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ABSTRACT 
Structuring and mapping of a Boolean function is an important 
problem in the design of complex integrated circuits. Library-
aware constructive decomposition offers a solution to this 
problem. This paper proposes novel techniques to improve the 
quality and runtime of constructive decomposition. The 
improvements are effective both in the stand-alone mapping 
procedure and in the context of re-synthesis applied to a mapped 
multi-level network. Experiments with public and proprietary 
benchmarks show promising results.  

Categories and Subject Descriptors 
B.6.3 [Logic Design]: Design Aids – Automatic synthesis. 

General Terms 
Algorithms, Performance, Experimentation, Theory. 

Keywords 
Functional decomposition, technology mapping, re-synthesis. 

1. INTRODUCTION 
Today’s commercial logic synthesis tools have matured enough in 
terms of handling capacity, design quality, and runtime efficiency 
to justify their use for ASIC designs. However, widespread use of 
these tools in high performance designs, such as microprocessors, 
is still limited, mainly due to the quality of synthesis results. 
Synthesis tools based only on algebraic decomposition [3] often 
cannot compete with an experienced human designer capable of 
reasoning in Boolean domain. Another key factor affecting the 
quality of automated synthesis is the phase decoupling between 
technology-independent logic transformations and technology 
mapping in traditional logic synthesis flows.     
The recent work [21] with further development [8] attempts to 
bridge the gap between technology-independent logic 
decomposition and technology mapping. A limitation of this work 
is that the transformations are limited to those having an algebraic 
structure. Constructive synthesis [10][12][13] is another novel 
technique combining Boolean decomposition and technology 
mapping in a creative way.  However, the practical usefulness of 
this approach has limitation due to the following factors: 
 
 
 
 
 
 
 

• At each decomposition step, it considers only a subset of 
support-reducing decompositions. 

• It builds a large intermediate BDDs for solving the basic 4-
to-3 decomposition steps, which increases the runtime. 

• The mapped netlist often contains non-decomposable blocks. 
This paper addresses these limitations by proposing 
computationally efficient solutions for 
• Considering all support-reducing decompositions. 
• Performing fast decomposition in the presence of don’t-cares 

extracted from the context of the node in the netlist. 
• Pre-computing the gate library representation in the form of 

supergates, leading to fewer non-decomposable blocks. 
These improvements result in reducing delay and shortening 
runtime. Another contribution is a re-synthesis framework, which 
enables selective application of computationally expensive logic 
synthesis techniques to critical areas in large industrial designs. 
The paper is organized as follows. Section 2 introduces the basic 
concepts of constructive synthesis. Section 3 shows a new fast 
constructive decomposition algorithm based on incremental 
encoding, which works for both completely- and incompletely-
specified functions. Section 4 shows a new technique to compute 
all support-reducing bound sets of a completely specified 
function. The following two sections describe the adaptations of 
the constructive decomposition for technology mapping and re-
synthesis. Section 5 discusses a new representation of a gate 
library in the form of supergates. Section 6 presents an efficient 
way of computing local don’t-cares from the network structure. 
Section 7 outlines the implementation of the decomposition 
engine and the re-synthesis framework. Section 8 presents 
experimental results. Section 9 summarizes the paper. 

2. PRELIMINARIES 
Let f(X): Bn → B, B = {0,1}, be a completely specified Boolean 
function (CSF). Let f(X): Bn → {0,1,-} be an incompletely 
specified function (ISF). An ISF is represented by two CSFs, the 
on-set (f 1) and the off-set (f 0). The support of f, supp(f), is the set 
of variables X, which influence the output value of f. The support 
size is denoted by |X|. For a CSF f(X) and a subset of its support, 
X1, the set of distinct cofactors, q1(X), q2(X), … , qµ(X), of f with 
respect to (w.r.t.) X1 is derived by substituting all assignments of 
X1 into f(X) and eliminating duplicated functions. The number of 
distinct cofactors, µ, is the column multiplicity of f w.r.t. X1.  
Given a partition of X into two disjoint subsets, X1 and X2, 
Ashenhurst-Curtis decomposition of f(X) is: 

f(X) = h( g1(X1), g2(X1), …, gk(X1), X2 ). 
Subsets X1 and X2 are called the bound set and the free set, 
respectively. Functions gi(X1), 1 ≤ i ≤ k, are the decomposition 
functions. Function h(G, X2) is the composition function. 
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Lemma 1. [1][7] The decomposition of f(X) with k functions 
g1(X1), g2(X1), …, gk(X1) exists if and only if (iff) log2µ ≤ k ≤ n, 
where µ is the column multiplicity of f w.r.t. X1, and n = |X1|. 

Following [10], we say that the bound set X1 leads to an n-to-k 
support-reducing decomposition if k satisfies log2µ ≤ k < n. All 
support-reducing bound sets of a fixed size can be computed for a 
given CSF f(X) using the algorithm described in Section 4. 
This paper assumes that the reader is familiar with the basic 
concepts of Binary Decision Diagrams (BDDs) [4]. The BDD 
representation of f(X) is convenient for decomposition because the 
cofactors of f w.r.t. X1 can be found by identifying all the nodes in 
the BDD of f that have incoming edges from the nodes located 
above the cut separating X1 from X2 in the variable order [14][23].  
Example 1. Fig. 1 shows the upper part of the BDD for some 
function f(X). The bound set X1 = {x1, x2} leads to the 
decomposition with three distinct cofactors. This bound set is not 
support-reducing because k = log23 = 2 and n = |X1| = 2. The 
bound set X1 = {x1, x2, x3} leads to the decomposition with four 
distinct cofactors, denoted c0, c1, c2, and c3. This bound set is 
support-reducing because k = log24 = 2 and n = |X1| = 3. 
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Figure 1. The function and the decomposition pattern. 

3. DECOMPOSITION ALGORITHM 
3.1 Algorithm Outline  
Decomposition of a logic function represents the function as a 
network of elementary sub-functions. The pseudo-code of 
constructive decomposition is shown in Fig. 2. Given a function f 
and a set of elementary sub-functions {fi}, decomposition is 
performed iteratively as long as f is not one of the elementary sub-
functions. In each iteration, a bound set X is determined. Next, 
decomposition functions {gi}, gi ∈ {fi}, and the composition 
function h are derived. The functions {gi} are added to the 
network and the decomposition proceeds to decompose function 
h, which depends on fewer variables than f. 

network ConstructiveDecomposition( function f, functions {fi}) 
{ 
    N = empty network; 
    while ( f ∉ {fi} ) { 
         X    = DetermineBoundSet( f ) 
         {gi} = DeriveDecompositionFunctions( f, X, {fi}); 
         h   =  DeriveCompositionFunction( f, X, {gi} ); 
         AddToNetwork( N, {gi } ); 
         f = h; 
    } 
    AddToNetwork( N, f ); 
    return N; 
} 

Figure 2. The pseudo-code of constructive decomposition. 

3.2 Completely Specified Functions 
The decomposition of the CSF f(X) with the bound set X1 is 
characterized by a decomposition pattern defined in [10] as a 
mapping of the bound set minterms into the corresponding 
cofactors. For CSFs, each minterm maps into a unique cofactor.  

Example 2. The four distinct cofactors created by the bound set 
X1 = {x1, x2, x3} in Fig. 1 are c0, c1, c2, and c3. The decomposition 
map is shown in Fig. 1 (right), where each minterms is labeled by 
the number of the corresponding cofactor. 
To derive the decomposition functions, we introduce k new 
variables g0, g1, …, gk-1 and encode µ cofactors of f w.r.t. X1 using 
unique minterms composed of the new variables. The i-th 
decomposition function, gi(X), is derived by ORing of the bound 
set minterms associated with the cofactors, whose codes have 
variable gi in the positive polarity. Different encoding of cofactors 
can lead to different sets of decomposition functions. 
Example 3. ORing of the bound set minterms associated with the 
cofactors of f(X) shown in Fig. 1 yields the following functions:  

m(c0) = 21 xx , m(c1) = 321 xxx , m(c2) = 321 xxx , m(c3) = x1. 

For the natural encoding of cofactors, code(c0)=00, code(c1)=01, 
code(c2)=10, code(c3)=11. The decomposition functions are:  

g0(X) = m(c1) ∨ m(c3) = 321 xxx  ∨ x1;   

g1(X) = m(c2) ∨ m(c3) = 321 xxx  ∨ x1. 
Simpler decomposition functions can be derived by assigning 
adjacent codes to cofactors c1 and c2, code(c0)=00, code(c1)=01, 
code(c2)=11, code(c3)=10: 

g0(X) = m(c1) ∨ m(c2)  = 21 xx ;   
g1(X) = m(c2) ∨ m(c3)  = x2 x3 ∨ x1. 

3.3 Incompletely Specified Functions 
The cofactors of an ISF are themselves ISFs. When decomposing 
ISFs, each bound set minterm is associated with an ISF of the 
corresponding cofactor. In this case, it is possible to define a 
compatibility relation of the bound set minterms. This relation is 
true for two minterms iff there exists an assignment of don’t-cares 
in the corresponding cofactors, which makes the cofactors equal. 
Example 4. Suppose cofactors c0, c1, c2, and c3 in Fig. 1 depend 
on variables x4 and x5 and have truth tables shown as columns in 
Fig. 3 (left). The truth tables of c1 and c2 can be made equal by 
assigning the don’t-care minterm 10 of cofactor c1 to 1 and the 
don’t-care minterms 01, 11 of cofactor c2 to 0 and 1, respectively. 
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x4x5 c0 c1 c2 c3

00 1 1 1 0
01 1 0 - 0
10 1 - 1 1
11 0 1 - 0 

      100 0 0 0 0 1 1 1 1 

Figure 3. Cofactor truth tables and the compability relation. 

The compatibility relation R can be computed using the on/off-set 
representation of the ISF f = (f 0, f 1) as follows: 
R(X1,X1’)=¬∃X2[f 1(X1, X2) f 0(X1’, X2) ∨ f 0(X1, X2) f 1(X1’, X2)] 

              =∀X2[ 1f (X1, X2) 1f (X1’, X2) ∨ 0f (X1, X2) 0f (X1’, X2)]. 
This formula states that two bound set minterms, X1 and X1’, are 
compatible iff there is no assignment A of the free set variables X2 
such that the cofactors of f(X) w.r.t. X1 and X1’ are not compatible, 
i.e., one of them is in the on-set while the other in the off-set: 

f 1(X1, A) f 0(X1’, A) ∨ f 0(X1, A) f 1(X1’, A). 

x1 
f(X) 

x2 

x3 

x4 
c0 c1 c2 c3 
x4 x4 x4 



In the presence of don’t-cares, the minimum column multiplicity 
for the given bound set can be computed by graph coloring of the 
graph representing the compatibility relation. In this graph, the 
vertices correspond to the bound set minterms. The two vertices 
have an edge between them (can be colored by the same color) iff 
the corresponding mintems belongs to the compatibility relation. 
Lemma 2. [22] A support-reducing decomposition of f(X) with 
bound set X1 exists iff graph coloring of the graph of R(X1, X1’) 
yields the number of minimum colors, µ, satisfying log2µ < n. 
Example 5. Consider the decomposition pattern in Fig. 1 (right) 
and the cofactor truth tables in Fig. 3 (left). The compatibility 
relation is in Fig. 3 (right), where the 1’s in bold are produced by 
the compatibility of c1 and c2 due to don’t-cares. Graph coloring 
of the graph of this relation yields µ = 3. According to Lemma 2, 
decomposition with k =  log23 = 2 < n = 3 exists. 
Deriving the decomposition functions in the case of ISFs is 
performed by encoding the classes of bound set minterms colored 
by the same color, similarly to encoding the cofactors of CSFs.  

3.4 Selecting Decomposition Functions 
Several methods for selecting the decomposition functions have 
been proposed. Some of them exploit the cofactor encoding but 
do not use don’t-cares [15][18][20]. Other methods use don’t-
cares but do not take advantage of the cofactor encoding [22]. The 
previous work on constructive decomposition theoretically allows 
for don’t-cares [10][13], but in practice don’t-cares are not 
extracted from the netlist in the context of re-synthesis [11]. 
The decomposition algorithm introduced in this section exploits 
the freedom provided by the cofactor encoding in the case of 
CSFs, and both graph coloring and cofactor encoding in the case 
of ISFs, to facilitate selection of decomposition functions with 
desirable properties. For example, we can, as in [18], prefer 
single-variable decomposition functions replaceable by wires in 
the netlist, or we can choose functions that map into gates with 
short delay, which is relevant to the goal of this paper. 
The proposed selection algorithm is based on the incremental 
encoding of cofactors [18]. The input to the algorithm is a set of 
candidate functions and a decomposition pattern represented by 
the mapping of bound set minterms into cofactors in the case of 
CSF, or by the compatibility relation in the case of ISFs. Without 
specifying what desirable properties the functions should have, 
we assume that the functions have been pre-computed and are 
available as an array sorted in the decreasing order of desirability. 
The algorithm returns a set of functions that satisfy the 
decomposition pattern and occur as early as possible in the sorted 
array. This solution is optimal according to the selected criteria. 
Below we consider only the case for ISFs, as a more difficult one. 
Let X be the bound set. Let R(X, X’) be a compatibility relation, 
and let g1(X), g2(X), …, gp(X) be some functions. The cofactor 
relations, Rj(X, X’), 0 ≤ j < 2p, of relation R(X, X’) w.r.t. the given 
functions are defined as follows. For each j, 0 ≤ j < 2p, compute 
Sj(X), the product of functions g1(X), g2(X), …, gp(X), with 
polarities specified by the binary representation of j. Sj(X) is a 
function over the bound set variables. Then, 

Rj(X, X’) = R(X, X’) ∧ Sj(X) ∧ Sj(X’). 
The motivation for considering Rj(X, X’) is given by the following 
observation. Suppose in the process of decomposition, we have 
selected a set of decomposition functions, g1(X), g2(X), …, gp(X), 
which split the bound set space into 2p subspaces containing 
minterms that are not distinguished by the selected functions.  
Restricting R(X, X’) to these subspaces is needed to check whether 
the decomposition with the given functions exists. 

Lemma 3. Let R(X, X’) be the compatibility relation and 
g1(X), g2(X), …, gp(X), 0 ≤ p ≤ k, be a set of decomposition 
functions. The decomposition with these p functions and the 
additional k-p functions exists iff the graphs of each cofactor 
relation Rj(X, X’), 0 ≤ j < 2p, can be colored using at most µ 
colors, satisfying log2µ ≤ k-p. 
Proof: The decomposition exists iff all incompatible bound set 
minterms are distinguished.  The graphs of cofactor relations can 
be colored as stated in Lemma 3 iff the additional k-p 
decomposition functions can be selected to distinguish the 
remaining minterms in the subspaces of the compatibility relation 
induced by the already selected decomposition function. Q. E. D. 
Example 6. Consider the compatibility relation in Fig. 3 and the 
ordered set of functions (g0, g1), g0(X) = x1 ∨ x2, g1(X) = x1. The 
gray areas in Fig. 4 show the on-sets of the cofactor relations 
w.r.t. g0 (left) and both g0 and g1 (right). Decomposition with g0 
exists because each cofactor relations w.r.t. g0 can be colored with 
at most two colors. The decomposition with both g0 and g1 exists 
because each cofactor relations w.r.t. both g0 and g1 can be 
colored with one color. On the other hand, decomposition with 
g2(X) = 21 xx does not exist because one of the cofactor relations 
produced by this function (not shown in Fig. 4) requires three 
colors. Note that using don’t-cares leads to the decomposition 
with simpler functions, g0(X) = x1 ∨ x2 and g1(X) = x1, compared 
to the solutions obtained without don’t-cares in Example 3.  
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Figure 4. The cofactor relations. 

The above decomposition theory can be used to create a robust 
decomposition algorithm. Given a set of candidate functions, we 
try selecting subsets, each containing k functions. The functions 
are selected in the order of their appearance in the sorted array, 
which is sorted using the arrival times of the inputs. The first 
subset that satisfies Lemma 3 is returned as the solution. If, for 
the given k, we tried all sets of k functions and none of them leads 
to the decomposition, we increment k as long as k < n, and apply 
the same procedure under the relaxed conditions. 
The proposed algorithm is robust in the sense that it can solve 
decomposition problems with thousands of candidate functions. 
The runtime of the algorithm for a typical 5-variable 
decomposition pattern strongly depends on the probability of the 
existence of decomposition but is always reasonable and rarely 
exceeds 0.1 sec. The trade-off between runtime and quality can be 
controlled by a set of parameters.  

4. BOUND SET COMPUTATION 
A straightforward way of computing all support-reducing bound 
sets of size n consists in counting the number of different 
cofactors for each bound set of the given size. The bounds sets 
with the column multiplicity µ satisfying log2µ < n are, by 
definition, support-reducing. 



In this section, we describe an efficient bound set computation 
using BDDs. Although our method also creates all bound sets, it 
does so implicitly using cache to avoid repeated computations. 
For this reason, this method has better performance compared to 
the explicit enumeration using the straightforward method. The 
computation is divided into several steps: 
Step 1. In the BDD package, introduce three sets of variables, X, 
Y, and Z, each having size m = supp(f). Interleave the variables to 
get the variable order:  

x1 < y1 < z1 < x2 < y2 < z2 < ... < xm < ym < zm 

Step 2. Construct function f using variables X and perform 
simultaneous composition of f(X) with functions xi(X,Y,Z) = 
ITE(xi, yi, zi), for all 1 ≤ i ≤ m. Given the interleaved variable 
order, the resulting function f(X,Y,Z) has three times more internal 
nodes than f(X). A schematic representation of the BDDs for f, 
before and after composition, is shown in Fig. 5 (left and center). 
 

 

 

 

 

 

 

 

Figure 5. Transformation for the BDD for f(X) during 
computation of all support-reducing bound sets. 

Step 3. Compute g(X,Y,Z) = f(X,Y,Z) ∧ Tuplesn,m(X), where 
Tuplesn,m(X) is the function, whose on-set minterms depend on X 
and contain exactly n positive literals. The BDD representation of 
Tuplesn,m(X) can be efficiently derived, as shown in [9]. 
Step 4. Permute variables in g(X,Y,Z) in such a way that variables 
X are above variables Y and variables Y are above variables Z. 
One of such variable orders, shown in Fig. 5 (right), is: 

x1 < x2 <... < xm < y1 < y2 <... < ym < z1 < z2 <... < zm. 

In the resulting BDD gr(X,Y,Z), variables X encode all bound sets 
of size n. In each assignment (x0, x1, …, xm) of variables X, 1’s 
stand for the bound set variables, while 0’s stand for the free set 
variables. In the cofactor gr

(x0, x1, …, xm)(Y, Z), the bound set is 
represented by Y and the free set is represented by Z.  
Step 5. It is now possible to count the number of different nodes 
pointed to below the cut separating variables of Y and Z in each 
cofactor gr

(x0, x1, …, xm)(Y, Z). This number is equal to the column 
multiplicity µ in the decomposition with the corresponding bound 
set. If log2µ < n, the bound set is support-reducing. The 
computation for all bound sets is performed in one traversal of the 
upper part of the BDD representing gr(X, Y, Z). 
Note that Step 4 in the above computation typically leads to a 
substantial increase in the size of the BDD for gr(X, Y, Z) 
compared to g(X, Y, Z). However, this increase can be controlled 
in Step 3, by further restricting the set of considered bound sets. 
The overall performance of this computation is reasonable for 
typical functions encountered in a netlist. The computation of all 
3-, 4-, and 5-variable support-reducing bound sets for a typical 
10-variable function takes about 0.05 sec on a 1GHz computer 
with 256Mb RAM. Similar computation for a 20-variable 

function takes about 0.5 sec. Further increase in the support size 
leads to an exponential increase in runtime, unless the number of 
computed bound set is further constrained, for example, by only 
considering a subset of the support variables. It should be noted 
that, in many cases, bound set computation can be made much 
faster by first detecting disjoint-support decomposition [2][16]. 
The above algorithm works for CSFs. When dealing with ISFs, 
we derive support-reducing bound sets by first applying the BDD 
minimization algorithm restrict [6] to produce a CSF. 

5. GATE LIBRARY REPRESENTATION 
Constructive decomposition aims at constructing a decomposed 
network functionally equivalent to a CSF or ISF, with the 
following requirements: (1) the decomposition functions can be 
efficiently implemented using the gate library; (2) the delay/area 
trade-off of the decomposed network satisfies the constraints. 
To facilitate selection of the decomposition functions that satisfies 
the given constraints, we introduce the concept of a supergate. 
Essentially, a supergate is a single-output network composed of 
several logic levels of library gates. The upper bound on the delay 
of this network is imposed to limit the total number of supergates 
generated, which can be very large even for small gate libraries.  
The supergates are computed independently for each support size 
of the decomposition functions. The library for a larger support 
size includes the supergates with smaller supports because the 
decomposition functions can depend on fewer variables than the 
bound set size. In our experiments, we pre-compute the library of 
supergates by setting a limit on the supergate delay to be several 
delays of the inverter. For a typical gate library, the delay of three 
or four inverters leads to several thousand four-input supergates, 
which almost completely eliminates the possibility of generating 
non-decomposable blocks for most benchmark functions. 
Some pre-computed supergates may have equivalent functionality 
but different delay/area parameters. Such supergates represent 
alternative implementation choices. Depending on the situation, 
we may use a complex gate, or a functionally equivalent 
combination of simpler gates. We remove from the library only 
dominated supergates, having area and pin-to-pin delays larger 
than or equal to another supergate of the same functionality. 
We sort the supergates in each decomposition step, for each 
decomposition pattern. For example, if the minimum delay is 
sought, the supergates are sorted by increasing delay. Given the 
sorted array of supergates, the decomposition algorithm selects 
the decomposition functions that optimize the given criteria. 
In summary, introducing supergates, as described in this section, 
facilitates decomposition by reducing the number of non-
decomposable blocks and enhancing the scope of decomposition 
from single gates (one level) to gate clusters (multiple levels).  

6. DON’T-CARE COMPUTATION 
The traditional technology mapping methods [25] and their 
improvements [21][8] work on a NAND or AND/OR graph 
derived by the algebraic decomposition of the network. Using the 
uniform network representation allows the mapping algorithms to 
perform optimization across the boundaries of logic blocks. 
A potential weakness of the constructive decomposition, on the 
other hand, is that each node is decomposed in isolation from 
other nodes. Even if the decomposed functions are cached and 
reused, logic sharing is difficult to create because the nodes 
considered earlier may produce decomposition functions that are 
useless for the decomposition of the nodes encountered later.  
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We compensate for this weakness of constructive decomposition 
by computing don’t-cares for each node using its context in the 
network. These don’t-cares contain important information about 
the reduced controllability and observability of the node, which 
allows the decomposition algorithm, in a roundabout way, to 
optimize across the boundaries of logic blocks.  
The previous work on the use of don’t-cares in the optimization of 
Boolean networks [24] considers only the compatible and 
satisfiability don’t-cares. Our don’t-care computation method is 
similar to [17] in that is computes the complete don’t-cares. The 
difference is, we compute don’t-cares in a dynamically adjusted 
context of the node rather than in the scope of the total network. 
The context of the node is determined “on-the-fly”, when the 
don’t-care computation is called. This allows us to integrate this 
algorithm into applications performing frequent updated to the 
network structure, such as the re-synthesis framework. The re-
convergent paths in the vicinity of the node produce most of the 
don’t-cares for a node. Therefore, our algorithm includes as many 
re-convergent paths as possible into a sub-network surrounding 
the node. This sub-network is used for the computation of the 
complete don’t-cares, as shown in [17]. 
The performance of the don’t-care computation is controlled by 
several parameters specifying the size of the sub-network (the 
number of logic levels on the fanin/fanout side of the node), the 
limit on the BDD size, and the timeout. Moreover, because the 
computation is performed in a limited scope around the node, its 
runtime is independent of the size of the Boolean network. 

7. IMPLEMENTATION ISSUES  
The following subsections briefly discuss the implementation of 
two main components of our decomposition system. The 
decomposition engine (CDM) performs decomposition of a CSF 
or an ISF. It returns the implementation of the function in the 
form of a network of supergates. The re-synthesis framework 
(RESYN) takes a mapped netlist, determines the gate clusters to 
be re-synthesized, collapses these gates into a single node, calls 
one or more decomposition engines to decompose this node, 
selects the best decomposition, and replaces the collapsed node by 
the decomposed network if the decomposition is acceptable. The 
re-synthesis framework performs this operation until there is no 
improvement, or until a fixed number of iterations is reached. 

7.1 Decomposition Engine 
We developed two versions of the decomposition engine using 
alternative data structures, BDDs and bit-strings, to represent the 
candidate functions and search for the decomposition. Extensive 
testing has shown that bit-strings lead to significantly faster 
processing compared to the BDDs used in [10][12][13].  
In our approach, BDDs are used only to derive the compatibility 
relation R(X1, X1’). This computation involves 2*|X1| + |X2| 
variables, where X1 is the bound set and X2 is the free set. This 
number is much less than k*2|X1| + |X2|, which is the number of 
variables in the representation of the constraint function to encode 
all decomposition choices in [10] (page 63, formula 4.16).  
Instead of implicitly encoding decomposition choices in a BDD, 
we use the explicit search through the space of decompositions as 
described in Section 3.3. This search can be efficiently 
implemented using bit-strings, because for a bound set of five 
variables or less, the truth table of each decomposition function 
can be stored in one machine word. The compatibility relation can 
also be represented using bit-strings, along with its cofactors. The 
solutions of graph coloring for small relations are pre-computed 

and stored in a hash table, so that checking the existence of 
decomposition with a particular set of decomposition functions is 
reduced to several table lookups. This is the reason why our 
implementation is fast enough to test many support-reducing 
bound sets, each of them with a large set of candidate functions. 

7.2 Re-Synthesis Framework 
The re-synthesis framework takes the following parameters: 
arrival times of the primary inputs, required times of the primary 
outputs, a window parameter, a depth parameter, and an iteration 
limit. Each iteration of re-synthesis proceeds as follows:  
1. Compute the slack of each node using timing analysis by 
propagating the arrival and required times. Timing-critical outputs 
and internal nodes are identified. A node n is considered timing-
critical if the value slack(n)+window is negative. 
2. For each timing-critical node, count the number of critical 
paths passing through this node. The node g with the largest path 
count is chosen. The given number (depth) of levels of the 
transitive fanins of g are collapsed into g, resulting in a larger 
node gc.  
3. Don’t-cares are computed for node gc taking into account its 
context in the network. Next, gc is decomposed with the don’t-
cares, using the arrival time information of its fanins. If the arrival 
time of the output of the resulting logic cone satisfies the required 
time, and the resulting area does not increase above a certain 
limit, the collapsed node gc is replaced by the resulting logic cone. 
If the decomposition is not accepted, the original node g is 
marked to prevent future attempts to re-synthesize it. 
4. The re-synthesis continues until either all the timing-critical 
nodes are tried, or until the iteration limit is reached.  
Additionally, the re-synthesis framework features a high-effort re-
synthesis mode. In this mode, a number of fanin-logic collapsings 
are tried for each timing-critical node. In Step 2, different subsets 
of nodes in the transitive fanin of g are chosen for collapsing and 
decomposition in such a way that the most timing critical path is 
always included in the subset. Thus, for each timing-critical node, 
different logic cones are tried, one at a time, until an acceptable 
re-synthesis is found, or until all logic collapsing’s have been 
tried, or until the number of collapsing attempts reaches a limit. 

8. EXPERIMENTAL RESULTS  
The algorithm is implemented in SIS environment [26] using 
BDD package CUDD [27].  
In the first experiment, shown in Table 1, we applied the new 
decomposition algorithm (column “CDM”) to a set of MCNC 
benchmarks using mcnc.genlib library and compared it with the 
results obtained by SIS and M31 [10].  The results for SIS are 
obtained by running script.rugged and speed_up, followed by the 
delay-oriented mapping. The results for M31 are taken from [10]. 
The performance of our tool was geared towards reducing delay, 
which could lead to an increase in area. The resulting networks 
are verified using the verification command in SIS. 
In the second experiment, shown in Table 2, we applied the re-
synthesis framework to a set of mega-block designs extracted 
from a high performance microprocessor at the authors’ affiliation 
and compared the results with those obtained using the existing 
project synthesis flow. The delay and area numbers reported are 
after cell sizing using a proprietary cell sizer. It can be seen that 
performance improvements are achieved with reasonable area 
increase. This preliminary result demonstrated that it is feasible to 
use computationally expensive Boolean techniques to improve the 
synthesis quality of practical-sized designs through re-synthesis. 



  
Table 1. Synthesis results for MCNC benchmarks. 

Area Delay Benchmark 
SIS M31 CDM SIS M31 CDM 

rd53 50   56 40 17.9 14.3 7.7 
rd73 98 75 59 35.6 17.4 9.6 
rd84 205 107 199 26.4 22.6 11.2 

9sym 310 84 36 35.8 18.9 10.2 
parity 75 75 33 12.4 15.5 9.9 

my_adder 285 667 495 57.3 26.0 18.2 
comp 168 240 198 24.0 25.3 17.8 
z4ml 50 59 41 25.3 14.5 7.9 
t481 53 56 21 11.8 11.9 7.5 
pm1 87 72 87 11.1 10.8 4.9 

c8 175 187 130 27.5 18.5 7.8 
x4 552 624 578 38.3 22.2 24.4 

count 216 272 273 58.6 23.3 15.3 
pcler8 142 235 164 23.5 16.9 9.9 

la1 146 166 205 22.5 15.6 8.6 
sct 113 129 144 57.9 16.2 7.1 

apex7 332 358 556 33.6 29.2 15.3 
i2 296 295 363 21.7 17.9 18.8 

Total 3353 3757 3622 541.2 337 212.1 
Ratio, % 100 112 108 100 62.3 39.2 

Table 2. Re-synthesis results for proprietary benchmarks. 

Area Delay Benchmark 
existing RESYN existing RESYN 

Design1 199570 210960 537 495 
Design2 846067 847006 249 211 
Design3 804329 824450 207 188 
Design4 260704 270430 262 220 
Design5 715683 717824 186 148 

Total 2856353 2870670 1441 1262 
Ratio, % 100 101.6 100 87.6 

9. CONCLUSIONS AND FUTURE WORK 
We presented several new algorithms for constructive 
decomposition, concerning: (1) bound set selection, (2) using 
don’t-cares in decomposition, (3) pre-computing a set of 
supergates for the given gate library. Using these algorithms led 
to the following advantages: (a) 4-to-3 and 5-to-4 decompositions 
take reasonable time, (b) non-decomposable blocks are practically 
never created, (c) a better delay/area trade-offs are often found. 
The context of decomposition has been enhanced by (i) the fast 
extraction of local don’t-cares for the node from the node’s 
immediate context in the network, and (ii) developing a flexible 
re-synthesis framework, which uses several decomposition 
engines and selects the best result. The experimental results show 
that the new algorithm performs well on the benchmark functions. 
Future work include extending re-synthesis framework to 
incorporate more accurate delay modeling and physical design 
aspects as well as integrating constructive decomposition with bi-
decomposition [5][19][27][28] techniques.  
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