
A New Enhanced Constructive Decomposition and
Mapping Algorithm

Alan Mishchenko
Department of EECS

University of California, Berkeley
Berkeley, CA 94720

alanmi@eecs.berkeley.edu

Xinning Wang
Intel Corporation

Strategic CAD Labs
Hillsboro, OR 97124

xinning.wang@intel.com

Timothy Kam
Intel Corporation

Strategic CAD Labs
 Hillsboro, OR 97124

timothy.kam@intel.com

ABSTRACT
Structuring and mapping of a Boolean function is an important
problem in the design of complex integrated circuits. Library-
aware constructive decomposition offers a solution to this
problem. This paper proposes novel techniques to improve the
quality and runtime of constructive decomposition. The
improvements are effective both in the stand-alone mapping
procedure and in the context of re-synthesis applied to a mapped
multi-level network. Experiments with public and proprietary
benchmarks show promising results.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – Automatic synthesis.

General Terms
Algorithms, Performance, Experimentation, Theory.

Keywords
Functional decomposition, technology mapping, re-synthesis.

1. INTRODUCTION
Today’s commercial logic synthesis tools have matured enough in
terms of handling capacity, design quality, and runtime efficiency
to justify their use for ASIC designs. However, widespread use of
these tools in high performance designs, such as microprocessors,
is still limited, mainly due to the quality of synthesis results.
Synthesis tools based only on algebraic decomposition [3] often
cannot compete with an experienced human designer capable of
reasoning in Boolean domain. Another key factor affecting the
quality of automated synthesis is the phase decoupling between
technology-independent logic transformations and technology
mapping in traditional logic synthesis flows.
The recent work [21] with further development [8] attempts to
bridge the gap between technology-independent logic
decomposition and technology mapping. A limitation of this work
is that the transformations are limited to those having an algebraic
structure. Constructive synthesis [10][12][13] is another novel
technique combining Boolean decomposition and technology
mapping in a creative way. However, the practical usefulness of
this approach has limitation due to the following factors:

• At each decomposition step, it considers only a subset of
support-reducing decompositions.

• It builds a large intermediate BDDs for solving the basic 4-
to-3 decomposition steps, which increases the runtime.

• The mapped netlist often contains non-decomposable blocks.
This paper addresses these limitations by proposing
computationally efficient solutions for
• Considering all support-reducing decompositions.
• Performing fast decomposition in the presence of don’t-cares

extracted from the context of the node in the netlist.
• Pre-computing the gate library representation in the form of

supergates, leading to fewer non-decomposable blocks.
These improvements result in reducing delay and shortening
runtime. Another contribution is a re-synthesis framework, which
enables selective application of computationally expensive logic
synthesis techniques to critical areas in large industrial designs.
The paper is organized as follows. Section 2 introduces the basic
concepts of constructive synthesis. Section 3 shows a new fast
constructive decomposition algorithm based on incremental
encoding, which works for both completely- and incompletely-
specified functions. Section 4 shows a new technique to compute
all support-reducing bound sets of a completely specified
function. The following two sections describe the adaptations of
the constructive decomposition for technology mapping and re-
synthesis. Section 5 discusses a new representation of a gate
library in the form of supergates. Section 6 presents an efficient
way of computing local don’t-cares from the network structure.
Section 7 outlines the implementation of the decomposition
engine and the re-synthesis framework. Section 8 presents
experimental results. Section 9 summarizes the paper.

2. PRELIMINARIES
Let f(X): Bn → B, B = {0,1}, be a completely specified Boolean
function (CSF). Let f(X): Bn → {0,1,-} be an incompletely
specified function (ISF). An ISF is represented by two CSFs, the
on-set (f 1) and the off-set (f 0). The support of f, supp(f), is the set
of variables X, which influence the output value of f. The support
size is denoted by |X|. For a CSF f(X) and a subset of its support,
X1, the set of distinct cofactors, q1(X), q2(X), … , qµ(X), of f with
respect to (w.r.t.) X1 is derived by substituting all assignments of
X1 into f(X) and eliminating duplicated functions. The number of
distinct cofactors, µ, is the column multiplicity of f w.r.t. X1.
Given a partition of X into two disjoint subsets, X1 and X2,
Ashenhurst-Curtis decomposition of f(X) is:

f(X) = h(g1(X1), g2(X1), …, gk(X1), X2).
Subsets X1 and X2 are called the bound set and the free set,
respectively. Functions gi(X1), 1 ≤ i ≤ k, are the decomposition
functions. Function h(G, X2) is the composition function.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC 2003, June 2-6, 2003, Anaheim, California, USA.

Copyright 2003 ACM 1-58113-688-9/03/0006…$5.00.

Lemma 1. [1][7] The decomposition of f(X) with k functions
g1(X1), g2(X1), …, gk(X1) exists if and only if (iff) log2µ ≤ k ≤ n,
where µ is the column multiplicity of f w.r.t. X1, and n = |X1|.

Following [10], we say that the bound set X1 leads to an n-to-k
support-reducing decomposition if k satisfies log2µ ≤ k < n. All
support-reducing bound sets of a fixed size can be computed for a
given CSF f(X) using the algorithm described in Section 4.
This paper assumes that the reader is familiar with the basic
concepts of Binary Decision Diagrams (BDDs) [4]. The BDD
representation of f(X) is convenient for decomposition because the
cofactors of f w.r.t. X1 can be found by identifying all the nodes in
the BDD of f that have incoming edges from the nodes located
above the cut separating X1 from X2 in the variable order [14][23].
Example 1. Fig. 1 shows the upper part of the BDD for some
function f(X). The bound set X1 = {x1, x2} leads to the
decomposition with three distinct cofactors. This bound set is not
support-reducing because k = log23 = 2 and n = |X1| = 2. The
bound set X1 = {x1, x2, x3} leads to the decomposition with four
distinct cofactors, denoted c0, c1, c2, and c3. This bound set is
support-reducing because k = log24 = 2 and n = |X1| = 3.

 \ x2
x1 \ x3

0
0

0
1

1
1

1
0

0 0 0 2 1
1 3 3 3 3

Figure 1. The function and the decomposition pattern.

3. DECOMPOSITION ALGORITHM
3.1 Algorithm Outline
Decomposition of a logic function represents the function as a
network of elementary sub-functions. The pseudo-code of
constructive decomposition is shown in Fig. 2. Given a function f
and a set of elementary sub-functions {fi}, decomposition is
performed iteratively as long as f is not one of the elementary sub-
functions. In each iteration, a bound set X is determined. Next,
decomposition functions {gi}, gi ∈ {fi}, and the composition
function h are derived. The functions {gi} are added to the
network and the decomposition proceeds to decompose function
h, which depends on fewer variables than f.

network ConstructiveDecomposition(function f, functions {fi})
{
 N = empty network;
 while (f ∉ {fi}) {
 X = DetermineBoundSet(f)
 {gi} = DeriveDecompositionFunctions(f, X, {fi});
 h = DeriveCompositionFunction(f, X, {gi});
 AddToNetwork(N, {gi });
 f = h;
 }
 AddToNetwork(N, f);
 return N;
}

Figure 2. The pseudo-code of constructive decomposition.

3.2 Completely Specified Functions
The decomposition of the CSF f(X) with the bound set X1 is
characterized by a decomposition pattern defined in [10] as a
mapping of the bound set minterms into the corresponding
cofactors. For CSFs, each minterm maps into a unique cofactor.

Example 2. The four distinct cofactors created by the bound set
X1 = {x1, x2, x3} in Fig. 1 are c0, c1, c2, and c3. The decomposition
map is shown in Fig. 1 (right), where each minterms is labeled by
the number of the corresponding cofactor.
To derive the decomposition functions, we introduce k new
variables g0, g1, …, gk-1 and encode µ cofactors of f w.r.t. X1 using
unique minterms composed of the new variables. The i-th
decomposition function, gi(X), is derived by ORing of the bound
set minterms associated with the cofactors, whose codes have
variable gi in the positive polarity. Different encoding of cofactors
can lead to different sets of decomposition functions.
Example 3. ORing of the bound set minterms associated with the
cofactors of f(X) shown in Fig. 1 yields the following functions:

m(c0) = 21 xx , m(c1) = 321 xxx , m(c2) = 321 xxx , m(c3) = x1.

For the natural encoding of cofactors, code(c0)=00, code(c1)=01,
code(c2)=10, code(c3)=11. The decomposition functions are:

g0(X) = m(c1) ∨ m(c3) = 321 xxx ∨ x1;

g1(X) = m(c2) ∨ m(c3) = 321 xxx ∨ x1.
Simpler decomposition functions can be derived by assigning
adjacent codes to cofactors c1 and c2, code(c0)=00, code(c1)=01,
code(c2)=11, code(c3)=10:

g0(X) = m(c1) ∨ m(c2) = 21 xx ;
g1(X) = m(c2) ∨ m(c3) = x2 x3 ∨ x1.

3.3 Incompletely Specified Functions
The cofactors of an ISF are themselves ISFs. When decomposing
ISFs, each bound set minterm is associated with an ISF of the
corresponding cofactor. In this case, it is possible to define a
compatibility relation of the bound set minterms. This relation is
true for two minterms iff there exists an assignment of don’t-cares
in the corresponding cofactors, which makes the cofactors equal.
Example 4. Suppose cofactors c0, c1, c2, and c3 in Fig. 1 depend
on variables x4 and x5 and have truth tables shown as columns in
Fig. 3 (left). The truth tables of c1 and c2 can be made equal by
assigning the don’t-care minterm 10 of cofactor c1 to 1 and the
don’t-care minterms 01, 11 of cofactor c2 to 0 and 1, respectively.

 x1x2x3

321 xxx ′′′
0
0
0

0
0
1

0
1
1

0
1
0

1
1
0

1
1
1

1
0
1

1
0
0

 000 1 1 0 0 0 0 0 0
 001 1 1 0 0 0 0 0 0
 011 0 0 1 1 0 0 0 0
 010 0 0 1 1 0 0 0 0
 110 0 0 0 0 1 1 1 1
 111 0 0 0 0 1 1 1 1
 101 0 0 0 0 1 1 1 1

x4x5 c0 c1 c2 c3

00 1 1 1 0
01 1 0 - 0
10 1 - 1 1
11 0 1 - 0

 100 0 0 0 0 1 1 1 1

Figure 3. Cofactor truth tables and the compability relation.

The compatibility relation R can be computed using the on/off-set
representation of the ISF f = (f 0, f 1) as follows:
R(X1,X1’)=¬∃X2[f 1(X1, X2) f 0(X1’, X2) ∨ f 0(X1, X2) f 1(X1’, X2)]

 =∀X2[1f (X1, X2) 1f (X1’, X2) ∨ 0f (X1, X2) 0f (X1’, X2)].
This formula states that two bound set minterms, X1 and X1’, are
compatible iff there is no assignment A of the free set variables X2
such that the cofactors of f(X) w.r.t. X1 and X1’ are not compatible,
i.e., one of them is in the on-set while the other in the off-set:

f 1(X1, A) f 0(X1’, A) ∨ f 0(X1, A) f 1(X1’, A).

x1
f(X)

x2

x3

x4
c0 c1 c2 c3
x4 x4 x4

In the presence of don’t-cares, the minimum column multiplicity
for the given bound set can be computed by graph coloring of the
graph representing the compatibility relation. In this graph, the
vertices correspond to the bound set minterms. The two vertices
have an edge between them (can be colored by the same color) iff
the corresponding mintems belongs to the compatibility relation.
Lemma 2. [22] A support-reducing decomposition of f(X) with
bound set X1 exists iff graph coloring of the graph of R(X1, X1’)
yields the number of minimum colors, µ, satisfying log2µ < n.
Example 5. Consider the decomposition pattern in Fig. 1 (right)
and the cofactor truth tables in Fig. 3 (left). The compatibility
relation is in Fig. 3 (right), where the 1’s in bold are produced by
the compatibility of c1 and c2 due to don’t-cares. Graph coloring
of the graph of this relation yields µ = 3. According to Lemma 2,
decomposition with k = log23 = 2 < n = 3 exists.
Deriving the decomposition functions in the case of ISFs is
performed by encoding the classes of bound set minterms colored
by the same color, similarly to encoding the cofactors of CSFs.

3.4 Selecting Decomposition Functions
Several methods for selecting the decomposition functions have
been proposed. Some of them exploit the cofactor encoding but
do not use don’t-cares [15][18][20]. Other methods use don’t-
cares but do not take advantage of the cofactor encoding [22]. The
previous work on constructive decomposition theoretically allows
for don’t-cares [10][13], but in practice don’t-cares are not
extracted from the netlist in the context of re-synthesis [11].
The decomposition algorithm introduced in this section exploits
the freedom provided by the cofactor encoding in the case of
CSFs, and both graph coloring and cofactor encoding in the case
of ISFs, to facilitate selection of decomposition functions with
desirable properties. For example, we can, as in [18], prefer
single-variable decomposition functions replaceable by wires in
the netlist, or we can choose functions that map into gates with
short delay, which is relevant to the goal of this paper.
The proposed selection algorithm is based on the incremental
encoding of cofactors [18]. The input to the algorithm is a set of
candidate functions and a decomposition pattern represented by
the mapping of bound set minterms into cofactors in the case of
CSF, or by the compatibility relation in the case of ISFs. Without
specifying what desirable properties the functions should have,
we assume that the functions have been pre-computed and are
available as an array sorted in the decreasing order of desirability.
The algorithm returns a set of functions that satisfy the
decomposition pattern and occur as early as possible in the sorted
array. This solution is optimal according to the selected criteria.
Below we consider only the case for ISFs, as a more difficult one.
Let X be the bound set. Let R(X, X’) be a compatibility relation,
and let g1(X), g2(X), …, gp(X) be some functions. The cofactor
relations, Rj(X, X’), 0 ≤ j < 2p, of relation R(X, X’) w.r.t. the given
functions are defined as follows. For each j, 0 ≤ j < 2p, compute
Sj(X), the product of functions g1(X), g2(X), …, gp(X), with
polarities specified by the binary representation of j. Sj(X) is a
function over the bound set variables. Then,

Rj(X, X’) = R(X, X’) ∧ Sj(X) ∧ Sj(X’).
The motivation for considering Rj(X, X’) is given by the following
observation. Suppose in the process of decomposition, we have
selected a set of decomposition functions, g1(X), g2(X), …, gp(X),
which split the bound set space into 2p subspaces containing
minterms that are not distinguished by the selected functions.
Restricting R(X, X’) to these subspaces is needed to check whether
the decomposition with the given functions exists.

Lemma 3. Let R(X, X’) be the compatibility relation and
g1(X), g2(X), …, gp(X), 0 ≤ p ≤ k, be a set of decomposition
functions. The decomposition with these p functions and the
additional k-p functions exists iff the graphs of each cofactor
relation Rj(X, X’), 0 ≤ j < 2p, can be colored using at most µ
colors, satisfying log2µ ≤ k-p.
Proof: The decomposition exists iff all incompatible bound set
minterms are distinguished. The graphs of cofactor relations can
be colored as stated in Lemma 3 iff the additional k-p
decomposition functions can be selected to distinguish the
remaining minterms in the subspaces of the compatibility relation
induced by the already selected decomposition function. Q. E. D.
Example 6. Consider the compatibility relation in Fig. 3 and the
ordered set of functions (g0, g1), g0(X) = x1 ∨ x2, g1(X) = x1. The
gray areas in Fig. 4 show the on-sets of the cofactor relations
w.r.t. g0 (left) and both g0 and g1 (right). Decomposition with g0
exists because each cofactor relations w.r.t. g0 can be colored with
at most two colors. The decomposition with both g0 and g1 exists
because each cofactor relations w.r.t. both g0 and g1 can be
colored with one color. On the other hand, decomposition with
g2(X) = 21 xx does not exist because one of the cofactor relations
produced by this function (not shown in Fig. 4) requires three
colors. Note that using don’t-cares leads to the decomposition
with simpler functions, g0(X) = x1 ∨ x2 and g1(X) = x1, compared
to the solutions obtained without don’t-cares in Example 3.
 x1x2x3

321 xxx ′′′

0
0
0

0
0
1

0
1
1

0
1
0

1
1
0

1
1
1

1
0
1

1
0
0

 0
0
0

0
0
1

0
1
1

0
1
0

1
1
0

1
1
1

1
0
1

1
0
0

 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

Figure 4. The cofactor relations.

The above decomposition theory can be used to create a robust
decomposition algorithm. Given a set of candidate functions, we
try selecting subsets, each containing k functions. The functions
are selected in the order of their appearance in the sorted array,
which is sorted using the arrival times of the inputs. The first
subset that satisfies Lemma 3 is returned as the solution. If, for
the given k, we tried all sets of k functions and none of them leads
to the decomposition, we increment k as long as k < n, and apply
the same procedure under the relaxed conditions.
The proposed algorithm is robust in the sense that it can solve
decomposition problems with thousands of candidate functions.
The runtime of the algorithm for a typical 5-variable
decomposition pattern strongly depends on the probability of the
existence of decomposition but is always reasonable and rarely
exceeds 0.1 sec. The trade-off between runtime and quality can be
controlled by a set of parameters.

4. BOUND SET COMPUTATION
A straightforward way of computing all support-reducing bound
sets of size n consists in counting the number of different
cofactors for each bound set of the given size. The bounds sets
with the column multiplicity µ satisfying log2µ < n are, by
definition, support-reducing.

In this section, we describe an efficient bound set computation
using BDDs. Although our method also creates all bound sets, it
does so implicitly using cache to avoid repeated computations.
For this reason, this method has better performance compared to
the explicit enumeration using the straightforward method. The
computation is divided into several steps:
Step 1. In the BDD package, introduce three sets of variables, X,
Y, and Z, each having size m = supp(f). Interleave the variables to
get the variable order:

x1 < y1 < z1 < x2 < y2 < z2 < ... < xm < ym < zm

Step 2. Construct function f using variables X and perform
simultaneous composition of f(X) with functions xi(X,Y,Z) =
ITE(xi, yi, zi), for all 1 ≤ i ≤ m. Given the interleaved variable
order, the resulting function f(X,Y,Z) has three times more internal
nodes than f(X). A schematic representation of the BDDs for f,
before and after composition, is shown in Fig. 5 (left and center).

Figure 5. Transformation for the BDD for f(X) during
computation of all support-reducing bound sets.

Step 3. Compute g(X,Y,Z) = f(X,Y,Z) ∧ Tuplesn,m(X), where
Tuplesn,m(X) is the function, whose on-set minterms depend on X
and contain exactly n positive literals. The BDD representation of
Tuplesn,m(X) can be efficiently derived, as shown in [9].
Step 4. Permute variables in g(X,Y,Z) in such a way that variables
X are above variables Y and variables Y are above variables Z.
One of such variable orders, shown in Fig. 5 (right), is:

x1 < x2 <... < xm < y1 < y2 <... < ym < z1 < z2 <... < zm.

In the resulting BDD gr(X,Y,Z), variables X encode all bound sets
of size n. In each assignment (x0, x1, …, xm) of variables X, 1’s
stand for the bound set variables, while 0’s stand for the free set
variables. In the cofactor gr

(x0, x1, …, xm)(Y, Z), the bound set is
represented by Y and the free set is represented by Z.
Step 5. It is now possible to count the number of different nodes
pointed to below the cut separating variables of Y and Z in each
cofactor gr

(x0, x1, …, xm)(Y, Z). This number is equal to the column
multiplicity µ in the decomposition with the corresponding bound
set. If log2µ < n, the bound set is support-reducing. The
computation for all bound sets is performed in one traversal of the
upper part of the BDD representing gr(X, Y, Z).
Note that Step 4 in the above computation typically leads to a
substantial increase in the size of the BDD for gr(X, Y, Z)
compared to g(X, Y, Z). However, this increase can be controlled
in Step 3, by further restricting the set of considered bound sets.
The overall performance of this computation is reasonable for
typical functions encountered in a netlist. The computation of all
3-, 4-, and 5-variable support-reducing bound sets for a typical
10-variable function takes about 0.05 sec on a 1GHz computer
with 256Mb RAM. Similar computation for a 20-variable

function takes about 0.5 sec. Further increase in the support size
leads to an exponential increase in runtime, unless the number of
computed bound set is further constrained, for example, by only
considering a subset of the support variables. It should be noted
that, in many cases, bound set computation can be made much
faster by first detecting disjoint-support decomposition [2][16].
The above algorithm works for CSFs. When dealing with ISFs,
we derive support-reducing bound sets by first applying the BDD
minimization algorithm restrict [6] to produce a CSF.

5. GATE LIBRARY REPRESENTATION
Constructive decomposition aims at constructing a decomposed
network functionally equivalent to a CSF or ISF, with the
following requirements: (1) the decomposition functions can be
efficiently implemented using the gate library; (2) the delay/area
trade-off of the decomposed network satisfies the constraints.
To facilitate selection of the decomposition functions that satisfies
the given constraints, we introduce the concept of a supergate.
Essentially, a supergate is a single-output network composed of
several logic levels of library gates. The upper bound on the delay
of this network is imposed to limit the total number of supergates
generated, which can be very large even for small gate libraries.
The supergates are computed independently for each support size
of the decomposition functions. The library for a larger support
size includes the supergates with smaller supports because the
decomposition functions can depend on fewer variables than the
bound set size. In our experiments, we pre-compute the library of
supergates by setting a limit on the supergate delay to be several
delays of the inverter. For a typical gate library, the delay of three
or four inverters leads to several thousand four-input supergates,
which almost completely eliminates the possibility of generating
non-decomposable blocks for most benchmark functions.
Some pre-computed supergates may have equivalent functionality
but different delay/area parameters. Such supergates represent
alternative implementation choices. Depending on the situation,
we may use a complex gate, or a functionally equivalent
combination of simpler gates. We remove from the library only
dominated supergates, having area and pin-to-pin delays larger
than or equal to another supergate of the same functionality.
We sort the supergates in each decomposition step, for each
decomposition pattern. For example, if the minimum delay is
sought, the supergates are sorted by increasing delay. Given the
sorted array of supergates, the decomposition algorithm selects
the decomposition functions that optimize the given criteria.
In summary, introducing supergates, as described in this section,
facilitates decomposition by reducing the number of non-
decomposable blocks and enhancing the scope of decomposition
from single gates (one level) to gate clusters (multiple levels).

6. DON’T-CARE COMPUTATION
The traditional technology mapping methods [25] and their
improvements [21][8] work on a NAND or AND/OR graph
derived by the algebraic decomposition of the network. Using the
uniform network representation allows the mapping algorithms to
perform optimization across the boundaries of logic blocks.
A potential weakness of the constructive decomposition, on the
other hand, is that each node is decomposed in isolation from
other nodes. Even if the decomposed functions are cached and
reused, logic sharing is difficult to create because the nodes
considered earlier may produce decomposition functions that are
useless for the decomposition of the nodes encountered later.

f(X,Y,Z) f(X) gr(X,Y,Z)

0 10 1 0 1

x1 x1

x2
y2
z2
x3

y1
z1

y3

x1 x2
x3

z1
z2
z3

y1 y2

x2

x3

X

Y

Z

We compensate for this weakness of constructive decomposition
by computing don’t-cares for each node using its context in the
network. These don’t-cares contain important information about
the reduced controllability and observability of the node, which
allows the decomposition algorithm, in a roundabout way, to
optimize across the boundaries of logic blocks.
The previous work on the use of don’t-cares in the optimization of
Boolean networks [24] considers only the compatible and
satisfiability don’t-cares. Our don’t-care computation method is
similar to [17] in that is computes the complete don’t-cares. The
difference is, we compute don’t-cares in a dynamically adjusted
context of the node rather than in the scope of the total network.
The context of the node is determined “on-the-fly”, when the
don’t-care computation is called. This allows us to integrate this
algorithm into applications performing frequent updated to the
network structure, such as the re-synthesis framework. The re-
convergent paths in the vicinity of the node produce most of the
don’t-cares for a node. Therefore, our algorithm includes as many
re-convergent paths as possible into a sub-network surrounding
the node. This sub-network is used for the computation of the
complete don’t-cares, as shown in [17].
The performance of the don’t-care computation is controlled by
several parameters specifying the size of the sub-network (the
number of logic levels on the fanin/fanout side of the node), the
limit on the BDD size, and the timeout. Moreover, because the
computation is performed in a limited scope around the node, its
runtime is independent of the size of the Boolean network.

7. IMPLEMENTATION ISSUES
The following subsections briefly discuss the implementation of
two main components of our decomposition system. The
decomposition engine (CDM) performs decomposition of a CSF
or an ISF. It returns the implementation of the function in the
form of a network of supergates. The re-synthesis framework
(RESYN) takes a mapped netlist, determines the gate clusters to
be re-synthesized, collapses these gates into a single node, calls
one or more decomposition engines to decompose this node,
selects the best decomposition, and replaces the collapsed node by
the decomposed network if the decomposition is acceptable. The
re-synthesis framework performs this operation until there is no
improvement, or until a fixed number of iterations is reached.

7.1 Decomposition Engine
We developed two versions of the decomposition engine using
alternative data structures, BDDs and bit-strings, to represent the
candidate functions and search for the decomposition. Extensive
testing has shown that bit-strings lead to significantly faster
processing compared to the BDDs used in [10][12][13].
In our approach, BDDs are used only to derive the compatibility
relation R(X1, X1’). This computation involves 2*|X1| + |X2|
variables, where X1 is the bound set and X2 is the free set. This
number is much less than k*2|X1| + |X2|, which is the number of
variables in the representation of the constraint function to encode
all decomposition choices in [10] (page 63, formula 4.16).
Instead of implicitly encoding decomposition choices in a BDD,
we use the explicit search through the space of decompositions as
described in Section 3.3. This search can be efficiently
implemented using bit-strings, because for a bound set of five
variables or less, the truth table of each decomposition function
can be stored in one machine word. The compatibility relation can
also be represented using bit-strings, along with its cofactors. The
solutions of graph coloring for small relations are pre-computed

and stored in a hash table, so that checking the existence of
decomposition with a particular set of decomposition functions is
reduced to several table lookups. This is the reason why our
implementation is fast enough to test many support-reducing
bound sets, each of them with a large set of candidate functions.

7.2 Re-Synthesis Framework
The re-synthesis framework takes the following parameters:
arrival times of the primary inputs, required times of the primary
outputs, a window parameter, a depth parameter, and an iteration
limit. Each iteration of re-synthesis proceeds as follows:
1. Compute the slack of each node using timing analysis by
propagating the arrival and required times. Timing-critical outputs
and internal nodes are identified. A node n is considered timing-
critical if the value slack(n)+window is negative.
2. For each timing-critical node, count the number of critical
paths passing through this node. The node g with the largest path
count is chosen. The given number (depth) of levels of the
transitive fanins of g are collapsed into g, resulting in a larger
node gc.
3. Don’t-cares are computed for node gc taking into account its
context in the network. Next, gc is decomposed with the don’t-
cares, using the arrival time information of its fanins. If the arrival
time of the output of the resulting logic cone satisfies the required
time, and the resulting area does not increase above a certain
limit, the collapsed node gc is replaced by the resulting logic cone.
If the decomposition is not accepted, the original node g is
marked to prevent future attempts to re-synthesize it.
4. The re-synthesis continues until either all the timing-critical
nodes are tried, or until the iteration limit is reached.
Additionally, the re-synthesis framework features a high-effort re-
synthesis mode. In this mode, a number of fanin-logic collapsings
are tried for each timing-critical node. In Step 2, different subsets
of nodes in the transitive fanin of g are chosen for collapsing and
decomposition in such a way that the most timing critical path is
always included in the subset. Thus, for each timing-critical node,
different logic cones are tried, one at a time, until an acceptable
re-synthesis is found, or until all logic collapsing’s have been
tried, or until the number of collapsing attempts reaches a limit.

8. EXPERIMENTAL RESULTS
The algorithm is implemented in SIS environment [26] using
BDD package CUDD [27].
In the first experiment, shown in Table 1, we applied the new
decomposition algorithm (column “CDM”) to a set of MCNC
benchmarks using mcnc.genlib library and compared it with the
results obtained by SIS and M31 [10]. The results for SIS are
obtained by running script.rugged and speed_up, followed by the
delay-oriented mapping. The results for M31 are taken from [10].
The performance of our tool was geared towards reducing delay,
which could lead to an increase in area. The resulting networks
are verified using the verification command in SIS.
In the second experiment, shown in Table 2, we applied the re-
synthesis framework to a set of mega-block designs extracted
from a high performance microprocessor at the authors’ affiliation
and compared the results with those obtained using the existing
project synthesis flow. The delay and area numbers reported are
after cell sizing using a proprietary cell sizer. It can be seen that
performance improvements are achieved with reasonable area
increase. This preliminary result demonstrated that it is feasible to
use computationally expensive Boolean techniques to improve the
synthesis quality of practical-sized designs through re-synthesis.

Table 1. Synthesis results for MCNC benchmarks.

Area Delay Benchmark
SIS M31 CDM SIS M31 CDM

rd53 50 56 40 17.9 14.3 7.7
rd73 98 75 59 35.6 17.4 9.6
rd84 205 107 199 26.4 22.6 11.2

9sym 310 84 36 35.8 18.9 10.2
parity 75 75 33 12.4 15.5 9.9

my_adder 285 667 495 57.3 26.0 18.2
comp 168 240 198 24.0 25.3 17.8
z4ml 50 59 41 25.3 14.5 7.9
t481 53 56 21 11.8 11.9 7.5
pm1 87 72 87 11.1 10.8 4.9

c8 175 187 130 27.5 18.5 7.8
x4 552 624 578 38.3 22.2 24.4

count 216 272 273 58.6 23.3 15.3
pcler8 142 235 164 23.5 16.9 9.9

la1 146 166 205 22.5 15.6 8.6
sct 113 129 144 57.9 16.2 7.1

apex7 332 358 556 33.6 29.2 15.3
i2 296 295 363 21.7 17.9 18.8

Total 3353 3757 3622 541.2 337 212.1
Ratio, % 100 112 108 100 62.3 39.2

Table 2. Re-synthesis results for proprietary benchmarks.

Area Delay Benchmark
existing RESYN existing RESYN

Design1 199570 210960 537 495
Design2 846067 847006 249 211
Design3 804329 824450 207 188
Design4 260704 270430 262 220
Design5 715683 717824 186 148

Total 2856353 2870670 1441 1262
Ratio, % 100 101.6 100 87.6

9. CONCLUSIONS AND FUTURE WORK
We presented several new algorithms for constructive
decomposition, concerning: (1) bound set selection, (2) using
don’t-cares in decomposition, (3) pre-computing a set of
supergates for the given gate library. Using these algorithms led
to the following advantages: (a) 4-to-3 and 5-to-4 decompositions
take reasonable time, (b) non-decomposable blocks are practically
never created, (c) a better delay/area trade-offs are often found.
The context of decomposition has been enhanced by (i) the fast
extraction of local don’t-cares for the node from the node’s
immediate context in the network, and (ii) developing a flexible
re-synthesis framework, which uses several decomposition
engines and selects the best result. The experimental results show
that the new algorithm performs well on the benchmark functions.
Future work include extending re-synthesis framework to
incorporate more accurate delay modeling and physical design
aspects as well as integrating constructive decomposition with bi-
decomposition [5][19][27][28] techniques.

10. ACKNOWLEDGEMENTS
The first author has been supported by a research grant from Intel
Corporation. The authors thank Robert Brayton, Tsutomu Sasao,
and Marek Perkowski for illuminating discussions. Special thanks
are due to the pioneers of constructive decomposition, Victor
Kravets and Karem Sakallah, for providing us with M31 software
and for sharing helpful insights into their work.

11. REFERENCES
[1] R. L. Ashenhurst, “The decomposition of switching functions,”

Computation Lab, Harvard University, 1959, Vol. 29, pp. 74-116.
[2] V. Bertacco and M. Damiani, "Disjunctive decomposition of logic

functions," Proc. ICCAD ‘97, pp. 78-82.
[3] R. K. Brayton and C. McMullen, “The decomposition and

factorization of Boolean expressions,” Proc. ISCAS ‘82, pp. 29-54.
[4] R. E. Bryant, "Graph-based algorithms for Boolean function

manipulation," IEEE Trans. Comp., Vol. C-35, No. 8 (August,
1986), pp. 677-691.

[5] J. Cortadella, “Bi-decomposition and tree-height reduction for timing
optimization”. Proc. IWLS ’02, pp. 233-238.

[6] O. Coudert, C. Berthet, and J. C. Madre, “Verification of
synchronous sequential machines based on symbolic execution,” in
Automatic Verification Methods for Finite State Systems. Springer-
Verlag, 1989, pp. 365-373.

[7] A. Curtis. New Approach to the Design of Switching Circuits. Van
Nostrand, Princeton, NJ, 1962.

[8] D.-J. Jongeneel, R. Otten, Y. Watanabe, R. K. Brayton, “Area and
search space control for technology mapping,” Proc. DAC ’00, pp.
86-91.

[9] T. Kam, T. Villa, R. K. Brayton, A. Sangiovanni-Vincentelli.
Synthesis of Finite State Machines: Functional Optimization. Kluwer
Academic Publishers, 1997.

[10] V. N. Kravets. Constructive Multi-Level Synthesis by Way of
Functional Properties. Ph. D. Thesis, University of Michigan, 2001.

[11] V. N. Kravets. Private communication.
[12] V. N. Kravets and K. A. Sakallah, “Constructive library-aware

synthesis using symmetries,” Proc. DATE ’00, pp. 208-216.
[13] V. N. Kravets and K A. Sakallah, “Re-synthesis of multi-level

circuits under tight constraints using symbolic optimization,” Proc.
ICCAD ‘02, pp. 687-693.

[14] Y. T. Lai, M. Pedram, S. B. K. Vrudhula, “BDD-based
decomposition of logic functions with applications to FPGA
synthesis,” Proc. DAC ‘93, pp. 642-647.

[15] Ch. Legl, B. Wurth, and K. Eckl, “Computing support-minimal
subfunctions during functional decomposition,” IEEE Trans. VLSI,
6(3), pp. 354-363, Sept. 1998.

[16] Y. Matsunaga, "An exact and efficient algorithm for disjunctive
decomposition," Proc. SASIMI '98, pp. 44-50.

[17] A. Mishchenko and R. K. Brayton, “Simplification of non-
deterministic multi-valued networks”, Proc.ICCAD‘02, pp.557-562.

[18] A. Mishchenko and T. Sasao, "Encoding of Boolean functions and
its application to LUT cascade synthesis,” Proc. IWLS ‘02, pp. 115-
120.

[19] A. Mishchenko, B. Steinbach, and M. Perkowski, "An algorithm for
bi-decomposition of logic functions," Proc. DAC '01, pp. 103-108.

[20] R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Optimum functional decomposition using encoding,” Proc. DAC
‘94, pp. 408-414.

[21] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic
decomposition during technology mapping,” IEEE Trans. CAD,
16(8), 1997, pp. 813-833.

[22] M. Perkowski, R. Malvi, S. Grygiel, M. Burns, and A. Mishchenko,
“Graph coloring algorithms for fast evaluation of Curtis
decompositions,” Proc. DAC 99, pp. 125-130.

[23] T. Sasao, “FPGA design by generalized functional decomposition”.
In T. Sasao (ed.), Logic Synthesis and Optimization, Kluwer
Academic Publishers, 1993.

[24] H. Savoj, R. K. Brayton, and H. Touati, “Extracting local don’t cares
for network optimization,” Proc. ICCAD ‘91, pp. 514-517.

[25] E. Sentovich, et al. “SIS: A system for sequential circuit synthesis”,
Tech. Rep. UCB/ERI, M92/41, ERL, Dept. of EECS, Univ. of
California, Berkeley, 1992.

[26] F. Somenzi. BDD package “CUDD v. 2.3.0.”
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

[27] T. Stanion and C. Sechen, "Quasi-algebraic decomposition of
switching functions," Proc. AR VLSI '95, pp. 358-367.

[28] C. Yang and M. Ciesielski, “BDS: A BDD-based logic optimization
system”. IEEE Trans. CAD, Vol. 21 (7), July 2002, pp. 866-876.

