum clock period.

Our approach to Problem 1 is based on solving the corresponding decision
problem, which can be stated as follows:

Problem 2. Given a target clock period f, find a mapping solution with a
clock period less than or equal to f, whenever such a mapping solution
exists.

Obviously, with an algorithm for solving Problem 2, we can carry out
binary search on the target clock period to find a mapping solution with a
minimum clock period.

To conclude this section, we list several graph-theoretic concepts that we
use later. In a directed acyclic graph (DAG) with one sink but possibly
several sources, a cut (X, X#) is a partition of the nodes such that the sink is
in X and all sources are in X# . The edge-set of the cut is the set of edges from
X# to X, the node-set of the cut is the set of nodes in X# that are connected to
one or more nodes in X. The cone of the cut is the subgraph induced by X.
For ease of discussion, we denote cut (X, X#) by [X], as X# is usually
understood from the context. We use E[X] and V[X] to denote the edge-set
and node-set of [X], respectively. If uV[X] u # k, [X] is then called a k-cut.

4. FORMATION OF LUTS

In this section, we present a method for forming k-LUTs in a sequential
circuit. Recall that in the case of combinational circuits, a k-LUT for a node
is formed by the cone of a k-cut in the subcircuit for the node [Cong and
Ding 1994]. However, in our problem formulation, a circuit may be retimed
and replicated. As a result, there is no fixed circuit to use during LUT
formation.

Due to the inclusion of retiming, the output of a LUT in a mapping
solution may be retimed by a non-zero value (with respect to the corre-
sponding node in the initial circuit). For example, in the mapping solution
of the circuit in Fig. 6a, shown in Fig. 6c, the output of LUT +a is retimed
by 1, and the output of LUT +c is retimed by 21. A mapping solution in
which the output of each LUT has a retiming value equal to zero is referred
to as a simple mapping solution. As an example, the circuit in Fig. 6b is a
simple mapping solution of the circuit in Fig. 6a, since the outputs of LUTs
+a and +c have retiming values equal to zero.

Note that there are still FF movements in a simple mapping solution. For
example, gate d is retimed by a value of 1 in forming the simple mapping
solution of Fig. 6b. The FF movement is used to form the LUT +c for c.

Fig. 5. Duplicating a node.

FPGA Technology Mapping • 443

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

THEOREM 1. There is a mapping solution with a clock period less than or
equal to f iff there is a simple mapping solution with a retimed clock period
less than or equal to f.

PROOF. (if) This part is obvious, since a retimed circuit of a mapping
solution is itself a mapping solution, and a simple mapping solution with a
retimed clock period of f or less can, by definition, be retimed to a clock
period of f or less.

(only if) Suppose S is a mapping solution with a clock period of f or less.
We define a retiming r on S as follows: r(+) 5 2i for a LUT + in S, where
i is the retiming value at the output of +. That is, r takes the opposite
retiming value of the output of +. This retiming will cancel out the
retiming at the output nodes of the LUTs. In the retimed mapping solution
Sr, the retiming value of the output node of each LUT becomes zero. By
definition, Sr is a simple mapping solution of N. As an example, for the
mapping solution in Fig. 6c, r(+a) 5 21 and r(+c) 5 1. If this retiming is
applied to the solution, we obtain exact the simple mapping solution in Fig.
6b.

The retimed clock period of Sr is less than or equal to the clock period of
S, since we can retime Sr back to S. Therefore, Sr has a retimed clock
period less than or equal to f. e

Obviously, moving FFs across LUTs has nothing to do with LUT forma-
tion, although they are needed for clock period reduction. In a simple
mapping solution, there is no retiming across LUTs. In fact, the retiming
defined in the proof of Theorem 1 is meant to cancel such FF movements.
The concept of simple mapping solutions lets us separate retiming for the
purpose of LUT formation from retiming for clock period minimization. The
separation is important because these two kinds of retiming are handled
differently. As we show later, retiming for LUT formation is handled using
expanded circuits, and retiming for clock period reduction is handled using
a labeling scheme.

As a result of Theorem 1, instead of studying Problem 2 we study the
following equivalent problem:

Problem 3. Find a simple mapping solution with a retimed clock period
less than or equal to f, whenever there is one.

Fig. 6. Simple and non-simple mapping solutions: a. initial circuit; b. simple mapping
solution; c. non-simple mapping solution.

444 • P. Pan and C. L. Liu

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

By a restriction to simple mapping solutions, we need only to study LUT
formation for the nodes in N (not in retimed circuits of N). Furthermore,
the input to a LUT can be specified in terms of the output of a node in N
after passing through a certain number of FFs. If the output of a LUT for a
node u after passing through d FFs is an input to a LUT for v, we say
simply (u, d) is an input to the LUT for v. We use input(+) to denote the
set of inputs to a LUT +. In the remainder of this section, we discuss LUT
formation for simple mapping solutions.

We now introduce the concept of expanded circuits as a way to consider
retiming and replication during LUT formation. The expanded circuit for a
node v is formed by properly replicating the nodes in N, starting with v and
going backward toward PIs. It is constructed in such a way that all paths
from any given node to the only output node have the same number of FFs.
In the expanded circuit for v, a node is denoted by ud if the node is a copy
of node u in N, where the index d is the number of FFs from ud to the only
output node v0. The intuition in the construction of the expanded circuit for
v is as follows: For a path from u to v in N

~u5!ut ¡
et

ut21O¡
et21

· · · O¡
e3

u2 O¡
e2

u1 O¡
e1

u0~5v!;

replication is used to create a unique corresponding path in the expanded
circuit as follows:

ut
dt ¡

et

ut21
dt21O¡

et21

· · · ¡
e3

u2
d2 ¡

e2

u1
d1 ¡

e1

u0
d0~50! ,

where di 5 di21 1 w(ei) is the total number of FFs on the path from ui to
v in N, and ui

di is a copy of ui, for 1 # i # t.
Given a node v in N, the expanded circuit for v, denoted %v, is con-

structed recursively. We start with one node v0 in %v, then repeatedly carry
out expansion at non-PI nodes in %v that do not have incoming edges. Let
ud be a node without incoming edges. An expansion at ud is defined as
follows: For each edge x ¡

e
u in N, add node xd1 where d1 5 d 1 w(e), to

%v if the node is not yet in %v, and add an edge xd1 3 ud with weight w(e)
to %. For the circuit in Fig. 1a, Fig. 7 shows four expansions in the
construction of the expanded circuit for node c. From 7b to 7e each one is
obtained from the preceding one by an expansion at the shaded node.

The expanded circuit %v is a DAG with one sink v0. Due to the possible
presence of cycles, %v may have infinitely many nodes. This is obviously the
case for node c in Fig. 1a, since expansion will continue at both a1 and b2 in
Fig. 7e and the expanded circuit becomes repetitive. We eventually use
finite subcircuits of %v. An important class of subcircuits consists of: %v

i , for
i $ 0. %v

i is comprised of the nodes in %v whose shortest distance (in terms
of the number of edges) to v0 is less than or equal to i. For example, the
circuit in Fig. 7a is %v

0, in 7b is %v
1, in 7d is %v

2, and in 7e is %v
3.

FPGA Technology Mapping • 445

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

Let [X] be a k-cut in the expanded circuit %v for v. We can push the FFs
in X to the edge-set of the cut. Specifically, we define a retiming on %v that
assigns a retiming value of d to each node ud in X and zero to the rest of
the nodes. It can be easily verified that, after the retiming, none of the
edges between the nodes in X have FFs, and the number of FFs on an edge
in E[X] emanating from ud is exactly d. From our problem definition, we
know that the cone of this cut (after the retiming) is a LUT for v, and
(u, d) is an input to the LUT for each ud in V[X] (so [X] is actually a
k-LUT). As an example, for the 4-cut with X 5 {c0, c1, b1} in the expanded
circuit for c in Fig. 1a, shown in Fig. 8a, the corresponding 4-LUT is shown
in Fig. 8b.

From the above discussion, we know that a k-LUT can be derived from a
k-cut in an expanded circuit. The reverse of this statement is also true, as
stated in the following result:

LEMMA 1. Given a k-cut in %v, a k-LUT for v can be derived. The logic of
the LUT is the cone of the cut less the FFs. (u, d) is an input to the LUT if
ud is in the node-set of the cut. On the other hand, given a k-LUT for v,
there exists a k-cut in %v that derives a k-LUT with the same set of inputs.

PROOF. We have already shown the first part of this result in the
preceding discussion. We now prove the second part, i.e., for any k-LUT,
there is a k-cut in %v that derives a k-LUT with the same inputs.

Let + be a k-LUT for v. By definition, + is the cone of a k-cut # in a
circuit N9v obtained from the subcircuit for v by replication and retiming.
We first show that if we remove all edges directed out of u1

d1 for each
(u1, d1) in input(+), all paths from the sources to v0 will be broken in %v.

Let p be a path from a source to v0 in %v. If we do not differentiate copies
of the same node, p is also a path in N9v, since replication does not
introduce new paths. p must be broken by #. That is, there is an edge u ¡

e

x in both p and the edge-set of #. Let d denote the number of FFs on e in
N9v. Since there is no FF on the edges inside the cone of # and neither u nor
v is retimed (in a simple mapping solution), d must be equal to the total

Fig. 7. Construction of an expanded circuit.

446 • P. Pan and C. L. Liu

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

number of FFs on the segment of p from u to v. Thus, (u, d) is in input(+)
and ud is in %v. Hence, p is broken after the removal of the edges emitting
from ud.

Let X be the set of nodes in %v that still have paths to v0 after the
removal of the edges. [X] is a cut in %v, and the node-set of [X] is {u1

d1 u
(u1, d1) [input(+)}. Hence, the input set of the k-LUT derived from cut
[X] is equal to input(+). e

Lemma 1 guarantees we can derive k-LUTs from k-cuts in expanded
circuits. We now set out to show that the k-cuts are not “buried” too deep,
so that we only need to examine a small finite portion of an expanded
circuit to look for all k-cuts.

We first note that not all nodes in the node-set of a cut generate inputs
useful to the corresponding LUT. For example, for the 4-cut formed by X1 5
{c0, c1} in the expanded circuit shown in Fig. 8a, the node-set V[X1] 5 {a0,
a1, b1, b2}. However, neither a1 nor b2 generates useful input to the
corresponding LUT, as they only drive gate c1, which does not fan-out in
the LUT. In this example, we can get rid of the redundant nodes a1 and b2

from the node-set by removing c1 from X1. In general, redundant nodes in
the node-set of a cut [X] can be removed by deleting all nodes in X that do
not have a path to the output node in the cone of [X]. In the rest of this
section, we assume redundant nodes in node-sets are removed.

LEMMA 2. Let [X] be a k-cut in %v; then for any node in the node-set
V[X], the minimum number of edges on the paths from the node to v0 is at
most kn.

PROOF. By contradiction. Suppose there is a node yh in V[X] with the
minimum number of edges larger than or equal to kn 1 1. Since there is no
redundant node in V[X], there exists a node z in X such that yh ¡

e
z is in

E[X], and there is a path p from z to v0 that lies completely in X. p must
contain at least kn 1 1 nodes. As a result, there is a node u for which at
least k 1 1 copies appeared in p. Let the copies be ui1, ui2, . . . , uit, where

Fig. 8. Derivation of a LUT from a cut.

FPGA Technology Mapping • 447

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

i1 , i2 , . . . , it and t $ k 1 1. Let q be a simple path (a path with no
repeated nodes) from a PI to u in N. Let qi1, qi2, . . . , qit be the paths
corresponding to q in %v, when u is replicated as ui1, ui2, . . . , uit,
respectively. Obviously, qir and qis do not share any nodes for r Þ s. Since
[X] is a cut and p lies entirely in X, E[X] must intersect with qis for each
1 # s # t. Consequently, there is a node uis in both qis and V[X] for 1 #
s # t. Thus, uV[X] u $ t $ k 1 1. This contradicts the assumption that [X]
is a k-cut. e

Combining Lemma 2 with Lemma 1, the main result of this section
following:

THEOREM 2. For any given i $ kn, from a k-cut in %v
i , a k-LUT for v can

be derived, and any k-LUT for v can be derived from a k-cut in %v
i .

Finally, we estimate the numbers of nodes and edges in %v
i . We make the

assumption that the number of FFs on any edge is at most one in N, as this
is the case in practice. Since the shortest distance from ud to v0 is at most
i, d # i for any node ud in %v

i . This implies u has at most i 1 1 copies in
%v

i . Hence, the number of nodes in %v
i is O(ni). Since each node in %v

i has at
most k inputs (because N is k-bounded), the number of edges in %v

i is
O(kni). In particular, the numbers of nodes and edges in %v

kn are O(kn2)
and O(k2n2), respectively. Of course, we expect both numbers to be much
smaller in practice.

5. A MAPPING ALGORITHM FOR A TARGET CLOCK PERIOD

In this section, we present a polynomial algorithm for solving Problem 3:
namely, finding a simple mapping solution with a retimed clock period less
than or equal to f. The algorithm has two phases: a labeling phase and a
mapping phase. In the labeling phase, we find a label and an associated
LUT for each node in N. We can also determine whether there are such
mapping solutions from the labels. If the answer is positive, we then
generate one in the mapping phase by connecting the LUTs obtained in the
labeling phase. In the remainder of this section, we first introduce a
labeling scheme which is used to guide the selection of LUTs. We then
present the details of the two phases, separately.

5.1 A Labeling Scheme

Here we introduce a labeling scheme which is used to guide the selection of
LUTs. For this, we first introduce the concept of l-values.

For each edge +u 3 +v in a mapping solution S, where +v (+u) is a LUT
for v (u), we assign an l-weight, 2f z d 1 d(v), to it, where d is the
number of FFs on the edge and d(v) is the delay of +v (d(v) 5 0 if v is a PI
or PO, and otherwise d(v) 5 1).6 The l-value of a LUT in S is defined as
the maximum weight of the paths from the PIs to the LUT according to the

6Strictly speaking, the PIs and POs in a mapping solution are not LUTs. However, we will
view them as LUTs formed by a single node, the node itself, for the convenience of discussion.

448 • P. Pan and C. L. Liu

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

l-weights.7 Note that some nodes may have infinite l-values if there are
positive cycles in S. The importance of l-values is evident from the
following result whose proof is in the appendix:

THEOREM 3. S can be retimed to a clock period of f or less iff the l-value
of each PO is less than or equal to f.

Without loss of generality, we can assume from Theorem 3 that a
mapping solution has at most one LUT for each node in N. Suppose a
mapping solution has more than one LUT for a node v; we remove all LUTs
for v except one with the smallest l-value. We then connect this LUT to all
LUTs to which the removed LUTs for v were connected. Obviously, the
l-values of the LUTs in the mapping solution will not be increased. From
Theorem 3, the clock period will not be increased either.

The following result presents an upper bound on the l-value of each LUT
in a mapping solution:

LEMMA 3. If the l-value of a LUT for a node v in a mapping solution is
finite, then the l-value is less than or equal to 2f z wv 1 n 2 1, where wv
denotes the minimum number of FFs on the paths from the PIs to v in N.

PROOF. Let +v be a LUT for v in a mapping solution S. We assume that
S does not contain more than one LUT for each node in N. Thus, S has at
most n nodes. Let p be a path in S from a PI to +v with a total l-weight
equal to the l-value of +v. p has at most n 2 1 edges. The number of FFs
on p is equal to the number of FFs on the corresponding path from the PI to
v in N, which is larger than or equal to wv. Therefore, the l-value of +v is
at most 2f z wv 1 n 2 1. e

Using the concept of l-values, we now introduce the labeling scheme. The
label of a node in N is simply the minimum of the l-values of the k-LUTs
for the node in all simple mapping solutions, given f as the target clock
period.

5.2 The Labeling Phase

We determine the label and an associated k-LUT for each node in N in this
phase of the algorithm. Due to the possible presence of cycles, we may not
be able to determine the labels in one traversal of the circuit, since cycles
obviously introduce cyclic dependencies among the labels.

As in a typical shortest path algorithm, we use dynamic programming to
determine the labels. The approach is to maintain a lower bound on each
label and then repeatedly improve the lower bounds until no improvement
is possible, in which case the lower bounds have settled down to the labels.
The lower bounds for the PIs are always zero. We set the initial lower
bounds for all non-PI nodes to 2`. Fig. 9 shows a high-level description of
the algorithm, where l(v) holds the current lower bound on the label of v.

7The concept of l-values is a special case of the continuous retiming introduced in Pan [1997].

FPGA Technology Mapping • 449

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

The actual improvement of the lower bounds is carried out by the procedure
IMPROVE.

The procedure IMPROVE tests to see whether the lower bound for v has to
be improved, based on the current lower bounds and, if so, updates the
lower bound. In the procedure, lnew(v) denotes the new lower bound for v
computed from the current lower bounds in the circuit.

We now present a formula for lnew(v). Suppose that + is a k-LUT for v.
Remember that the l-weight of an edge to +, with d FFs, is 2f z d 1 d(v).
Based on the current lower bounds, the l-value of + is at least

max$l~u! 2 f z d 1 d~v! u~u, d! [input~+!%.

Since the label we are trying to compute is the minimum l-value of the
k-LUTs for v, we would like to minimize lnew(v). Thus, we use the following
formula for lnew(v):

lnew~v! 5 min
+,a k-LUT for v

~max$l~u! 2 f z d 1 d~v! u~u, d! [input~+!%!.

(1)

With the above formula for lnew(v), we now show that the labeling
procedure indeed maintains lower bounds on the labels and approaches the
labels progressively.

LEMMA 4. For any node v in N, l(v) is (1) non-decreasing, and (2) less
than or equal to the l-value of any k-LUT for v in any mapping solution.

PROOF. That l(v) is non-decreasing is obvious from the procedure IM-
PROVE. We now show (2) using induction (on the number of calls to the
procedure IMPROVE). The initial lower bounds obviously imply the state-

Fig. 9. The labeling procedure.

450 • P. Pan and C. L. Liu

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

ment before any call to IMPROVE. Now suppose that before the current call,
the statement is true. Assume the current call does update l(v). Right after
the call, we have that l(v) 5 lnew(v) and no change to the other lower
bounds. Let +v be a k-LUT (for v) in a mapping solution S. We only need to
show that lnew(v) is less than or equal to the l-value of +v in S. Let lu
denote the l-value of the LUT for u in S; we have,

l~v! 5 lnew~v! # max$l~u! 2 f z d 1 d~v! u~u, d! [input~+v!% ~Eq. (1)!

max$lu 2 f z d 1 d~v! u~u, d! [input~+v!%

~induction hypothesis!

5 lv~definition of l-values). e

For each node v in N, let lopt(v) denote the final l(v) from the labeling
procedure L_FIND. From Lemma 4, it is obvious that lopt(v) is less than or
equal to the l-value of any k-LUT for v in any mapping solution. In fact, it
can be shown that lopt(v) is equal to the label of v. (We do not include the
proof as it is not needed for our purposes.) Note that each improved lower
bound has an associated k-LUT that achieves the bound. A k-LUT associ-
ated with lopt(v) will be referred to as an optimal k-LUT for v. Optimal
k-LUTs will be used to construct mapping solutions in the mapping phase.
The following corollary of Lemma 4 is obvious:

COROLLARY 1. If there is a PO v such that lopt(v) . f, then N does not
have a mapping solution with a retimed clock period less than or equal to f.

The lower bounds of some nodes may never settle down. In other words,
their lower bounds can always be improved and can be arbitrarily large. If
l(v) can always be improved, we simply let lopt(v) 5 `. Later, we will see
that if there are infinite values, the target clock period cannot be achieved.

We now describe an approach to computing lnew(v). It has been shown in
Section 4 that the k-LUTs for v can be derived from k-cuts in %v

kn. We
therefore have the following equivalent formula for lnew(v):

lnew~v! 5 min
@X#,a k-cut in %v

kn

~max$l~u! 2 f z d 1 d~v! uud is in V@X#%!. (2)

To determine lnew(v), we consider the following decision problem:

Problem 4. Determine whether lnew(v) # L for a given integer L.

We use network flow techniques to solve this problem. A flow network G
is constructed from %v

kn by applying to %v
kn a standard network transforma-

tion called node-splitting in order to transform the problem of finding a
k-cut to that of finding a cut with a capacity bound. To do so, each node in
%v

kn, except v0, is split into two nodes with a bridging edge between them. A
super-source is added and connected to all the sources. The bridging edge

FPGA Technology Mapping • 451

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

corresponding to node ud has a capacity of one if l(u) 2 f z d 1 d(v) # L.
All other edges in G have an infinite capacity.

As an example, suppose for the circuit in Fig. 1a, we currently have
l(i1) 5 l(i2) 5 0, l(a) 5 l(b) 5 1, and l(c) 5 2`, and the target clock
period is one. We want to test whether lnew(v) # 1, using %c

2 shown in Fig.
10a to examine 3-cuts for c. For node b1, l(b) 2 f z 1 1 1 5 1, so the
corresponding bridging edge has a capacity of one. On the other hand, for
node a0, l(a) 2 f z 0 1 1 5 2, so the corresponding bridging edge has an
infinite capacity. Fig. 10b shows the flow network, where the bridging
edges for nodes i1

0, i2
1, c1, and b1 have unit capacity and all other edges

have infinite capacity.
The capacity of a cut in a flow network is the sum of the capacities of the

edges in the edge-set of the cut. We have the following result:

LEMMA 5. lnew(v) # L iff G has a cut with a capacity no more than k.

PROOF. Suppose G has a cut [X9] with a capacity no more than k in G.
Let X be the set of nodes consisting of v0 and nodes in %v

kn with both split
nodes in X9. Obviously, a node ud is in the node-set of cut [X] iff the
corresponding bridging edge is in the edge-set of cut [X9]. As a result, [X] is
a k-cut in %v

kn. Moreover, l(u) 2 f z d 1 d(v) # L for each ud in V[X].
Thus, lnew(v) # max{l(u) 2 f z d 1 d(v) uud [V[X]} # L. The other
direction can be shown by reversing the preceding arguments. We omit the
details. e

Based on the classical Max-flow Min-cut theorem [Cormen et al. 1990], G
has a cut with a capacity no more than k iff the maximum flow in G is at
most k. Using an augmenting path algorithm for the max-flow problem, we
can determine whether G has a cut with a capacity no more than k in O(k z
uE(G) u) 5 O(k3n2) time. Thus, we can determine whether lnew(v) # L in
O(k3n2) time.

Now lnew(v) can be determined using binary search, since its potential
values are: l(u) 2 f z d 1 d(v) for each ud in %v

kn. However, the potential
values for lnew(v) can be narrowed down to two choices because we have the
following result:

Fig. 10. Construction of flow network.

452 • P. Pan and C. L. Liu

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

LEMMA 6. lnew(v) $ Lv 2 1, where Lv 5 max{l(u) 2 f z w(e) 1 d(v) uu

¡
e

v is in N }.

PROOF. Let u1 ¡
e

v be an edge in N. It suffices to show lnew(v) $ l(u1)
2 f z d1 1 d(v) 2 1, where d1 5 w(e).

Obviously, (u1
d1, v0) is an edge in %v. Let [X] be a k-cut such that lnew(v)

5 max{l(u) 2 f z d 1 d(v) uud [V[X]}. If u1
d1 is not in X, then (u1

d1, v0)
must be in the edge-set of [X], so u1

d1 [V[X]. As a result, lnew(v) $
l(u1) 2 f z d1 1 d(v). On the other hand, suppose u1

d1 is in X. Let X9 (Y9)
be the set of nodes in X (V[X]) that have a path to u1

d1. Let X1 5 {ud2d1 u
ud [X9} and Y1 5 {ud2d1 u ud [Y9}. It can be verified that [X1] is a k-cut
in %u1

and Y1 is the node-set of [X1]. Therefore,

l~u1! # max$l~u! 2 f z ~d 2 d1! 1 d~u1! uud2d1 [Y1%

5 max$l~u! 2 f z d 1 d~v! uud [Y9% 1 f z d1 1 d~u1! 2 d~v!

max$l~u! 2 f z d 1 d~v! uud [V@X#% 1 f z d1 1 d~u1! 2 d~v!

5 lnew~v! 1 f z d1 1 d~u1! 2 d~v!

Thus, lnew(v) $ l(u1) 2 f z d1 1 d(v) 2 d(u1) $ l(u1) 2 f z d1 1 d(v) 2
1. e

In Eq. (2), by letting X 5 {v0}, we have lnew(v) # Lv. Hence, to
determine lnew(v), we simply check to see whether lnew(v) # Lv 2 1. If so,
lnew(v) 5 Lv 2 1; otherwise, lnew(v) 5 Lv.8 As a result, lnew(v) can be
determined in time O(k3n2).

Another implication of Lemma 6 is that if there are unsettled lower
bounds, the target clock period cannot be achieved. Let u be a node such
that lopt(u) 5 `. Let p be a path from u to a PO v. By applying Lemma 6 to
all edges in p, we have l(v) $ l(u) 2 f z (e[p w(e). Since l(u) can be
arbitrarily large, l(v) can be arbitrarily large too. In particular, we have
l(v) . f, which implies the clock period f is unachievable.

We now estimate the time cost of the labeling procedure L_FIND, assum-
ing the lower bounds will settle down. For that, we need to determine the
number of iterations of the for loop. First, we show the following result:

LEMMA 7. After n 2 1 iterations, l(v) $ 2f z wv for any node v.

PROOF. By induction (on t), it is easy to show the following:
After t iterations, l(v) $ 2f z wv for any v to which there is a path with

wv FFs and t edges. e

8Cong and Wu [1996] first observed that one test is enough to find an improved lower bound.
They achieved that by forcing the improved bound to either Lv 2 1 or Lv. In Lemma 6 we
show the two values are in fact the only choices for the improved bound.

FPGA Technology Mapping • 453

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

Combining Lemma 7 with Lemmas 3 and 4, we have that after n 2 1
iterations, l(v) is between 2f z wv and 2f z wv 1 n 2 1. For each
additional iteration before the bounds settle down, at least one of the lower
bounds is increased by at least one. Thus, after n[(2fwv 1 n 2 1) 2
(2fwv)] 5 n(n 2 1) additional iterations, all lower bounds must reach
their maximal possible values. In total, after n(n 2 1) 1 n 2 1 5 n2 2 1
iterations, all lower bounds should settle down. Of course, if improvements
are still possible for some lower bounds in n2-th iteration, L_FIND can
simply stop since those unsettled lower bounds are arbitrarily large and
the clock period cannot be achieved. Thus, we can set the number of
iterations in L_FIND to be n2. Obviously, this bound is grossly conservative.
We observed that in practice usually the number of iterations is around
ten, with a few further enhancements. With this bound on the number of
iterations, L_FIND calls the procedure IMPROVE O(n3) times in the worst
case. Thus, the time cost of L_FIND is O(k3n5). Fig. 11 is a more detailed
description of L_FIND. In the procedure, a test is also added to check
whether there is already a PO with a lower-bound larger than f. If it is the
case, the algorithm stops by returning FAILURE, as it is obvious that the
clock period cannot be achieved.

The key results in this section are summarized in Theorem 4:

Fig. 11. The labeling procedure—a more detailed version.

454 • P. Pan and C. L. Liu

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

THEOREM 4. (i) L_FIND returns SUCCESS iff lopt(v) # f for each PO v;
(ii) if L_FIND returns SUCCESS, lopt(v) is less than or equal to the l-value
of any LUT for v in any simple mapping solution; and (iii) if L_FIND returns
FAILURE, there is no simple mapping solution with a retimed clock period
less than or equal to f.

5.3 The Mapping Phase

The purpose of this phase is to generate a mapping solution with a clock
period of f or less. This phase is invoked only when the labeling procedure
returns SUCCESS.

Remember that during the labeling phase, in addition to the labels, we
also generate an optimal k-LUT for each node in N. The first step in the
mapping phase is to assemble the optimal k-LUTs to form a simple
mapping solution with a retimed clock period less than or equal to f.

We start the assembly at the POs. For each node, its optimal k-LUT will
be included in the simple mapping solution if the node (after passing
through certain number of FFs) is an input to a k-LUT that has already
been included in the solution. More precisely, we maintain a list of nodes
U. U consists of the nodes whose optimal k-LUTs have already been
included in the simple mapping solution, but the inputs to the k-LUTs have
not yet been established. Initially, the simple mapping solution S consists
of the PIs and POs, and U consists of the POs. At each iteration, a node v is
removed from U. Let +v be the optimal k-LUT for v. For each (u, d) in
input(+v), we first check to see whether +u is already in S. If not, we add
u to U and add +u, the optimal k-LUT for u, to S. Then, an edge with d
FFs from +u to +v is created in S. This process continues until U becomes
empty.

LEMMA 8. For each k-LUT +v in S, its l-value is less than or equal to
lopt(v).

PROOF. Take any edge +u 3 +v in S. Since +v is an optimal k-LUT for
v, lopt(v) 5 max{lopt(u1) 2 f z d1 1 d(v) u(u1, d1) [input(+v)}. Thus,
lopt(v) $ lopt(u) 2 f z d 1 d(v), where d is the number of FFs on the edge.
After rewriting, we have,

lopt~v! 2 lopt~u! $ 2f z d 1 d~v!. (3)

Now consider any path p from a PI to a LUT +v in S. Applying Eq. (3) to all
edges in p and adding all inequalities together, we have, lopt(v) is larger
than or equal to the l-weight of p. Hence, lopt(v) is larger than or equal to
the l-value of +v. e

From Lemma 8 and Theorem 3, we have that S can be retimed to a clock
period of f or less if lopt(v) # f for each PO v (or equivalently, L_FIND

returns SUCCESS). On the other hand, from Theorem 4, if lopt(v) . f for
some PO v (or equivalently, L_FIND returns FAILURE), N has no mapping

FPGA Technology Mapping • 455

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

solution with a retimed clock period of f or less. Therefore, we have the
following result:

THEOREM 5. The following statements are equivalent: (i) N has a map-
ping solution with a retimed clock period of f or less; (ii) S can be retimed
to a clock period of f or less; and (iii) L_FIND returns SUCCESS.

From Lemma 8 and the proof of Theorem 3, we can simply apply the
following retiming to S to obtain a mapping solution with a clock period of
f or less:

r~+v! 5 5 0 v is a PI or PO

lopt~v!

f 2 1 otherwise.
(4)

The mapping procedure is summarized in Fig. 12.

6. A MAPPING ALGORITHM FOR MINIMUM CLOCK PERIOD

We now summarize the algorithm for finding a mapping solution with the
minimum clock period. The algorithm simply uses binary search to deter-
mine the minimum clock period by repeatedly calling the labeling proce-
dure on different target clock periods.

In theory, we need to use %v
kn in order to consider all k-cuts of a node v.

This is the worst case scenario as the bound kn applies to all nodes in the
circuit without considering any node specific information. In practice, it
may be sufficient to use %v

i for an i that is considerably smaller than kn.
For instance, for node c in the circuit in Fig. 1a, all 3-cut are in %c

2 shown in
Fig. 7d. In general, we only need to expand a node to the extent that
further expansion will not introduce any new k-cuts. Recently, Cong and
Wu [1996] proposed some techniques to reduce the sizes of subcircuits used
in LUT formulation.

To make our algorithm flexible and to save computation time, the
algorithm uses i as a controlling parameter. It only consider k-cuts in %v

i in
the procedure IMPROVE. Let L_FIND (N, f, i) denote the modified L_FIND.
Fig. 13 summarizes our algorithm for finding a mapping solution with a

Fig. 12. The mapping procedure.

456 • P. Pan and C. L. Liu

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

minimized clock period, which will be referred to as SeqMap. The time cost
of SeqMap is O(k2n4i log n) in the worst case. If i , kn, the clock periods
of the mapping solutions produced by SeqMap may not be optimal, al-
though we believe that this situation occurs rarely. In practice, we may set
i to be considerably smaller than kn and will still find optimal clock period
mapping solutions.

There are many ways in which SeqMap can be enhanced, especially in
L_FIND. It has been shown that, if the circuit contains no cycles such as
pipelined circuits, the labels can be determined in one iteration by comput-
ing the labels in topological order starting from the PIs [Pan and Liu 1996].
One enhancement to L_FIND is to order the nodes and improve the lower
bounds according to this order during each pass of improvement. The order
should place the fan-ins of a node ahead of the node itself as much as
possible. Our approach is to find a small feedback vertex set (a set of nodes
whose removal breaks all cycles in the circuit) and generate a topological
order by treating the nodes in the feedback set as additional primary
inputs. We find this technique to be quite effective in reducing the run time
of L_FIND. The run time of SeqMap can also be reduced by narrowing the
ranges of the binary search for the target clock period. For example, we can
set the upper bound of the minimum clock period to the clock period of a
mapping solution produced by an existing algorithm.

7. EXPERIMENTAL RESULTS

We have implemented SeqMap in the C language and tested it on a set of
benchmark circuits. In this section, we describe our experiments and
summarize the results.

For comparison, we also implemented a technology mapping algorithm
based on the conventional approach, which we refer to as ComMap.
ComMap maps a sequential circuit by mapping the combinational logic
between FFs using FlowMap—a delay–optimal technology mapping algo-
rithm for combinational circuits [Cong and Ding 1994]. ComMap also uses
retiming for pre- and post-processing. It retimes the initial circuit to its
retimed clock period before applying FlowMap. ComMap also retimes the
mapping solution to its retimed clock period after FlowMap. In our current
implementation, neither ComMap nor SeqMap tries to reduce the number
of LUTs, nor do they attempt to minimize the number of FFs in the final
mapping solution.

Fig. 13. SeqMap: an optimal clock period mapping algorithm.

FPGA Technology Mapping • 457

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

We tested both ComMap and SeqMap on a set of circuits using 5-LUTs.
The results are summarized in Table I. The test examples are derived from
the multilevel sequential benchmark circuits in the LGSynth91 suite. The
original benchmark circuits were decomposed into 2-bounded circuits using
SIS command tech_decomp [Sentovich et al. 1992]. In Table I, under
column Initial, we list the number of gates (excluding inverters) and the
number of FFs in each decomposed circuit. Under column ComMap, we list
the number of LUTs, the number of FFs, and the clock period (f) of the
mapping solution produced by ComMap. The same quantities are also
listed for SeqMap. For SeqMap, we set the control parameter i to 6 in the
experiments. (Thus, the clock periods of the mapping solutions produced by
SeqMap may not be the minimum.) However, even with such a small depth,
SeqMap produced mapping solutions with smaller clock periods for the
circuits in the table consistently. This demonstrates the advantage of
considering retiming and signal dependencies across FF boundaries. It can
be seen also that the mapping solutions produced by SeqMap usually have
fewer LUTs. This is also as expected, since SeqMap can form LUTs by
extending across FF boundaries. Overall, the mapping solutions produced
by ComMap have 10% more LUTs, 33% larger clock periods, and 2% fewer
FFs. The CPU times of our current implementation of SeqMap were less
than two minutes for all the test circuits except s38417, and in most cases

Table I. Experimental Results

458 • P. Pan and C. L. Liu

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

they are only a few seconds on a SPARC 5 workstation with 32MB memory.
However, it took SeqMap close to 30 minutes for s38417 due to the size of
the circuit. Overall, the CPU times of SeqMap were about 10 times that of
ComMap for the test circuits.

8. CONCLUSIONS

In this article, we proposed a novel approach to technology mapping for
LUT-based FPGAs for sequential circuits. We studied the problem in a very
general setting. In our approach, retiming is integrated into the mapping
process. The approach is FF boundary–oblivious, as it implicitly considers
all FF configurations that can be obtained by retiming. As a result, the
issue of where to place the FFs (using retiming) in a circuit has no effect on
our approach. On the other hand, for existing approaches, FF boundaries
always exist, and signal dependencies across FF boundaries are severed. As
a result, the solution space explored by our approach is much larger than
that explored by existing approaches.

We also presented a polynomial mapping algorithm for our approach. The
algorithm produces mapping solutions with optimal clock periods. Experi-
mental results further demonstrated the superiority of the new approach.
Currently, we are studying ways to further enhance and improve our
algorithm. We are also investigating the possibility of applying the ideas
we develop here for LUT reduction.

Besides a direct contribution to the technology mapping problem, this
article introduced two important new concepts that have a more general
applicability. The concept of expanded circuits is essentially a way to
extract combinational logic in a sequential circuit across FF boundaries. It
can be used to manipulate a sequential circuit using combinational tech-
niques, while allowing dynamic FF positions. For example synthesis has
been integrated recently into technology–mapping for sequential circuits
using expanded circuits [Cong and Wu 1997]. The other important concept
is l-values. l-values allow us to consider the effect of retiming in sequential
synthesis and optimization.

APPENDIX

Proof of Theorem 3

Let w1(e) denote the number of FFs on edge e and w2(e) denote the
l-weight of e. We use w1(p) and w2(p) to denote (e[p w1(e) and (e[p
w2(e) for a path p in S, respectively, and d(p) denote the number of LUTs
(excluding PIs and POs) on p. Let l(v) denote the l-value of node v in S.

(Only if). Suppose there is a path p from a PI u to a PO v such that l(v) 5
w2(p) . f. That is, w2(p) 5 2f z w1(p) 1 d(p) . f. Then, d(p) . (w1(p) 1
1)f. To have a clock period of f on p, we have to have d(p)/f 2 1 $ w1(p) 1
1 FFs on p by pigeonhole principle. This is obviously impossible since retiming
does not change the number of FFs on a path from a PI to a PO.

FPGA Technology Mapping • 459

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

(if). Let r be the following retiming:

r~v! 5 5 0 v is a PI or a PO

l~v!

f 2 1 otherwise.

Let Sr denote the circuit obtained by retiming S according to r. We want to
show Sr has a clock period of f or less.

First, we verify that r is a legal retiming. That is, the number of FFs on

each edge in Sr is non-negative. Let u ¡
e

v be an edge in S. Then, l(v) $

l(u) 1 w2(e) 5 l(u) 2 f z w1(e) 1 d(v). There are four cases depending on
whether u and v are POs, PIs, or LUTs. All the case can be proved
similarly. Here, we show the case that u is a LUT, and v is a PO. In this
case, we have f $ l(v) $ l(u) 2 f z w1(e). Dividing both sides by f and
taking the ceiling, we have 1 5 r(v)(5 0) 1 1 $ l(u)/f 2 w1(e) 5 r(u)
1 1 2 w1(e). After rewriting, we have, w1(e) 1 r(v) 2 r(u) $ 0, i.e., e has
non-negative weight in Sr.

To show that Sr has a clock period of f or less, it suffices to show that for
any path p such that d(p) $ f 1 1, there is at least one FF on p in Sr. Let
the first and last nodes of p be u and v, respectively. Then,

l~v! $ l~u! 1 w2~ p! 5 l~u! 2 f z w1~ p! 1 d~ p! 2 d~u!.

Dividing both sides by f, taking the ceiling, and subtracting 1, we have,

r~v! $ r~u! 2 w1~ p! 1 d~ p! 2 d~u!

f $ r~u! 2 w1~ p! 1 1,

so, w1(p) 1 r(v) 2 r(u) $ 1. Namely, there is at least one FF on p in Sr.
e

ACKNOWLEDGMENTS

We thank the reviewers for their helpful suggestions, and Dr. Jason Cong
and Mr. Chang Wu of UCLA for useful discussions. The first author would
also like to thank Mr. Yuji Kukimoto of UC, Berkeley for several of his
comments and suggestions that helped improve this paper.

REFERENCES

ALTERA. 1995. Data Book. Altera, San Jose, CA.
BHAT, N., AND HILL, D. 1992. Routable technology mapping for FPGAs. In Proceedings of the

ACM/SIGDA Workshop on FPGAs, 143–148.
CONG, J., AND DING, Y. 1993. Beyond the combinational limit in depth minimization for

LUT-based FPGA designs. In Proceedings of the Digest IEEE/ACM International Conference
on Computer-Aided Design 110–114.

CONG, J., AND DING, Y. 1994. FlowMap: An optimal technology mapping algorithm for delay
optimization in lookup-table based FPGA designs. IEEE Trans. on Computer-Aided Design
13, 1–11.

460 • P. Pan and C. L. Liu

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

CONG, J., AND DING, Y. 1994. On area/depth trade-off in LUT-based FPGA technology
mapping. IEEE Trans. on VLSI Systems 2, 137–148.

CONG, J., AND WU, C. 1996. An improved algorithm for performance optimal technology
mapping with retiming in LUT-based FPGA design. In Proceedings of the International
Conference on Computer Design, 572–578.

CONG, J., AND WU, C. 1997. Performance-driven FPGA synthesis with retiming and pipelin-
ing for sequential circuits. In Proceedings of the ACM/IEEE Design Automation Conference.

CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. 1990. Introduction to Algorithms.
McGraw-Hill Book Company, New York.

FARRAHI, A. H., AND SARRAFZADEH, M. 1994. Complexity of the lookup-table minimization
problem for FPGA technology mapping. IEEE Trans. on Computer-Aided Design 13, 1319–
1332.

FRANCIS, R. J., ROSE, J., AND CHUNG, K. 1990. Chortle: A technology mapping for lookup
table-based field programmable gate arrays. In Proceedings of the ACM/IEEE Design
Automation Conference, 613–619.

FRANCIS, R. J., ROSE, J., AND VRANESIC, Z. 1991. Chortle-crf: Fast technology mapping for
lookup table-based FPGAs. In Proceedings of the ACM/IEEE Design Automation Conference,
227–233.

FRANCIS, R. J., ROSE, J., AND VRANESIC, Z. 1991. Technology mapping for lookup table-based
FPGAs for performance. In Digest of the IEEE/ACM International Conference on Computer-
Aided Design, 568–571.

KARPLUS, K. 1991. Xmap: A technology mapper for table-lookup FPGAs. In Proceedings of
the ACM/IEEE Design Automation Conference, 240–243.

LEISERSON, C. E., AND SAXE, J. B. 1991. Retiming synchronous circuitry. Algorithmica 6,
5–35.

MATHUR, A., AND LIU, C. L. 1994. Performance driven technology mapping for lookup-table
based FPGAs using the general delay model. In Proceedings of the ACM/SIGDA Workshop
on Field Programmable Gate Arrays.

AT&T MICROELECTRONICS. 1995. AT&T Field-Programmable Gate Arrays Data Book. AT&T
Microelectronics.

MURGAI, R., BRAYTON, R., AND SANGIOVANNI-VINCENTELLI, A. 1993. Sequential synthesis for
table look up programmable gate arrays. In Proceedings of the ACM/IEEE Design Automa-
tion Conference, 224–229.

MURGAI, R., NISHIZAKI, Y., SHENOY, N., BRAYTON, R., AND SANGIOVANNI-VINCENTELLI, A. 1990.
Logic synthesis algorithms for table look up programmable gate arrays. In Proceedings of
the ACM/IEEE Design Automation Conference, 620–625.

MURGAI, R., SHENOY, N., BRAYTON, R., AND SANGIOVANNI-VINCENTELLI, A. 1991. Improved
logic synthesis algorithms for table look up architectures. In Digest of the IEEE/ACM
International Conference on Computer-Aided Design, 564–567.

PAN, P. To appear. Continuous retiming: algorithms and applications. In International
Conference on Computer Design (ICCD).

PAN, P., AND LIU, C. L. 1996. Optimal clock period FPGA technology mapping for sequential
circuits. In Proceedings of the ACM/IEEE Design Automation Conference (DAC), 720–725.

PAN, P., AND LIU, C. L. 1996. Technology mapping of sequential circuits for LUT-based
FPGAs for performance. In Proceedings of the ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 58–64.

SAWKAR, P., AND THOMAS, D. 1992. Area and delay mapping for table-look-up based field
programmable gate arrays. In Proceedings of the ACM/IEEE Design Automation Confer-
ence, 368–373.

SAWKAR, P., AND THOMAS, D. 1993. Performance directed technology mapping for look-up
table based FPGAs. In Proceedings of the ACM/IEEE Design Automation Conference,
208–212.

SCHLAG, M., KONG, J., AND CHAN, P. 1994. Routability-driven technology mapping for lookup
table-based FPGA’s. IEEE Trans. on Computer-Aided Design 13, 13–26.

SENTOVICH, E. M., ET AL. 1992. Sequential circuit design using synthesis and optimization.
In Proceedings of the International Conference on Computer Design, 328–333.

FPGA Technology Mapping • 461

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

WEINMANN, U., AND ROSENSTIEL, W. 1993. Technology mapping for sequential circuits based
on retiming techniques. In Proceedings of the European Design Automation Conference,
318–323.

WOO, N.-S. 1991. A heuristic method for FPGA technology mapping based on the edge
visibility. In Proceedings of the ACM/IEEE Design Automation Conference, 248–251.

XILINX. 1993. The Programmable Gate Arrays Data Book. Xilinx, San Jose, CA.
YANG, H., AND WONG, D. F. 1994. Edge-Map: Optimal performance driven technology

mapping for iterative LUT based FPGA designs. In Digest of the IEEE/ACM International
Conference on Computer-Aided Design, 150–155.

Received February 1996; revised October 1996; accepted August 1997

462 • P. Pan and C. L. Liu

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 3, July 1998.

