
A New Incremental Placement Algorithm and its
Application to Congestion-Aware Divisor Extraction

Satrajit Chatterjee and Robert Brayton
Department of EECS

University of California at Berkeley
Berkeley, California 94720

Email: {satrajit, brayton}@eecs.berkeley.edu

Abstract— This paper presents two contributions. The first is
an incremental placement algorithm for placement-aware logic
synthesis along with a proof of optimality. The algorithm can
efficiently compute the optimum location for a newly introduced
node in a network that minimizes the incremental increase in the
total half-perimeter wire-length of the network. The algorithm
can be applied in a variety of placement-aware optimization
contexts. The second contribution is a specific application of this
algorithm to placement-aware common divisor extraction. We
evaluate the effectiveness of the proposed extraction procedure
by using it in an otherwise non-placement-aware flow with two
different final placers. The first flow uses an industrial congestion-
driven placer and results in an average reduction of 21% in
congestion as measured by the global router. The second flow uses
an academic wire-length-driven placer and results in an average
reduction of 11% for a tool-specific measure of congestion
estimated from the placement. Our experiments also reveal a
rather surprising phenomenon: in many cases the attempt to
minimize the wire-length results in fewer literals after extraction
than with a conventional literal-driven approach.

I. INTRODUCTION

Wires are playing an increasingly greater role in DSM VLSI
design. There are two main reasons for this. First, with gates
becoming smaller and faster, designs are being limited by the
delays of the wires connecting the gates. This is especially
true of the longer wires in the design. Second, the routability
of a design after placement is a growing concern in the
design community. Both these wire-related issues manifest
themselves in the form of synthesis iterations in the design
flow. This is because conventional logic synthesis does not
begin to consider wire delays until after detailed placement.
If timing is not met or if wires cannot be routed, the designer
has to go back to the initial logic network and restructure it.

There have been some approaches to alleviate the problem
during the later stages of the flow, by effecting what are
essentially local changes to the logic during the physical
design. This is the approach of “physical synthesis.” But at
this stage in the flow, it is often a case of too little, too late.
It is at the early stages of the flow, especially the technology
independent step, that large changes to the network are made;
but at this stage usually no wire-information is used.

The present effort aims to explore options during technology
independent optimization to address the wiring problems. In
particular we are interested in obtaining decompositions which
are better from a congestion point of view. We maintain a

companion point placement of the network during one of
the key steps of the technology independent optimizations,
namely common divisor extraction. This is used to guide
the extraction process to generate better netlists with shorter
wires since empirical evidence shows that minimizing the
total wire-length of a design improves the routability. We
use the placement information only for this step (and then
discard it), and employ conventional algorithms for the rest
of the flow. The expectation is that by using the placement to
guide the extraction, we obtain a structurally superior netlist,
which is inherently easier to route. The exact placement is
not very important, but may be viewed as a way to guide the
decomposition in an useful manner.

Towards this end, we present a new incremental placement
algorithm that is generally useful in placement-aware logic
synthesis. The algorithm can optimally place a new node
into an existing network so that it minimizes the incremental
increase in the total wire-length of the network using the
half-perimeter model of wire-length. Since this algorithm is
very efficient, it can be used to evaluate candidate options for
their contributions to reducing wire-lengths. This allows us
to replace earlier heuristic approaches and to obtain superior
results with less computational overhead for being placement-
aware. While the proposed algorithm is fairly general, we
present an application of it to placement-aware extraction for
minimizing congestion.

The experimental results are very encouraging. The algo-
rithm succeeds in significantly reducing congestion and is
consistent across a variety of benchmarks, across two different
process geometries, for different placement engines and for
different metrics of congestion. In an industrial flow using a
commercial congestion-driven placer, we obtain a 21% average
reduction in congestion as measured by the global router. In a
different flow, using an academic placer that minimizes wire-
length we obtain about 11% average reduction in congestion
as estimated by a metric based directly on the placement. In
this flow we obtain about a 7% reduction on average in total
wire-length after final placement. Note that these congestion
reductions are obtained only by altering the extraction proce-
dure to be placement-aware. None of the other steps, including
technology mapping are placement-aware. Future work will
focus on making the other steps placement-aware.

The rest of this paper is organized as follows. We begin

R

O1a

O2a

O1 O2

pCOG

O3
a

Fig. 1. Example where the center of gravity (pCOG) of the fanin (a) and
fanouts (o1, o2, o3) of the divisor is significantly different from the optimal
location that minimizes the increase in estimated total wire-length (the region
marked R). (o1a and o2a are the other fanouts of a.) To see that the pCOG

is arbitrarily far observe that as the extent of the fanout net increases to the
right, the center of gravity moves further to the right away from the optimal
region.

by surveying related work in Section II. Next we present
an overview of a placement-aware extraction procedure in
Section III that motivates the optimum incremental placement
algorithm. We develop the algorithm along with a proof of
correctness in Section IV. Section V presents experimental
results. Finally we conclude in Section VI.

II. RELATED WORK

The idea of maintaining a companion placement while doing
logic synthesis was first proposed by Pedram and Bhat in a
paper on improving timing closure by taking wire delays into
account [9]. They assign a cost to a divisor based on its wire-
value. Wire-value is defined as the reduction in total wire-
length if that divisor is used. However, this reduction depends
upon where the divisor is placed. They note that solving
the quadratic optimization problem to determine the optimal
location of a divisor is computationally infeasible (since it
needs to be done for all candidate divisors, and re-computed
for any divisors affected as a result of division). Therefore
they settle for an approximation of the optimal location as the
center of gravity of the divisor’s fanins and fanouts.

Gosti et al. [4] use a wire-planning heuristic based on
the placement information to penalize a divisor if there is
no “good” placement available for it. A divisor has a good
placement if it can be placed without “backtracking.” No
backtracking is defined as the existence of a placement such
that the length of all wires from any fanin of the divisor to
any fanout is simply the Manhattan distance from the fanin
to the fanout. However since not every good divisor can have
such a placement, a divisor is measured by how close it can
be placed to avoid backtracking. Also duplication is used in
case the backtracking required is too severe. Once a divisor is
chosen, it is placed at the center of gravity of its fanins and
fanouts.

Kutzschebauch and Stok [7] define the layout cost of a
candidate divisor to be the sum of the Manhattan distances
between the signal origins of the literals in the divisor and
the divisor’s fanouts. Among all divisors of roughly the same
literal-savings, the divisor having the best layout cost is
chosen. The divisor is then placed at the center of gravity

of its fanins and fanouts.
We note here that these approaches to incremental place-

ment in the context of placement-aware synthesis do not
address the question of optimally locating the nodes in order
to accurately quantify their effect on wiring. The center of
gravity of the fanins and fanouts of a divisor need not be close
to the optimal location that minimizes the increase in total
wire-length. Figure 1 provides an example where the center
of gravity of fanins and fanouts is arbitrarily far from the
optimal location for a divisor. Furthermore the semi-perimeter
wire model is a more accurate model of the wire-cost than
the Euclidean one. Together, these mean that the extraction
procedure based on optimal placement algorithm presented
in this paper can more accurately determine and utilize the
physical information.

Since the proposed algorithm is linear in the number of
nets affected, it can be used to place a selected divisor at the
optimum location, as well as to evaluate candidate divisors
for their optimal wire-length savings. This makes the heuristic
choices used in the previous approaches unnecessary and re-
sults in selection of better divisors. Furthermore the placement
of divisors has a cumulative effect which results in a quality-
runtime tradeoff. If the new divisors are not placed properly (as
is the case with the center-of-gravity approaches), subsequent
divisor extractions would be working with inaccurate cost
estimates which would result in bad choices. This deviation
of the estimated placement due to poor incremental placement
can be countered by more frequent invocations of the external
placer to re-place the entire design but that leads to an increase
in run-time.

Note that the results of the layout-aware extraction algo-
rithms in [9] and [7] are presented in the context of complete
placement-aware flows [10] and [8] respectively. In contrast
the results in the present paper are obtained by using only
the layout-aware extraction in an otherwise conventional flow.
By making the other steps in the flow also placement-aware
the results may be improved further. We stated above that
the present approach allows us to obtain a better incremental
placement and so fewer calls to the external placer are made
to re-place the whole netlist. Thus we expect to have shorter
run-times than the other approaches.

Also we note that [4] indicates an increase of about 15% on
average in the number of literals, and [7] indicates an increase
of about 7% in the literals when layout-aware extraction is
used. However, as mentioned earlier in most cases we actually
find a reduction in the literals along with a reduction in the
final total wire-length after routing.

Connection with structural metrics. There is an interest-
ing connection between the present work and the empirical
study of network graph structures presented by Kudva et
al. [6]. They found that a graph property called adhesion cor-
relates well with routability. Since in our flow, the placement
information is generated and used only during extraction, and
then discarded, it would appear that by using the proposed al-
gorithm, we obtain structurally better netlists since congestion
is greatly reduced in the final placed design.

III. PLACEMENT-AWARE SYNTHESIS

A. Overview

The basic idea in placement-aware logic synthesis is to
maintain a companion point placement of the network during
the technology independent optimizations. The point place-
ment of the network is used to estimate wire-lengths using
the half-perimeter of the bounding box of a net.

Technology independent optimization includes operations
such as divisor extraction, substitution, elimination, and sim-
plification. These operations change the structure of the netlist.
In general terms, this is done by modifying a subset of
the nodes in the network, by removing some existing nodes
and by introducing new ones. Usually a list of potential
modifications is made, and the best modification is chosen.
In the conventional flow this best modification is the one that
minimizes the number of literals or some other measure of
area.

For restructuring the network to minimize the total wire-
length, we want to evaluate the reduction in wire-length for all
candidate modifications in order to choose the best one. This
leads to the need for a quick incremental placement algorithm.
We present the algorithm to do this in the next section. In the
rest of this section we concentrate on one of the operations,
namely extraction, to illustrate the ideas presented above.

B. Conventional Extraction

Common divisor extraction seeks to identify a common sub-
expression appearing in different nodes in the network and
collect it into a single node. Since this significantly changes
the structure of the network, it is a natural candidate for
placement-aware synthesis. The conventional algorithm fast
extract [11] generates a list of (single- and double-cube)
divisors of the nodes in the network. These divisors are ordered
by their literal-gains. Literal gain of a divisor is the reduction
in the number of literals in the network if that divisor is
used. The divisor with the best literal-gain is chosen, and
the division is performed. As a result the gains of some of
the other divisors may change. These gains are incrementally
updated. Once again, the divisor with the best gain is chosen.
The process continues until there are no divisors with positive
gain. Note that this algorithm is greedy and not exact.

C. Placement-Aware Extraction

In placement-aware extraction, we modify the divisor selec-
tion scheme. Instead of choosing the divisor with the best gain,
we want to choose one which also has a good wire-value, i.e.
one which reduces the total wire-length in the network. But
note that the wire-value of a divisor depends on where it is
placed. We would like to place a divisor where it causes the
greatest reduction in wire-length and use that to evaluate the
gain of the divisor.

Initial Placement. We start with an initial point placement
of the network obtained using an external standard cell placer
CAPO [1]. Note that for the external placer a point placement
does not make sense: As there is no concept of legalization, it
can produce a trivial placement where all the nodes are placed

r1

p
r3

r2

r'1

p
r'3

r'2

Fig. 2. Expansion of bounding boxes.

on top of each other. To get a non-trivial placement, we assign
an area to each of the nodes in the netlist. In our experiments
we assign the same area to each node in the network, even
though some nodes may have more logic than others. From
the placement returned by the placer, we obtain the point
placements by assigning to each node the center of its area.

It might be argued that a more accurate placement could be
obtained by setting the sizes of the nodes to be proportional
to the size of the logic function. However if this is done
naively, there is a large dynamic range in the cells to be placed
leading to a poor placement because of packing issues. Also
such a placement is unrealistic, since after mapping, the large
nodes are decomposed into groups of smaller cells which are
“spread” out in the placement. A more suitable approach might
be to break a large node into a group of smaller cells for the
placement. The point placement of the large node is obtained
as the center of gravity of its constituent cells. Unfortunately,
this could lead to a significant increase in runtime since more
cells need to be placed initially. The technique outlined in the
preceding paragraph may be viewed as an approximation of
this scheme.

Divisor Selection. As in the case of the conventional fast
extract operation, a list of candidate divisors in created. Instead
of ordering them just by their literal-gains, we also want to
account for their wire-length gains. We assigned gains to the
divisors according to the following formula:

gain(d) = λ · wire-gain(d) + (1− λ) · literal-gain(d) (1)

where λ is a parameter indicating the relative emphasis on
wire-length minimization. (In this context we may view the
conventional fast extract as having λ = 0.)

The wire-gain of a candidate divisor depends on where it is
placed. Using the procedure outlined in the next subsection,
we place the divisor at the location where the incremental
increase in the total wire-length is minimized, and use that to
compute the wire-gain. Since the algorithm is very efficient
we can afford this computation for all the candidate divisors
and assign each divisor its best possible wire-length savings.

Once the best divisor is chosen, division is performed,
and all the weights are recalculated incrementally just as in
the conventional case. The divisor is placed at an optimum
location, and the process repeats. After about 500 divisor
extractions, we re-place the entire network using the external
placer since the incremental placement may have deviated
significantly from the actual placement.

D. Optimal Divisor Placement

The wire-gain of a divisor depends on where it is placed.
Observe that the change in the wire-length caused by a
divisor extraction can come only from the nets affected by
the division. These nets include the fanin nets of the divisor
and its fanout net. We explain this with an example.

Example. Suppose that the divisor d = (a+ b) is extracted
from the node n1 = g · (a+ b) and n2 = h · (a+ b). After the
division, there is no need for net a to go to n1 or to n2. Thus
the bounding box of a may shrink since points are removed
from it. However net a must now go to the location of d;
hence there could be a possible expansion. Similarly for net
b. Furthermore, division introduces a new net for the divisor
d into the network which connects the nodes n1, n2 and d.

Our task is to place the new divisor d at a location which
minimizes the increase in the total wire-length. We compute
the bounding boxes (i.e. the rectangles) corresponding to the
nets for a and b without considering that these nets also fan
out to d. In other words we compute the shrunken bounding
boxes. Similarly we compute the (shrunken) bounding box for
the newly introduced fanout net of d without considering that
this net also includes d. In other words for this output net, we
only look at the fanouts of the divisor. When d is introduced,
these shrunken rectangles expand to cover d. This is illustrated
in Figure 2 where point p is the candidate location for node d.
Each rectangle ri must expand to cover the location p of d. We
want to find a location which minimizes the total perimeter of
the expanded rectangles.

IV. OPTIMAL INCREMENTAL PLACEMENT

A. Problem Abstraction

From the discussion above, we have the following abstrac-
tion. Given a set of rectangles R (which corresponds to the
shrunken bounding boxes of the affected nets), find a point
p (corresponding to the new node) such that every rectangle
ri ∈ R “grows” minimally to a rectangle r′i to include the point
p. More precisely, rectangle r′i is defined as the bounding box
of the 4 corners of ri and the point p. We have a cost function
associated with every location of point p:

cost(p) =
∑

r′i −
∑

ri

where we overload ri to stand for the half-perimeter of
rectangle ri. The objective is to locate p such that cost is
minimized. The optimum location for p in general may define
a region (see Figure 1). (In the experiments, the new divisor
is placed at the center of this region.)

B. Characterizing the Region of Optimality

Lemma 1: cost(p) = costx(px) + costy(py) where px and
py are the X− and Y−coordinates of p i.e. the cost function
is separable.

Proof: For any rectangle r, let r = rx + ry , where rx
and ry denote the horizontal and vertical components of the

Algorithm 1 Compute Optimum Y-Region

INPUT: Sorted list L of rectangle edges (y, t), y is y-
coordinate and t ∈ {top, bottom}
OUTPUT: (y1, y2) indicating optimum region and cost
which is optimal cost of placement
i← 1
m← length(L)/2
cost← 0
for each node (y, t) in L in order do

if i ≤ m and t = bottom then
cost← cost− y

else if i ≥ m+ 1 and t = top then
cost← cost+ y

end if
if i = m then
y1 ← y

else if i = m+ 1 then
y2 ← y

end if
end for
return (y1, y2, cost)

half-perimeter of rectangle r respectively. Therefore,

cost(p) =
∑

(r′xi + r′yi
)−

∑
(rxi + ryi)

=
∑

(r′xi − rxi) +
∑

(r′yi
− ryi)

Choose costx(px) =
∑

(r′xi − rxi) and costy(py) =
∑

(r′yi
−

ryi) to prove the desired result.
Lemma 1 allows us to minimize the X- and Y-coordinates

independently. Also costx depends only on the X-coordinates
of the vertical edges. Similarly for costy . In what follows we
only look at computing the minima for costy . In the discussion
that follows, note that the Y−axis is directed downwards as
shown in Figure 3. Let above(y) be the number of rectangles
in R, which have the Y−coordinates of their bottom edges
less than (i.e. above) y. Similarly below(y) is the number of
rectangles with their top edges greater than (below) y. If y is
not coincident with an edge of a rectangle, then above(y) and
below(y) are well-defined. Otherwise, any rectangle whose
bottom edge is coincident with y is counted in above(y) and
any rectangle whose top edge is coincident with y is counted
in below(y). Let Y = {yi} be the collection of Y−coordinates
of the rectangles in R. The index i is assigned so that the yis
are in increasing order. Y includes both top edges and bottom
edges of all rectangles.

Lemma 2: For yi < y < yi+1, yi, yi+1 ∈ Y , costy(y) −
costy(yi) = (above(y)− below(y))(y − yi).

Proof: Observe that the functions above and below are
constant in the interval (yi, yi+1). Now consider the rectangles
above yi. In moving to y, the vertical component of the half-
perimeter of each rectangle increases by (y − yi). Likewise,
the vertical component of each rectangle below yi+1 decreases
by (y − yi). Also observe that moving from yi to y doesn’t

change the vertical components of the rectangles which span
y. From this the result follows.

Lemma 3: The region of optimality of costy(y) is contigu-
ous.

Proof: By definition costy(y) =
∑

(r′yi
−ryi). Note that

each of the functions (r′yi
− ryi) is a convex function, i.e.

in the graph of the function, the function always lies below a
line segment connecting any two points on the function. Since
the sum of convex functions is convex, costy(y) is convex.
Therefore the region of optimality is contiguous.

Lemma 4: If all elements of Y are distinct and if (yi, yi+k)
is the optimum region then above(yi) = below(yi+k).

Proof: Suppose not. Let ka = above(yi) and let kb =
below(yi+k). Suppose ka > kb. Now clearly, costy(yi−1) =
costy(yi)+(kb−ka)(yi−yi−1) since ka rectangles shrink by
an amount equal to (yi− yi−1) and kb rectangles grow by the
same amount.

Since ka > kb and yi−1 < yi clearly costy(yi−1) <
costy(yi). But this is a contradiction since yi is a minimum.
Similarly, we can show ka < kb also leads to a contradiction.

From Lemma 4 it is easy to see that if all elements of
Y are distinct then the optimum region must be of the form
(yi, yi+1) since if there was some other edge y in the optimum
region it would correspond to either a top edge or a bottom
edge of some rectangle (but not both, since all elements of Y
are distinct) and hence the optimum region would not satisfy
Lemma 4. Now for a point y in the optimum region we can
write the cost function as

costy(y) =
∑

Nabove

(y − yb
i) +

∑
Nbelow

(yt
j − y)

where yb
j and yt

j are the coordinates of the bottom edges and
top edges respectively and Nabove and Nbelow are the sets
of rectangles above and below the point y. By Lemma 4,
Nabove = Nbelow, and the above equation can be re-written
as

costy(y) = −
∑

Nabove

yb
i +

∑
Nbelow

yt
j

Also from Lemma 4, it is clear that the median coordinates
of the set Y must be the end-points of the optimum region.
To see this consider any rectangle that spans the optimum
region. It contributes one Y−coordinate to either side of the
optimum region. Every other rectangle must either lie above
the optimum region or below it, and there is an equal number
of such rectangles. Therefore the optimum region must lie
between the median points of Y .

C. Algorithm

We can exploit these properties of the solution to design
an efficient algorithm to solve the problem. The algorithm is
presented as Algorithm 1.

It receives as input the sorted list L of the Y−coordinates
provided. Each coordinate is annotated with a tag indicating
if it is a top edge or a bottom edge. A single pass is made

through L to compute the cost function at the optimum region
using the formula presented above i.e. every Y−coordinate
above the optimum region that corresponds to a bottom edge
is subtracted from the cost function and every Y−coordinate
below the optimum region that corresponds to a top edge is
added to the cost function. During the pass, the algorithm
also notes the median points which it returns as the optimum
region.

There is a subtle point in the theoretical analysis above.
From Lemma 4 onwards, we assumed that the points in
Y have distinct Y−coordinates. But the algorithm presented
works correctly even when multiple edges have the same
Y−coordinates (such as in Figure 3). This is because for
theoretical purposes we can assume that edges that coincide
are really separated by an infinitesimal distance. Since that
would not contribute to the perimeter, the characterization of
the optimum region remains valid.

It is clear that the algorithm has a runtime of Θ(m) in the
number of rectangles (assuming that the input coordinates are
pre-sorted). Figure 3 shows an example run of the algorithm.

V. EXPERIMENTAL EVALUATION

A. Comparison with Fast-Extract

We evaluated the proposed extraction algorithm by compar-
ing it with the conventional fast extract operation in the context

Estimated Total HPWL Estimated Congestion
Benchmark after placement after global routing

fx lx-0.5 lx-1.0 fx lx-0.5 lx-1.0
b14 273471 287264 284730 4.87 3.58 4.61
b15 410375 415254 407789 4.34 3.04 4.02
b17 1447394 1437329 1434812 9.15 7.49 6.46
b20 611470 558594 549182 7.07 5.01 4.15
b21 562556 581372 611775 4.62 5.09 4.63
b22 905092 844017 901761 6.61 5.72 5.26
avg 1.00 0.98 1.00 1.00 0.82 0.79

TABLE I
CONGESTION-DRIVEN FINAL PLACEMENT. COMPARISON BETWEEN PLACEMENT-AWARE EXTRACTION AND CONVENTIONAL EXTRACTION.

Technology
Independent

Technology
Mapping for

Area in SIS

Initial
Netlist

Mapped
Netlist

Congestion
Driven

Placement

Wirelength
Driven

Placement

Global
Routing

sweep
eliminate f 8
simplify m nocomp
eliminate f 8
sweep
eliminate f 8 5
simplify m nocomp
fx / lx0.5 / lx1.0
sweep
eliminate f 8
sweep
mfs w 22

Measure Congestion

Fig. 4. The design flow used in the experiments described in Section V-A.

Figure 4 shows the flow. Our algorithm is implemented in
the MVSIS framework [13]. Starting with the initial network
we run a sequence of technology independent optimizations
using a script that is similar to the script.rugged script in
SIS [12]. We study three different flows for comparison. The
first flow, fx, uses the conventional version of the fast extract
operation. The other two flows – lx-0.5 and lx-1.0 – use
the proposed placement-aware versions for the fast extract
operation. The only difference between the three is the value
of λ used in the objective function for choosing the best divisor
(Equation (1)). In this context fx is like an lx-0.0.

Note that even in the placement-aware flows (i.e. λ 6= 0), no
operation except fast extract is placement-aware. In particular
observe that in the lx flows, the optimizations done after the

extraction step do not keep track of placement information,
i.e. the actual placement information is effectively lost.

After the technology independent optimizations, the designs
are mapped for area into the 0.25 micron standard cell library
using SIS. For the final placement we evaluated the perfor-
mance of the proposed algorithm in two different settings.

Congestion-driven Final Placement. In the first setting
we used an industrial congestion-driven placer and global
router. The congestion numbers obtained from the global
router are shown in Table I. Here, congestion is defined as the
percentage of global-router cells where the routing demand
exceeds capacity. This metric is an accurate measure of the
routability of the design: for this set of place-and-route tools
the general rule of thumb is that if a design has more than
about 5% over-capacity cells after global routing, the detailed
routing is unlikely to succeed. As seen from the table, lx-0.5
reduces congestion by 18% on average, while lx-1.0 reduces
it by about 21% on average.

The wire-lengths reported in Table I may require some
explanation. Although we try to minimize wire-lengths in the
technology independent extraction, the placement information
is lost, and generated anew during the final placement. The
final placement is congestion-driven (and not wire-length
driven) and hence moves the cells around so as to minimize
congestion. However the placement algorithm can achieve bet-
ter congestion results in the lx flows since the input netlists are
more “layout-friendly,” i.e. admit placements with inherently
less wiring than the fx flow.

Wire-length-driven Final Placement. In this case we used
the academic placer CAPO [1] for the final placement, and
measured congestion from the placement itself rather than a
global router. The metric here is the maximum number of nets
crossing an edge of the global placement grid. The results are
shown in Table II. On average lx-0.5 reduces congestion by
11% and lx-1.0 by 9%. In this wire-length driven approach,
lx-0.5 reduces the final placed wire-length by about 7% on
average. It is interesting to note that lx-1.0 does not always
reduce wire-length. We believe that this is an artifact of using
an unstable placer Capo for the periodic re-placements which
injects a certain amount of randomness in the results when

Estimated Total HPWL Estimated Congestion
Benchmark after placement after placement

fx lx-0.5 lx-1.0 fx lx-0.5 lx-1.0
b14 243056 238110 240255 40.65 43.54 39.46
b15 343014 338227 350985 53.94 49.37 43.40
b17 1208270 1138170 1195510 54.69 50.86 45.15
b20 521527 443956 515397 42.70 34.65 45.83
b21 510499 453864 492561 39.65 36.26 46.95
b22 786318 740157 802394 57.28 41.29 42.60
avg 1.00 0.93 1.00 1.00 0.89 0.91

TABLE II
WIRE-LENGTH-DRIVEN FINAL PLACEMENT. COMPARISON BETWEEN PLACEMENT-AWARE EXTRACTION AND CONVENTIONAL EXTRACTION.

only wire-length is considered. Of course this can be mitigated
by giving some weight to the literal savings, as is the case with
lx-0.5. Switching to a more stable re-placement algorithm such
as Kraftwerk [3] should resolve this problem.

Area. The active cell areas with the different flows are
shown in Table III. On average the active cell area is about the
same for fx and lx-0.5, with it increasing slightly for lx-1.0. The
experiments described in this section were performed with the
variable die-model with the utilization set to around 75%. This
is done to quantify the congestion improvement purely due to
structural improvement. In a fixed die model, the congestion
improvement is likely to be greater for the larger benchmarks
since the active cell area in the lx-0.5 flow is actually less than
in the conventional flow.

Runtime. The overhead of the incremental placement al-
gorithm is negligible during the decomposition. The runtime
is dominated by the calls to the external placement tool,
even though that is done only every 500 iterations. Though
the actual placement does not take very long to place the
technology independent network (order of 30 seconds or less),
since the current implementation uses files to communicate,
the overhead of I/O and parsing is large. Beyond a better
integration of the tools, we hope to obtain better run-times by
exploring incremental re-placing options. Our estimates (ex-
cluding the I/O) would put the increase due to this algorithm
at less than 10% overhead. Indeed the time for the flow as a
whole could even reduce, since with an easier design to route,
the detailed router may take less time.

Note that the external placement is much faster than a
regular placement because we have fewer nodes since the
network is not mapped and has fairly large nodes because of
the preceding “uphill” eliminate operation; and also because
we do not insist on a completely legalized placement.

B. Variation in the Number of Literals

When we varied the emphasis on the wire-length relative
to the logic value, i.e. the λ parameter from Equation (1), we
observed a rather surprising phenomenon. In many cases (but
not all), as we increased the relative emphasis on minimizing
the wire-length, the number of literals in the factored form
actually decreased slightly. Table IV summarizes the results for

the present set of benchmarks. The purely wire-length driven
approach actually reduces the literal count by about 2% over
the conventional approach.

Though we cannot explain it completely, it would appear
that using the placement information results in a better decom-
position than using the greedy approach of the conventional
fast extract which chooses the divisor that leads to the largest
reduction in literal count first. In order to reduce the possibility
that this was not due to some random effect in scheduling
the divisor extraction, we tested some randomized variants
of the fast extract algorithm where instead of choosing the
divisor with the highest value, we chose randomly a divisor
according to its weight. In these experiments we noticed that
almost always the literal count would be worse than in the
greedy approach, often by as much as 15%.

VI. CONCLUSION

We presented a new algorithm to incrementally place a new
network node such that the increase in total wire-length is min-
imum. This algorithm should be generally useful in placement-
aware logic synthesis. We also presented an application of this
algorithm to congestion-aware divisor extraction. Our results
are encouraging and consistent across a variety of benchmarks,
placement engines and process geometries.

An interesting feature is that significant reductions have

Benchmark Total Cell Area
fx lx-0.5 lx-1.0

b14 176671 186829 183928
b15 239341 242733 241609
b17 803654 783469 800759
b20 364074 354539 376559
b21 367538 363662 377893
b22 531802 526598 547579
avg 1.00 1.00 1.02

TABLE III
ACTIVE CELL AREA COMPARISON BETWEEN PLACEMENT-AWARE

EXTRACTION AND CONVENTIONAL EXTRACTION.

Original λ
Benchmark after sweep 0.0 0.2 0.4 0.6 0.8 1.0

b14 17388 8715 8647 8623 8653 8720 8711
b15 16244 10817 10923 10965 10733 10689 10758
b17 57311 38644 38084 37946 37798 37129 37159
b20 35149 18276 17908 17673 17659 17793 17920
b21 35908 18159 18182 18191 18061 18294 18179
b22 52276 27304 26710 26440 26429 26627 26696
avg 1.00 0.99 0.98 0.98 0.98 0.98

TABLE IV
VARIATION IN THE NUMBER OF LITERALS AFTER TECHNOLOGY INDEPENDENT OPTIMIZATIONS AS A FUNCTION OF λ, THE RELATIVE EMPHASIS IN

WIRE-LENGTH MINIMIZATION.

been obtained by modifying only the common divisor ex-
traction operation in an otherwise conventional flow. This
may be viewed as further evidence [6] that certain graph
structures are inherently better than others with respect to
routability. Figure 5 shows the variation in the number of
literals and congestion as a function of λ for benchmark b20.
The networks for λ = 0.2 and for λ = 1.0 have almost
the same number of literals, but have significantly different
congestion.

A limitation in the current implementation is the use of an
unstable placer for the periodic replacement of the network. A
more stable placer, or one capable of incremental legalization
such as Kraftwerk [3], should improve both run-time and
quality of the results further.

Lastly, this method could be used in different settings. For
instance, in a flow to minimize delay, we could keep track
of the arrival times and slacks in the circuit using a suitable
wire-delay model (since the wire-lengths are already known).
The proposed algorithm can be used to evaluate divisors on
near-critical paths additionally by the wire-length increase they
cause on these paths. All other divisors are selected based
only on the area saving (though they could still be placed
optimally).

 17600

 17700

 17800

 17900

 18000

 18100

 18200

 18300

 0 0.2 0.4 0.6 0.8 1

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

N
um

be
r o

f l
ite

ra
ls

C
on

ge
st

io
n

lambda

Number of literals
Congestion

Fig. 5. Variation in number of literals and congestion as a function of λ for
benchmark b20.

ACKNOWLEDGMENTS

We thank Alan Mishchenko for his assistance with MVSIS
and for his comments on an earlier draft of this paper. This
work was supported by C2S2 and our industrial sponsors
Cadence, Synplicity, Intel, Magma and Fujitsu.

REFERENCES

[1] A. Caldwell, A. Kahng and I. Markov. “Can Recursive Bisection
Produce Routable Placements?,” In Proc. of Design Automation
Conf., pages 477-482, 2000.

[2] F. Corno, M. Sonza Reorda and G. Squillero. “RT-Level ITC 99
Benchmarks and First ATPG Results,” IEEE Design & Test of
Computers, Jul-Aug 2000.

[3] H. Eisenmann and F. Johannes. “Generic Global Placement and
Floorplanning,” In Proc. of Design Automation Conf., pages 269-
274, 1998.

[4] W. Gosti et al. “Wire-planning in Logic Synthesis,” In Proc. of
ICCAD, pages 26-33, 1998.

[5] W. Gosti, S. Khatri and A. Sangiovanni-Vincentelli. “Addressing
the Timing Closure Problem by Integrating Logic Optimization
and Placement,” In Proc. of ICCAD, pages 224-231, 2001.

[6] P. Kudva, A. Sullivan and W. Dougherty. “Metrics for Structural
Logic Synthesis,” In Proc. of ICCAD, pages 551-556, 2002

[7] T. Kutzschebauch and L. Stok. “Layout Driven Decomposition
with Congestion Consideration,” In Proc. of DATE, pages 672-
676, 2002.

[8] T. Kutzschebauch and L. Stok. “Congestion Aware Layout
Driven Logic Synthesis,” In Proc. of ICCAD, pages 216-223,
2001.

[9] M. Pedram and N. Bhat. “Layout-driven Logic Restructuring
and Decomposition,” In Proc. of ICCAD, pages 134-137, 1991.

[10] M. Pedram and N. Bhat. “Layout Driven Technology Mapping,”
In Proc. of Design Automation Conf., pages 99-105, 1991.

[11] J. Rajski and J. Vasudevamurthy. “The Testability-Preserving
Concurrent Decomposition and Factorization of Boolean Ex-
pressions,” IEEE TRANS. on Comp. Aided Design, vol. 2, no.
6, pages 778-793, 1992.

[12] E. Sentovich et al. “SIS: A System for Sequential Circuit
Synthesis,” Technical Report UCB/ERL M92/41, Univ. of CA
at Berkeley, May 1992

[13] Multi-Valued Logic Synthesis System. On the Internet:
http://www-cad.eecs.berkeley.edu/Respep/Research/mvsis/

