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Abstract 

This paper presents new methods for restructuring logic networks 

based on fast Boolean techniques. The basis for these are 1) a cut 

based view of a logic network, 2) exploiting the uniqueness and 

speed of disjoint-support decompositions, 3) a new heuristic for 

speeding these up, 4) extending these to general decompositions, 

and 5) limiting local transformations to functions with 16 or less 

inputs so that fast truth table manipulations can be used in all 

operations. The use of Boolean methods lessens the structural 

bias of algebraic methods, while still allowing for high speed and 

multiple iterations. Experimental results on area reduction of K-

LUT networks show an average additional reduction of 5.4% in 

LUT count, while preserving delay, compared to heavily 

optimized versions of the same networks. 

1 Introduction 

The traditional way of decomposing and factoring logic 

networks uses algebraic methods. These represent the logic of 

each node as a sum of products (SOP) and apply algebraic 

methods to find factors or divisors. Kerneling or two-cube 

division is used to derive candidate divisors. These methods can 

be extremely fast if implemented properly, but they are biased 

because they rely on an SOP representation of the logic functions, 

from which only algebraic divisors are extracted. A long-time goal 

has been to develop similarly fast methods for finding and using 

good Boolean divisors, independent of any SOP form.  

We present a new type of Boolean method, which uses as its 

underlying computation, a fast method for disjoint support 

decomposition (DSD). This approach was influenced by the 

efficient BDD-based computation of complete maximum DSDs 

proposed in [6], but it has been made faster by using truth-tables 

and sacrificing completeness for speed. However, this heuristic, in 

practice, almost always finds the maximum DSD. This fast DSD 

computation is used as the basis for simple non-disjoint 

decompositions for finding Boolean divisors. 

Methods based on these ideas can be seen as a type of Boolean 

rewriting of logic networks, analogous to rewriting AIG networks 

[27]. AIG rewriting has been very successful, partly because it can 

be applied many times due to its extreme speed. Because of this, 

many iterations can be used, spreading the area of change and 

compensating for the locality of AIG-based transforms. Similar 

effects can be observed with the new methods. 

The paper is organized as follows. Section 2 provides the 

necessary background on DSD as well as a cut-based view of 

logic networks. Section 3 shows new results on extending DSD 

methods to non-disjoint decompositions. A particularly interesting 

set of applications is on K-input lookup-table (K-LUT) networks. 

Section 4 looks at reducing the number of LUTs on top of a high-

quality LUT-mapping and high-effort resynthesis. Implementation 

details are discussed, followed by experimental results. Section 5 

concludes the paper and discusses future applications and 

improvements.  

2 Background 

A Boolean network is a directed acyclic graph (DAG) with 

nodes corresponding to logic gates and directed edges 

corresponding to wires connecting the gates. We use the terms 

Boolean networks, logic networks and circuits interchangeably. 

We use the term K-LUT network to refer to Boolean networks 

whose nodes are K-input lookup tables (K-LUTs). 

A node n has zero or more fanins, i.e. nodes that are driving n, 

and zero or more fanouts, i.e. nodes driven by n. The primary 

inputs (PIs) are nodes of the network without fanins. The primary 

outputs (POs) are a specified subset of nodes of the network.  

An And-Inverter Graph (AIG) is a Boolean network whose 

nodes are two-input ANDs. Inverters are indicated by a special 

attribute on the edges of the network. 

A cut of node n is a set of nodes, called leaves, such that 

1. Each path from any PI to n passes through at least one cut 

node. 

2. For each cut node, there is at least one path from a PI to n 

passing through the cut node and not passing through any 

other cut nodes. 

Node n is called the root of C. A trivial cut of node n is the cut 

{n} composed of the node itself. A non-trivial cut is said to cover 

all the nodes found on the paths from the leaves to the root, 

including the root but excluding the leaves. A trivial cut does not 

cover any nodes. A cut is K-feasible if the number of its leaves 

does not exceed K. A cut 
1C is said to be dominated if there is 

another cut 
2C  of the same node such that

2 1C C⊂ .  

A cover of an AIG is a subset R of its nodes such that for 

every n R∈ , there exists exactly one non-trivial cut ( )C n  

associated with it such that: 

1. If n is a PO, then n R∈ . 

2. If n R∈ , then for all ( )p C n∈ either p R∈  or p is a PI. 

3. If n is not a PO, then n R∈  implies there exists p R∈  such 

that ( )n C p∈ .  

The last requirement ensures that all nodes in R are “used”. 

In this paper, we sometimes use an AIG accompanied with a 

cover to represent a logic network. This is motivated by our 

previous work on AIG rewriting and technology mapping. The 

advantage of viewing a logic network as a cover of an AIG is that 

different covers of the AIG (and thus different network structures) 

can be easily enumerated using fast cut enumeration. 

The logic function of each node n R∈  of a cover is simply the 

Boolean function of n computed in terms of ( )C n , the cut leaves. 



This can be extracted easily as a truth table using the underlying 

AIG between the node and its cut. The truth table computation 

can be performed efficiently as part of the cut computation. For 

practical reasons, the cuts in this paper are limited to at most 16 

inputs1. 

A completely-specified Boolean function F essentially depends 

on a variable if there exists an input combination such that the 

value of the function changes when the variable is toggled. The 

support of F is the set of all variables on which function F 

essentially depends. The supports of two functions are disjoint if 

they do not contain common variables. A set of functions is 

disjoint if their supports are pair-wise disjoint. 

A decomposition of a completely specified Boolean function is 

a Boolean network with one PO that is functionally equivalent to 

the function. A disjoint-support decomposition (DSD - also called 

simple disjunctive decomposition) is a decomposition in which 

the set of nodes of the resulting network are disjoint. Because of 

the disjoint supports of the nodes, the DSD is always a tree (each 

node has one fanout). The set of leaf variables of any sub-tree of 

the DSD is called a bound set, the remaining variables a free set. 

A single disjoint decomposition of a function consists of one 

block with a bound set as inputs and a single output feeding into 

another block with the remaining (free) variables as additional 

inputs. A maximal DSD is one in which each node cannot be 

further decomposed by DSD.  

It is known that internal nodes of a maximal DSD network can 

be of three types: AND, XOR, and PRIME. The AND and XOR 

nodes may have any number of inputs, while PRIME nodes have 

support size at least three and only a trivial DSD. For example, a 

2:1 MUX is a prime node with three inputs. A DSD is called 

simple if it does not contain prime nodes. 

Theorem 2.1 [4]. For a completely specified Boolean function, 

there is a unique maximal DSD (up to the complementation of 

inputs and outputs of the nodes). 

There are several algorithms for computing the maximal DSD 

[6][39][23]. Our implementation follows [6] but uses truth tables 

instead of BDDs to manipulate Boolean functions.  

3 General non-disjoint decompositions 

A general decomposition has the form   

1
ˆ( ) ( ( , ), , ( , ), , )

k
F x H g a b g a b b c= ⋯ . 

If |b|=0 it is called disjoint or disjunctive and if k = 1 it is called 

simple. 

Definition: A function F has an (a,b)-decomposition if it can be 

written as ( ) ( ( , ), , )F x H D a b b c=  where ( , , )a b c  is a partition of 

the variables x and D is a single output function.  

An (a,b)-decomposition is a simple, but, in general, a non-disjoint 

decomposition. For general decompositions, there is an elegant 

theory [36] on their existence. Kravets and Sakallah [19] applied 

this to constructive decomposition using support-reducing 

decompositions along with a pre-computed library of gates. In our 

case, if |a| > 1, an (a,b)-decomposition is support reducing. 

Although less general, the advantage of (a,b)-decompositions is 

that their existence can be tested much more efficiently (as far as 

we know) by using cofactoring and the fast DSD algorithms of 

this paper. Recent work use ROBDDs to test the existence of 

decompositions, with the variables (a,b) ordered at the top of the 

BDD (e.g. see [38] for an easy-to-read description).  

                                                           
1 The fast methods of this paper are based on bit-level truth table 

manipulations and 16 is a reasonable limit for achieving speed for this. 

The variables a are said to be in a separate block and form the 

bound set, the variables c are the free set, and the variables b are 

the shared variables. If |b| = 0, the decomposition is a DSD. The 

function D(a,b) is called a divisor of F.  

A particular cofactor of F with respect to b may be independent 

of the variables a; however, we still consider that a is in a separate 

block in this cofactor. We call such cofactors, bound set 

independent cofactors, or bsi-cofactors; otherwise bsd-cofactors. 

Example: If F ab bc= + , then 
b

F c=  is independent of a i.e. it 

is a bsi-cofactor.  

A BDD version of the following theorem can be found in [38] 

as Proposition 2 with t = 1. 

Theorem 3.1: A function F(a,b,c) has an (a,b)-decomposition if 

and only if each of the | |2 b  cofactors of F with respect b has a 

DSD structure in which the variables a are in a separate block. 

Proof. If: Suppose F has an (a,b)-decomposition; then 

( ) ( ( , ), , )F x H D a b b c= . Consider a cofactor ( )jb
F x with respect 

to a minterm of bj, say 
1 2 3 4

jb b b b b=  for k=4. This sets b = 1,0,0,1, 

giving rise to the function, 

( , ) ( ( ,1,0,0,1),1,0,0,1, ) ( ( ), )j j jb b b
F a c H D a c H D a c= ≡ . 

Thus this cofactor has a DSD with a separated.  

Only if. Suppose all the b cofactors have DSDs with variables a 

in separate blocks. Thus ( , ) ( ( ), )j j jb
F a c H D a c=  for some 

functions Hj and Dj. We can take ( ) 0jD a =  if jb  is bsi2. The 

Shannon expansion gives 

| |
2 1

0

( , , ) ( ( ), )

b

j

j j

j

F a b c b H D a c
−

=

= ∑ . Define 

| |
2 1

0

( , ) ( )

b

j

j

j

D a b b D a
−

=

= ∑  and note that 

| |
2 1

0

( ( ), ) ( ( ), )

b

j j m

j j j m

m

b H D a c b H b D a c
−

=

= ∑ . Thus, 

| | | |
2 1 2 1

0 0

( , , ) ( ( ), ) ( ( , ), , )

b b

j m

j m

j m

F a b c b H b D a c H D a b b c
− −

= =

= =∑ ∑ .    QED. 

In many applications, such as discussed in Section 4, the shared 

variables b are selected first, and the bound set variables a are 

found using Theorem 3.1 to search for a largest set a that can be 

used. 

 

                                                           
2 The choice of taking ( ) 0jD a =  is arbitrary. We could have equally well 

taken ( )jD a to be any function of a 
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Figure 3.1. Mapping 4:1 MUX into two 4-LUTs. 



Consider the problem of decomposing a 4:1 MUX into two 

4-LUTs. A structural mapper starting from the logic structure 

shown in Figure 3.1 on the left would require three 4-LUTs, 

each containing a 2:1 MUX. To achieve a more compact 

mapping, we find a decomposition with respect to 

( , ) (( , , ), )a b e f y x= . The free variables are ( , )c g h= . This 

leads to cofactors 
xF ye yf= +  and 

xF yg yh= + . Both 
xF  

and 
xF  have (e,f,y) as a separate block3. Thus, 

0D ye yf= +   

and 
1D y= , while 

0 0H D=  and 
1 1 1

H D g D h= + . Thus we 

can write 
0 1 0 1 1

( ) ( )F xH xH x D x D g D h= + = + + . Replacing 

0D  and 
1D  with D = ( ) ( )x ye yf x y+ + , we have 

( )F xD x Dg Dh= + + . This leads to the decomposition shown 

on the right of Figure 3.1. As a result, a 4:1 MUX is realized 

by two 4-LUTs. 

We will use the notation f g≅  to denote that f equals g up to 

complementation. The following theorem characterizes the set of 

all (a,b)-divisors of a function F. 

Theorem 3.2. Let F have an (a,b)-decomposition with an 

associated divisor 

| |
2 1

0

( , ) ( )

b

j

j

j

D a b b D a
−

=

= ∑ . Then 

| |
2 1

0

( , ) ( )

b

j

j

j

D a b b D a
−

=

= ∑
⌢ ⌢

 is also an (a,b)-divisor if and only if 

( ) ( ),j jD a D a j J≅ ∀ ∈
⌢

, where J is the set of indices of the bsd-

cofactors of F. 

Proof. If: Suppose ( ) ( ),j jD a D a j J≅ ∀ ∈
⌢

. If  

| |
2 1

0

( , ) ( )

b

j

j

j

D a b b D a
−

=

= ∑
⌢ ⌢

 where ( ),jD a j J∉
⌢

 is an arbitrary 

function, we have to show that ( , )D a b
⌢

 is a divisor of ( , , )F a b c . 

We are given that 

| |
2 1

0

( , ) ( )

b

j

j

j

D a b b D a
−

=

= ∑  is a divisor of ( , , )F a b c . 

Thus, there exists H, such that ( ( , ), , )F H D a b b c=  = 
| |

2 1

0

( ( ), )

b

j

j

jb
j

b H D a c
−

=

=∑
1 2

( ( ), ) ( ( ), )j j

j j

j jb b
j J J j J

b H D a c b H D a c
∈ ∪ ∉

+∑ ∑  

where 1 { | ( ) ( )}j jJ j D a D a= =
⌢

 and 2 { | ( ) ( )}j jJ j D a D a= =
⌢

. 

Clearly 
1 2J J J= ∪ . Now define the operator   

( , ) ( , )k kH c H c′ =i i , i.e. it takes a function and inverts its first 

argument. Thus, 1( ( ), ) ( ( ), ),j j j jH D a c H D a c j J= ∈
⌢

 and 

2( ( ), ) ( ( ), ),j j j jH D a c H D a c j J′= ∈
⌢

. Finally, 

( ( ), ) ( ( ), ),j j j jH D a c H D a c j J= ∉
⌢

, since jH  does not depend 

on the first variable. Thus 

1 2

( ( ), ) ( ( ), ) ( ( ), ).j j j

j j j

j j jb b b
j J j J j J

F b H D a c b H D a c b H D a c
∈ ∈ ∉

′= + +∑ ∑ ∑
⌢ ⌢ ⌢

Thus ( ( , ), , )F H D a b b c=
⌢ ⌢

, where  

                                                           
3 In 

xF , the DSD is a trivial one in which each input is a separate block. 

Since the variables (a,b) do not appear in 
xF , they can be considered as 

part of the separate block containing y.  Similarly, in 
xF  the entire 

cofactor is a separate block.  

1 2

( , ) ( , ) ( , )j j j

j j j

b b b
j J j J j J

H b H c b H c b H c
∈ ∈ ∉

′≡ + +∑ ∑ ∑
⌢

i i i . 

Therefore ( , )D a b
⌢

 is an (a,b)-divisor of F.  

Only if: Assume that ( ( , ), , )F H D a b b c=  and 

( ( , ), , )F H D a b b c=
⌢ ⌢

. Cofactoring each with respect to ,jb j J∈ , 

yields ( ( ), )j j jb b b
F H D a c=  and ( ( ), )j j jb b b

F H D a c=
⌢ ⌢

. Thus 

( , )jb
F a c  has a DSD with respect to a, and by Theorem 2.1, 

( ) ( )j jb b
D a D a≅

⌢
 for ,jb j J∈ .  QED 

Example: ( )F ab bc ab ab b bc= + = + +  The bsd-cofactors are 

{b} and the bsi-cofactors are ( }b . F has (a,b)-divisors 1D ab=  

and
2

 ( )D ab ab= + , which agree in the bsd-cofactor b, i.e. 

1 2( ) ( )
b b

D a D a= . In addition, 
3 1

D D a b= = +  is a divisor 

because 
3

F D bc= + .  

In contrast to the discussion so far, the next result deals with 

finding common Boolean divisors among a set of functions. 

Definition: A set of functions, 
1{ , , }nF F⋯  is said to be (a,b)-

compatible if each has an (a,b)-divisor, and 
1 nj J J∀ ∈ ∩ ∩⋯ , 

1 2( ) ( )j jb b
D a D a≅ , where 

iJ  is the set of bsd b-cofactors of 
iF  

Note that compatibility is not transitive, but if {F1, F2, F3} is 

pair-wise (a,b)-compatible, then the set {F1, F2, F3} is (a,b)-

compatible and by the next theorem, they all share a common 

(a,b)-divisor. 

Theorem 3.34. There exists a common (a,b)-divisor of 

1{ , , }nF F⋯  if and only if the set 
1{ , , }nF F⋯ is pair-wise (a,b)-

compatible.  

Proof. For simplicity, we show the proof for n = 2.  

If: Suppose F1 and F2 are (a,b)-compatible. Then 
1

1 1
( , , ) ( ( , ), , )F a b c H D a b b c=  and 2

2 2
( , , ) ( ( , ), , )F a b c H D a b b c=  

and 1 2( ) ( )j jb b
D a D a≅  for all bsd { jb } for both 

1 2 and F F . Define 

1( ) ( )j jb b
D a D a=ɶ  for such jb . If jb  is bsd for F1 and bsi for F2, let 

1( ) ( )j jb b
D a D a=ɶ . If jb  is bsd for F2 and bsi for F1 let 

2( ) ( )j jb b
D a D a=ɶ . Otherwise, let ( ) 0jb

D a =ɶ . Clearly, by Theorem 

3.2, 

| |
2 1

0

( , ) ( )

b

j

j

b
j

D a b b D a
−

=

= ∑ɶ ɶ  is an (a,b)-divisor of both 
1F  and 

1F .  

Only if: Suppose a common (a,b)-divisor exists, i.e.  

1 1
( , , ) ( ( , ), , )F a b c H D a b b c= ɶ  and 

2 2
( , , ) ( ( , ), , )F a b c H D a b b c= ɶ .  

Then both 
1F  and 

2F  have (a,b)-divisors such that 

1 2( ) ( )j jb b
D a D a≅  for 

1 2j J J∈ ∩ , namely, 1 2D D D= = ɶ . QED 

Thus a common divisor of two functions with shared variable b 

can be found by cofactoring with respect to b, computing the 

maximum DSDs of the cofactors, and looking for variables a for 

which the associated cofactors are compatible. 

                                                           
4 As far as we know, there is no equivalent theorem in the literature. 



4 Rewriting K-LUT networks 

We consider a new method for rewriting K-LUT networks, 

using the ideas of Section 3, and discuss a particular 

implementation with experimental results. 

4.1 Global view  

The objective is to rewrite a local window of a K-LUT mapped 

network. The window consists of a root node, n, and a certain 

number of transitive fanin (TFI) LUTs. The TFI LUTs are 

associated with a cut C. The local network to be rewritten consists 

of the LUT for n plus all LUTs between C and n. Our objective is 

to decompose the associated function of n, ( )nf C , expressed 

using the cut variables, into a smaller number of LUTs. For 

convenience, we denote this local network
nN .  

An important concept is the maximum fanout free cone (MFFC) 

of 
nN . This is defined as the set of LUTs in 

nN , which are only 

used in computing ( )nf C . If node n were removed, then all of the 

nodes in MFFC(n) could be removed also. We want to 

re-decompose 
nN  into fewer K-LUTs taking into account that 

LUTs not in MFFC(n) must remain since they are shared with 

other parts of the network. Since it is unlikely that an 

improvement will be found when a cut has a small MFFC(n), we 

only consider cuts with no more than S shared LUTs. In our 

implementation S is a user-controlled parameter that is set to 3 by 

default. 

Given n and a cut C for n, the problem is to find a 

decomposition of ( )nf C  composed of the minimum number N of 

K (or less) input blocks. For those 
nN  where there is a gain 

(taking into account the duplication of the LUTs not in the 

MFFC), we replace 
nN  with its new decomposition. 

The efficacy of this method depends on the following: 

• the order in which the nodes n are visited, 

• the cut selected for rewriting the function at n. 

• not using decompositions that worsen delay, 

• creating a more balanced decomposition, 

• pre-processing to detect easy decompositions5. 

We describe the most important aspect of this problem, which is 

finding a maximum support-reducing decomposition of a function 

F. Other details of the algorithm can be found in [32] and in the 

source code of ABC [5] implementing command lutpack.  

The proposed algorithm works by cofactoring the non-

decomposable blocks of the DSD of F and using Theorem 3.1 to 

find a Boolean divisor and bound variables a. The approach is 

heuristic and does not guarantee to find a decomposition with the 

minimum number (N) of K-input blocks. The heuristic is to 

extract a maximum support-reducing block at each step based on 

the idea that support reduction leads to a good decomposition. In 

fact, any optimum implementation of a network in K-LUTs must 

be support reducing if any fanin of a block is support reducing for 

that block. However, in general, it may not be maximum support-

reducing, but this is the heuristic we use. 

4.2 Finding the maximum support-reducing 

decomposition 

The approach is to search for common bound-sets of the 

cofactor DSDs where cofactoring is tried with respect to subsets 

                                                           
5 e.g. a MUX decomposition of a function with at most 2K-1 inputs with 

cofactors of input size K-2 and K. 

of variables in the support of F. If all subsets are attempted, the 

proposed greedy approach reduces the associated block to a 

minimum number of inputs. However, in our current 

implementation, we heuristically trade-off the quality of the 

decomposition found for runtime spent in exploring cofactoring 

sets. A limit is imposed on (a) the number of cofactoring 

variables, and (b) the number of different variable combinations 

tried. Our experiments show that the proposed heuristic approach 

usually finds a solution with a minimum number of blocks.  

The pseudo-code in Figure 4.1 shows how the DSD structures 

of the cofactors can be exploited to compute a bound set that leads 

to the maximum support reduction during constructive 

decomposition.  

The procedure findSupportReducingBoundSet takes a 

completely-specified function F and the limit K on the support 

size of the decomposed block. It returns a good bound-set, that is, 

a bound-set leading to the decomposition with a maximal support-

reduction. If a support-reducing decomposition does not exist, the 

procedure returns NONE.  

 
varset findSupportReducingBoundSet( function F, int K ) 

{ 

// derive DSD for the function 

DSDtree Tree = performDSD( F ); 

// find K-feasible bound-sets of the tree 

varset BSets[0] = findKFeasibleBoundSets( F, Tree, K ); 

// check if a good bound-set is already found 

if ( BSets[0] contains bound-set B of size K ) 

      return B;   

if ( BSets[0] contains bound-set B of size K -1 ) 

      return B;   

// cofactor F w.r.t. sets of variables and look for the largest  

// support-reducing bound-set shared by all the cofactors 

for ( int V = 1; V  ≤ K – 2; V++ ) { 

// find the set including V cofactoring variables 

varset cofvars = findCofactoringVarsForDSD( F, V ); 

// derive DSD trees for the cofactors and compute 

// common K-feasible bound-sets for all the trees 

set of varsets BSets[V] = {∅}; 

    for each cofactor Cof of function F w.r.t. cofvars { 

        DSDtree Tree = performDSD( Cof ); 

        set of varsets BSetsC =  

                             computeBoundSets(Cof, Tree, K-V); 

        BSets[V] = mergeSets( BSets[V], BSetsC, K-V ); 

    } 

// check if at least one good bound-set is already found 

if ( BSets[V] contains bound-set B of size K-V ) 

          return B;   

     // before trying to use more shared variables, try to find  

     // bound-sets of the same size with fewer shared variable  

    for ( int M = 0; M ≤ V; M++ ) 

     if ( BSets[M] contains bound-set B of size K-V-1 ) 

               return B;   

} 

return NONE; 

} 

Figure 4.1. Computing a good support-reducing bound-set. 
 

First, the procedure derives the DSD tree of the function itself. 

The tree is used to compute the set of all feasible bound-sets 

whose size does not exceed K. Bound-sets of larger size are not 

interesting because they cannot be implemented using K-LUTs. 

For each of the bound-sets found, decomposition with a single 

output and no shared variables is possible. If a bound-set of size K 

exists, it is returned. If such bound set does not exist (for example, 

when the function has no DSD), the second best would be to have 

a bound-set of size K-1. Thus, the computation enters a loop, in 



which cofactoring of the function with respect to several variables 

is tried, and common support-reducing bound-sets of the cofactors 

are explored. 

When the loop is entered, cofactoring with respect to one 

variable is tried first. If the two cofactors of the function have 

DSDs with a common bound-set of size K-1, it is returned. In this 

case, although the decomposed block has K variables, the support 

of F is only reduced by K-2 because the cofactoring variable is 

shared and the output of the block is a new input. If there is no 

common bound-set of size K-1, the next best outcome is one of 

the following: 

1. There is a bound-set of size K-2 of the original function.  

2. There is a common bound-set of size K-2 of the two 

cofactors with respect to the cofactoring variable.  

3. There is a common bound-set of size K-2 of the four 

cofactors with respect to two variables.  

The loop over M at the bottom of Figure 4.1 tests for outcomes (1) 

and (2). If these are impossible, V is incremented and the next 

iteration of the loop is performed, which is the test for the 

outcome (3). 

In the next iteration over V, cofactoring with respect to two 

variables is attempted and the four resulting cofactors are 

searched for common bound-sets. The process is continued until a 

bound-set is found, or the cofactoring with respect to K-2 

variables is tried without success. When V exceeds K-2 (say, V is 

K-1), the decomposition is not support-reducing, because the 

composition function depends on shared K-1 variables plus the 

output of the decomposed block. In other words, the 

decomposition takes away K variables from the composition 

function and returns K variables. In this case, NONE is returned, 

indicating that there is no support-reducing decomposition. 

Example. Consider the decomposition of function F of the 4:1 

MUX shown in Figure 3.1 (left). Assume K = 4. This function 

does not have a non-trivial DSD, that is, its DSD is composed 

of one prime block. The set of K-feasible bound-sets is trivial in 

this case: { {∅}, {a}, {b}, {c}, {d}, {x}, {y} }. Clearly, none of 

these bound-sets has size K or K-1. The above procedure enters 

the loop with V = 1. Suppose x is chosen as the cofactoring 

variable. The cofactors are 
xF ya yb= +  and 

xF yc yd= + . 

The K-1-feasible bound-sets are {{∅}, {a}, {b}, {y}, {a, b, y}}, 

and {{∅}, {c}, {d}, {y}, {c, d, y}}. A common bound-set {a, b, 

y} of size K-1 exists. The loop terminates and this bound-set is 

returned, resulting in the decomposition in Figure 3.1 (right). 

4.3 Experimental results 

The proposed algorithm is implemented in ABC [5] as 

command lutpack. Experiments targeting 6-input LUTs were run 

on an Intel Xeon 2-CPU 4-core computer with 8Gb of RAM. The 

resulting networks were all verified using the combinational 

equivalence checker in ABC (command cec) [28]. 

The following ABC commands are included in the scripts used 

to collect the experimental results, which targeted area 

minimization while preserving delay: 

• resyn is a logic synthesis script that performs 5 iterations of 

AIG rewriting [27] trying to improve area without increasing 

depth 

• resyn2 is a script that performs 10 iterations of a more 

diverse set of AIG rewritings than those of resyn 

• choice is a script that allows for accumulation of structural 

choices; choice runs resyn followed by resyn2 and collects 

three snapshots of the network: the original, the final, and the 

one after resyn, re3sulting in a circuit with structural choices. 

• if is an efficient FPGA mapper using priority cuts [31], fine-

tuned for area recovery (after a minimum delay mapping) and 

using subject graphs with structural choices6 

• imfs is an area-oriented resynthesis engine for FPGAs [30] 

based on changing a logic function at a node by extracting 

don’t cares from a window and using Boolean resubstitution 

to rewrite the node function using possibly new inputs 

• lutpack is the new resynthesis described in this section. 

The benchmarks used in this experiment are 20 large public 

benchmarks from the MCNC and ISCAS’89 suites used in 

previous work on FPGA mapping [22][11][29]7.  

Table 1 shows four experimental runs. We use the exponent, n, 

notation to denote iteration of the expression in parenthesis n 

times, e.g. (com1; com2)3 means iterate (com1; com2) three times. 

• “Baseline” = (resyn; resyn2; if). It corresponds to a typical 

run of technology-independent synthesis followed by default 

mapping  

• “Choices” = resyn; resyn2; if; (choice; if)4.  

• “Imfs” = resyn; resyn2; if; (choice; if; imfs)4.  

• “Lutpack” = resyn; resyn2; if; (choice; if; imfs)4; (lutpack)2. 

The table lists the number of primary inputs (“PIs”), primary 

outputs (“POs”), registers (“Reg”), area calculated as the number 

of 6-LUTs (“LUT”) and delay calculated as the depth of the 

6-LUT network (“Level”). The ratios in the tables are the ratios of 

geometric averages of values reported in the columns.  

The Baseline and Choices columns have been included to show 

that repeated re-mapping has a dramatic impact over strong 

conventional mapping (Baseline). However, the main purpose of 

the experiments is to demonstrate the additional impact that the 

proposed command lutpack has on top of this very strong flow. 

Thus we only focus on the last line of the table, which compares 

lutpack against the strongest result obtained using other methods 

(imfs). Given the power of imfs, it is somewhat unexpected that 

lutpack can achieve an additional 5.4% reduction in area8. 

This additional area reduction speaks for the orthogonal nature 

of lutpack over imfs. While imfs tries to reduce area by analyzing 

alternative resubstitutions at each node, it cannot efficiently 

compact large fanout-free cones that may be present in the 

mapping. The latter is done by lutpack, which iteratively collapses 

fanout-free cones with up to 16 inputs and re-derives new 

implementations using the minimum number of LUTs. 

The runtime of one run of lutpack did not exceed 20 sec for any 

of the benchmarks reported in Table 1. The total runtime of the 

experiments was dominated by imfs. (It has been tuned only 

recently for higher speed). Also, it should be pointed out that 

Table 1 illustrates only two passes of lutpack as a final processing, 

but several iterations where lutpack is in the iteration loop (e.g. 

(choice; if; imfs; lutpack)4  often show similar additional gains.  

5 Conclusions and future work 

The paper presented a fast algorithm for decomposition of logic 

functions. We focused on an application to area-oriented 

resynthesis of K-LUT structures. The new algorithm, lutpack, is 

based on cofactoring and disjoint-support decomposition and is 

                                                           
6 The mapper was run with the following settings: at most 12 6-input 

priority cuts are stored at each node; five iterations of area recovery are 

performed, three with area flow and two with exact local area. 
7 In the above set, circuit s298 was replaced by i10 because the former 

contains only 24 6-LUTs 
8 Some readers may suspect that the result after imfs can be improved on 

easily. We can only invite them to take any of the benchmarks (which are 

publicly available) and come up with a better result than that recorded in 

the imfs column. 



much faster than previous solutions that rely on BDD-based 

decomposition and Boolean satisfiability. It achieved an 

additional 5.4% reduction in area, when applied to a network 

obtained by iterated high-quality technology mapping and another 

type of powerful resynthesis using don’t cares and windowing. 

Future work in this area will include: 

• Improving the DSD-based analysis, which occasionally fails 

to find a feasible match and is the most time-consuming part.  

• Exploring other data structures for cofactoring and DSD 

decomposition, to allow processing of functions with more 

than 16 inputs. This will improve the quality of resynthesis. 

Some possible future applications include;  

1. computing all decompositions of a function and using them 

to find common Boolean divisors among all functions of a 

logic network, 

2. speeding up a network by finding fanin cones on critical 

paths, and collapsing and re-factoring them, 

3. merging fanin blocks of two functions, where the blocks 

share common supports. 

4. extracting a common Boolean divisor from a pair of 

functions (using Theorem 3.3), 

5. mapping into fixed macro-cells, where the divisors must have 

a fixed but given structure as exemplified by Altera Stratix II  

[3] or Actel ProASIC3 devices [2]. 
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Table 1. Evaluation of resynthesis applied after technology mapping for FPGAs (K = 6). 

Baseline Choices Imfs Imfs + Lutpack 
Designs PI PO Reg 

LUT Level LUT Level LUT Level LUT Level 

alu4 14 8 0 821 6 785 5 558 5 453 5 

apex2 39 3 0 992 6 866 6 806 6 787 6 

apex4 9 19 0 838 5 853 5 800 5 732 5 

bigkey 263 197 224 575 3 575 3 575 3 575 3 

clma 383 82 33 3323 10 2715 9 1277 8 1222 8 

des 256 245 0 794 5 512 5 483 4 480 4 

diffeq 64 39 377 659 7 632 7 636 7 634 7 

dsip 229 197 224 687 3 685 2 685 2 685 2 

ex1010 10 10 0 2847 6 2967 6 1282 5 1059 5 

ex5p 8 63 0 599 5 669 4 118 3 108 3 

elliptic 131 114 1122 1773 10 1824 9 1820 9 1819 9 

frisc 20 116 886 1748 13 1671 12 1692 12 1683 12 

i10 257 224 0 589 9 560 8 548 7 547 7 

pdc 16 40 0 2327 7 2500 6 194 5 171 5 

misex3 14 14 0 785 5 664 5 517 5 446 5 

s38417 28 106 1636 2684 6 2674 6 2621 6 2592 6 

s38584 12 278 1452 2697 7 2647 6 2620 6 2601 6 

seq 41 35 0 931 5 756 5 682 5 645 5 

spla 16 46 0 1913 6 1828 6 289 4 263 4 

tseng 52 122 385 647 7 649 6 645 6 645 6 

geomean       1168 6.16 1103 5.66 716 5.24 677 5.24 

Ratio1       1.000 1.000 0.945 0.919 0.613 0.852 0.580 0.852 

Ratio2           1.000 1.000 0.649 0.926 0.614 0.926 

Ratio3               1.000 1.000 0.946 1.000 

 


