
Boolean Factoring and Decomposition of Logic Networks

Alan Mishchenko Robert Brayton Satrajit Chatterjee

 Department of EECS Intel Corporation, Strategic CAD Labs

 University of California, Berkeley Hillsboro, OR

 {alanmi, brayton}@eecs.berkeley.edu satrajit.chatterjee@intel.com

Abstract

This paper presents new methods for restructuring logic networks

based on fast Boolean techniques. The basis for these are 1) a cut

based view of a logic network, 2) exploiting the uniqueness and

speed of disjoint-support decompositions, 3) a new heuristic for

speeding these up, 4) extending these to general decompositions,

and 5) limiting local transformations to functions with 16 or less

inputs so that fast truth table manipulations can be used in all

operations. The use of Boolean methods lessens the structural

bias of algebraic methods, while still allowing for high speed and

multiple iterations. Experimental results on area reduction of K-

LUT networks show an average additional reduction of 5.4% in

LUT count, while preserving delay, compared to heavily

optimized versions of the same networks.

1 Introduction

The traditional way of decomposing and factoring logic

networks uses algebraic methods. These represent the logic of

each node as a sum of products (SOP) and apply algebraic

methods to find factors or divisors. Kerneling or two-cube

division is used to derive candidate divisors. These methods can

be extremely fast if implemented properly, but they are biased

because they rely on an SOP representation of the logic functions,

from which only algebraic divisors are extracted. A long-time goal

has been to develop similarly fast methods for finding and using

good Boolean divisors, independent of any SOP form.

We present a new type of Boolean method, which uses as its

underlying computation, a fast method for disjoint support

decomposition (DSD). This approach was influenced by the

efficient BDD-based computation of complete maximum DSDs

proposed in [6], but it has been made faster by using truth-tables

and sacrificing completeness for speed. However, this heuristic, in

practice, almost always finds the maximum DSD. This fast DSD

computation is used as the basis for simple non-disjoint

decompositions for finding Boolean divisors.

Methods based on these ideas can be seen as a type of Boolean

rewriting of logic networks, analogous to rewriting AIG networks

[27]. AIG rewriting has been very successful, partly because it can

be applied many times due to its extreme speed. Because of this,

many iterations can be used, spreading the area of change and

compensating for the locality of AIG-based transforms. Similar

effects can be observed with the new methods.

The paper is organized as follows. Section 2 provides the

necessary background on DSD as well as a cut-based view of

logic networks. Section 3 shows new results on extending DSD

methods to non-disjoint decompositions. A particularly interesting

set of applications is on K-input lookup-table (K-LUT) networks.

Section 4 looks at reducing the number of LUTs on top of a high-

quality LUT-mapping and high-effort resynthesis. Implementation

details are discussed, followed by experimental results. Section 5

concludes the paper and discusses future applications and

improvements.

2 Background

A Boolean network is a directed acyclic graph (DAG) with

nodes corresponding to logic gates and directed edges

corresponding to wires connecting the gates. We use the terms

Boolean networks, logic networks and circuits interchangeably.

We use the term K-LUT network to refer to Boolean networks

whose nodes are K-input lookup tables (K-LUTs).

A node n has zero or more fanins, i.e. nodes that are driving n,

and zero or more fanouts, i.e. nodes driven by n. The primary

inputs (PIs) are nodes of the network without fanins. The primary

outputs (POs) are a specified subset of nodes of the network.

An And-Inverter Graph (AIG) is a Boolean network whose

nodes are two-input ANDs. Inverters are indicated by a special

attribute on the edges of the network.

A cut of node n is a set of nodes, called leaves, such that

1. Each path from any PI to n passes through at least one cut

node.

2. For each cut node, there is at least one path from a PI to n

passing through the cut node and not passing through any

other cut nodes.

Node n is called the root of C. A trivial cut of node n is the cut

{n} composed of the node itself. A non-trivial cut is said to cover

all the nodes found on the paths from the leaves to the root,

including the root but excluding the leaves. A trivial cut does not

cover any nodes. A cut is K-feasible if the number of its leaves

does not exceed K. A cut
1C is said to be dominated if there is

another cut
2C of the same node such that

2 1C C⊂ .

A cover of an AIG is a subset R of its nodes such that for

every n R∈ , there exists exactly one non-trivial cut ()C n

associated with it such that:

1. If n is a PO, then n R∈ .

2. If n R∈ , then for all ()p C n∈ either p R∈ or p is a PI.

3. If n is not a PO, then n R∈ implies there exists p R∈ such

that ()n C p∈ .

The last requirement ensures that all nodes in R are “used”.

In this paper, we sometimes use an AIG accompanied with a

cover to represent a logic network. This is motivated by our

previous work on AIG rewriting and technology mapping. The

advantage of viewing a logic network as a cover of an AIG is that

different covers of the AIG (and thus different network structures)

can be easily enumerated using fast cut enumeration.

The logic function of each node n R∈ of a cover is simply the

Boolean function of n computed in terms of ()C n , the cut leaves.

This can be extracted easily as a truth table using the underlying

AIG between the node and its cut. The truth table computation

can be performed efficiently as part of the cut computation. For

practical reasons, the cuts in this paper are limited to at most 16

inputs1.

A completely-specified Boolean function F essentially depends

on a variable if there exists an input combination such that the

value of the function changes when the variable is toggled. The

support of F is the set of all variables on which function F

essentially depends. The supports of two functions are disjoint if

they do not contain common variables. A set of functions is

disjoint if their supports are pair-wise disjoint.

A decomposition of a completely specified Boolean function is

a Boolean network with one PO that is functionally equivalent to

the function. A disjoint-support decomposition (DSD - also called

simple disjunctive decomposition) is a decomposition in which

the set of nodes of the resulting network are disjoint. Because of

the disjoint supports of the nodes, the DSD is always a tree (each

node has one fanout). The set of leaf variables of any sub-tree of

the DSD is called a bound set, the remaining variables a free set.

A single disjoint decomposition of a function consists of one

block with a bound set as inputs and a single output feeding into

another block with the remaining (free) variables as additional

inputs. A maximal DSD is one in which each node cannot be

further decomposed by DSD.

It is known that internal nodes of a maximal DSD network can

be of three types: AND, XOR, and PRIME. The AND and XOR

nodes may have any number of inputs, while PRIME nodes have

support size at least three and only a trivial DSD. For example, a

2:1 MUX is a prime node with three inputs. A DSD is called

simple if it does not contain prime nodes.

Theorem 2.1 [4]. For a completely specified Boolean function,

there is a unique maximal DSD (up to the complementation of

inputs and outputs of the nodes).

There are several algorithms for computing the maximal DSD

[6][39][23]. Our implementation follows [6] but uses truth tables

instead of BDDs to manipulate Boolean functions.

3 General non-disjoint decompositions

A general decomposition has the form

1
ˆ() ((,), , (,), ,)

k
F x H g a b g a b b c= ⋯ .

If |b|=0 it is called disjoint or disjunctive and if k = 1 it is called

simple.

Definition: A function F has an (a,b)-decomposition if it can be

written as () ((,), ,)F x H D a b b c= where (, ,)a b c is a partition of

the variables x and D is a single output function.

An (a,b)-decomposition is a simple, but, in general, a non-disjoint

decomposition. For general decompositions, there is an elegant

theory [36] on their existence. Kravets and Sakallah [19] applied

this to constructive decomposition using support-reducing

decompositions along with a pre-computed library of gates. In our

case, if |a| > 1, an (a,b)-decomposition is support reducing.

Although less general, the advantage of (a,b)-decompositions is

that their existence can be tested much more efficiently (as far as

we know) by using cofactoring and the fast DSD algorithms of

this paper. Recent work use ROBDDs to test the existence of

decompositions, with the variables (a,b) ordered at the top of the

BDD (e.g. see [38] for an easy-to-read description).

1 The fast methods of this paper are based on bit-level truth table

manipulations and 16 is a reasonable limit for achieving speed for this.

The variables a are said to be in a separate block and form the

bound set, the variables c are the free set, and the variables b are

the shared variables. If |b| = 0, the decomposition is a DSD. The

function D(a,b) is called a divisor of F.

A particular cofactor of F with respect to b may be independent

of the variables a; however, we still consider that a is in a separate

block in this cofactor. We call such cofactors, bound set

independent cofactors, or bsi-cofactors; otherwise bsd-cofactors.

Example: If F ab bc= + , then
b

F c= is independent of a i.e. it

is a bsi-cofactor.

A BDD version of the following theorem can be found in [38]

as Proposition 2 with t = 1.

Theorem 3.1: A function F(a,b,c) has an (a,b)-decomposition if

and only if each of the | |2 b cofactors of F with respect b has a

DSD structure in which the variables a are in a separate block.

Proof. If: Suppose F has an (a,b)-decomposition; then

() ((,), ,)F x H D a b b c= . Consider a cofactor ()jb
F x with respect

to a minterm of bj, say
1 2 3 4

jb b b b b= for k=4. This sets b = 1,0,0,1,

giving rise to the function,

(,) ((,1,0,0,1),1,0,0,1,) ((),)j j jb b b
F a c H D a c H D a c= ≡ .

Thus this cofactor has a DSD with a separated.

Only if. Suppose all the b cofactors have DSDs with variables a

in separate blocks. Thus (,) ((),)j j jb
F a c H D a c= for some

functions Hj and Dj. We can take () 0jD a = if jb is bsi2. The

Shannon expansion gives

| |
2 1

0

(, ,) ((),)

b

j

j j

j

F a b c b H D a c
−

=

= ∑ . Define

| |
2 1

0

(,) ()

b

j

j

j

D a b b D a
−

=

= ∑ and note that

| |
2 1

0

((),) ((),)

b

j j m

j j j m

m

b H D a c b H b D a c
−

=

= ∑ . Thus,

| | | |
2 1 2 1

0 0

(, ,) ((),) ((,), ,)

b b

j m

j m

j m

F a b c b H b D a c H D a b b c
− −

= =

= =∑ ∑ . QED.

In many applications, such as discussed in Section 4, the shared

variables b are selected first, and the bound set variables a are

found using Theorem 3.1 to search for a largest set a that can be

used.

2 The choice of taking () 0jD a = is arbitrary. We could have equally well

taken ()jD a to be any function of a

x

g h x

y

e f

y

4-LUT

4-LUT

1

1

1

1 0

0

0

0 D

F Example

:

x

y

e f g h

0 1

1 1 0 0

F

Figure 3.1. Mapping 4:1 MUX into two 4-LUTs.

Consider the problem of decomposing a 4:1 MUX into two

4-LUTs. A structural mapper starting from the logic structure

shown in Figure 3.1 on the left would require three 4-LUTs,

each containing a 2:1 MUX. To achieve a more compact

mapping, we find a decomposition with respect to

(,) ((, ,),)a b e f y x= . The free variables are (,)c g h= . This

leads to cofactors
xF ye yf= + and

xF yg yh= + . Both
xF

and
xF have (e,f,y) as a separate block3. Thus,

0D ye yf= +

and
1D y= , while

0 0H D= and
1 1 1

H D g D h= + . Thus we

can write
0 1 0 1 1

() ()F xH xH x D x D g D h= + = + + . Replacing

0D and
1D with D = () ()x ye yf x y+ + , we have

()F xD x Dg Dh= + + . This leads to the decomposition shown

on the right of Figure 3.1. As a result, a 4:1 MUX is realized

by two 4-LUTs.

We will use the notation f g≅ to denote that f equals g up to

complementation. The following theorem characterizes the set of

all (a,b)-divisors of a function F.

Theorem 3.2. Let F have an (a,b)-decomposition with an

associated divisor

| |
2 1

0

(,) ()

b

j

j

j

D a b b D a
−

=

= ∑ . Then

| |
2 1

0

(,) ()

b

j

j

j

D a b b D a
−

=

= ∑
⌢ ⌢

 is also an (a,b)-divisor if and only if

() (),j jD a D a j J≅ ∀ ∈
⌢

, where J is the set of indices of the bsd-

cofactors of F.

Proof. If: Suppose () (),j jD a D a j J≅ ∀ ∈
⌢

. If

| |
2 1

0

(,) ()

b

j

j

j

D a b b D a
−

=

= ∑
⌢ ⌢

 where (),jD a j J∉
⌢

 is an arbitrary

function, we have to show that (,)D a b
⌢

 is a divisor of (, ,)F a b c .

We are given that

| |
2 1

0

(,) ()

b

j

j

j

D a b b D a
−

=

= ∑ is a divisor of (, ,)F a b c .

Thus, there exists H, such that ((,), ,)F H D a b b c= =
| |

2 1

0

((),)

b

j

j

jb
j

b H D a c
−

=

=∑
1 2

((),) ((),)j j

j j

j jb b
j J J j J

b H D a c b H D a c
∈ ∪ ∉

+∑ ∑

where 1 { | () ()}j jJ j D a D a= =
⌢

 and 2 { | () ()}j jJ j D a D a= =
⌢

.

Clearly
1 2J J J= ∪ . Now define the operator

(,) (,)k kH c H c′ =i i , i.e. it takes a function and inverts its first

argument. Thus, 1((),) ((),),j j j jH D a c H D a c j J= ∈
⌢

 and

2((),) ((),),j j j jH D a c H D a c j J′= ∈
⌢

. Finally,

((),) ((),),j j j jH D a c H D a c j J= ∉
⌢

, since jH does not depend

on the first variable. Thus

1 2

((),) ((),) ((),).j j j

j j j

j j jb b b
j J j J j J

F b H D a c b H D a c b H D a c
∈ ∈ ∉

′= + +∑ ∑ ∑
⌢ ⌢ ⌢

Thus ((,), ,)F H D a b b c=
⌢ ⌢

, where

3 In

xF , the DSD is a trivial one in which each input is a separate block.

Since the variables (a,b) do not appear in
xF , they can be considered as

part of the separate block containing y. Similarly, in
xF the entire

cofactor is a separate block.

1 2

(,) (,) (,)j j j

j j j

b b b
j J j J j J

H b H c b H c b H c
∈ ∈ ∉

′≡ + +∑ ∑ ∑
⌢

i i i .

Therefore (,)D a b
⌢

 is an (a,b)-divisor of F.

Only if: Assume that ((,), ,)F H D a b b c= and

((,), ,)F H D a b b c=
⌢ ⌢

. Cofactoring each with respect to ,jb j J∈ ,

yields ((),)j j jb b b
F H D a c= and ((),)j j jb b b

F H D a c=
⌢ ⌢

. Thus

(,)jb
F a c has a DSD with respect to a, and by Theorem 2.1,

() ()j jb b
D a D a≅

⌢
 for ,jb j J∈ . QED

Example: ()F ab bc ab ab b bc= + = + + The bsd-cofactors are

{b} and the bsi-cofactors are (}b . F has (a,b)-divisors 1D ab=

and
2

 ()D ab ab= + , which agree in the bsd-cofactor b, i.e.

1 2() ()
b b

D a D a= . In addition,
3 1

D D a b= = + is a divisor

because
3

F D bc= + .

In contrast to the discussion so far, the next result deals with

finding common Boolean divisors among a set of functions.

Definition: A set of functions,
1{ , , }nF F⋯ is said to be (a,b)-

compatible if each has an (a,b)-divisor, and
1 nj J J∀ ∈ ∩ ∩⋯ ,

1 2() ()j jb b
D a D a≅ , where

iJ is the set of bsd b-cofactors of
iF

Note that compatibility is not transitive, but if {F1, F2, F3} is

pair-wise (a,b)-compatible, then the set {F1, F2, F3} is (a,b)-

compatible and by the next theorem, they all share a common

(a,b)-divisor.

Theorem 3.34. There exists a common (a,b)-divisor of

1{ , , }nF F⋯ if and only if the set
1{ , , }nF F⋯ is pair-wise (a,b)-

compatible.

Proof. For simplicity, we show the proof for n = 2.

If: Suppose F1 and F2 are (a,b)-compatible. Then
1

1 1
(, ,) ((,), ,)F a b c H D a b b c= and 2

2 2
(, ,) ((,), ,)F a b c H D a b b c=

and 1 2() ()j jb b
D a D a≅ for all bsd { jb } for both

1 2 and F F . Define

1() ()j jb b
D a D a=ɶ for such jb . If jb is bsd for F1 and bsi for F2, let

1() ()j jb b
D a D a=ɶ . If jb is bsd for F2 and bsi for F1 let

2() ()j jb b
D a D a=ɶ . Otherwise, let () 0jb

D a =ɶ . Clearly, by Theorem

3.2,

| |
2 1

0

(,) ()

b

j

j

b
j

D a b b D a
−

=

= ∑ɶ ɶ is an (a,b)-divisor of both
1F and

1F .

Only if: Suppose a common (a,b)-divisor exists, i.e.

1 1
(, ,) ((,), ,)F a b c H D a b b c= ɶ and

2 2
(, ,) ((,), ,)F a b c H D a b b c= ɶ .

Then both
1F and

2F have (a,b)-divisors such that

1 2() ()j jb b
D a D a≅ for

1 2j J J∈ ∩ , namely, 1 2D D D= = ɶ . QED

Thus a common divisor of two functions with shared variable b

can be found by cofactoring with respect to b, computing the

maximum DSDs of the cofactors, and looking for variables a for

which the associated cofactors are compatible.

4 As far as we know, there is no equivalent theorem in the literature.

4 Rewriting K-LUT networks

We consider a new method for rewriting K-LUT networks,

using the ideas of Section 3, and discuss a particular

implementation with experimental results.

4.1 Global view

The objective is to rewrite a local window of a K-LUT mapped

network. The window consists of a root node, n, and a certain

number of transitive fanin (TFI) LUTs. The TFI LUTs are

associated with a cut C. The local network to be rewritten consists

of the LUT for n plus all LUTs between C and n. Our objective is

to decompose the associated function of n, ()nf C , expressed

using the cut variables, into a smaller number of LUTs. For

convenience, we denote this local network
nN .

An important concept is the maximum fanout free cone (MFFC)

of
nN . This is defined as the set of LUTs in

nN , which are only

used in computing ()nf C . If node n were removed, then all of the

nodes in MFFC(n) could be removed also. We want to

re-decompose
nN into fewer K-LUTs taking into account that

LUTs not in MFFC(n) must remain since they are shared with

other parts of the network. Since it is unlikely that an

improvement will be found when a cut has a small MFFC(n), we

only consider cuts with no more than S shared LUTs. In our

implementation S is a user-controlled parameter that is set to 3 by

default.

Given n and a cut C for n, the problem is to find a

decomposition of ()nf C composed of the minimum number N of

K (or less) input blocks. For those
nN where there is a gain

(taking into account the duplication of the LUTs not in the

MFFC), we replace
nN with its new decomposition.

The efficacy of this method depends on the following:

• the order in which the nodes n are visited,

• the cut selected for rewriting the function at n.

• not using decompositions that worsen delay,

• creating a more balanced decomposition,

• pre-processing to detect easy decompositions5.

We describe the most important aspect of this problem, which is

finding a maximum support-reducing decomposition of a function

F. Other details of the algorithm can be found in [32] and in the

source code of ABC [5] implementing command lutpack.

The proposed algorithm works by cofactoring the non-

decomposable blocks of the DSD of F and using Theorem 3.1 to

find a Boolean divisor and bound variables a. The approach is

heuristic and does not guarantee to find a decomposition with the

minimum number (N) of K-input blocks. The heuristic is to

extract a maximum support-reducing block at each step based on

the idea that support reduction leads to a good decomposition. In

fact, any optimum implementation of a network in K-LUTs must

be support reducing if any fanin of a block is support reducing for

that block. However, in general, it may not be maximum support-

reducing, but this is the heuristic we use.

4.2 Finding the maximum support-reducing

decomposition

The approach is to search for common bound-sets of the

cofactor DSDs where cofactoring is tried with respect to subsets

5 e.g. a MUX decomposition of a function with at most 2K-1 inputs with

cofactors of input size K-2 and K.

of variables in the support of F. If all subsets are attempted, the

proposed greedy approach reduces the associated block to a

minimum number of inputs. However, in our current

implementation, we heuristically trade-off the quality of the

decomposition found for runtime spent in exploring cofactoring

sets. A limit is imposed on (a) the number of cofactoring

variables, and (b) the number of different variable combinations

tried. Our experiments show that the proposed heuristic approach

usually finds a solution with a minimum number of blocks.

The pseudo-code in Figure 4.1 shows how the DSD structures

of the cofactors can be exploited to compute a bound set that leads

to the maximum support reduction during constructive

decomposition.

The procedure findSupportReducingBoundSet takes a

completely-specified function F and the limit K on the support

size of the decomposed block. It returns a good bound-set, that is,

a bound-set leading to the decomposition with a maximal support-

reduction. If a support-reducing decomposition does not exist, the

procedure returns NONE.

varset findSupportReducingBoundSet(function F, int K)

{

// derive DSD for the function

DSDtree Tree = performDSD(F);

// find K-feasible bound-sets of the tree

varset BSets[0] = findKFeasibleBoundSets(F, Tree, K);

// check if a good bound-set is already found

if (BSets[0] contains bound-set B of size K)

 return B;

if (BSets[0] contains bound-set B of size K -1)

 return B;

// cofactor F w.r.t. sets of variables and look for the largest

// support-reducing bound-set shared by all the cofactors

for (int V = 1; V ≤ K – 2; V++) {

// find the set including V cofactoring variables

varset cofvars = findCofactoringVarsForDSD(F, V);

// derive DSD trees for the cofactors and compute

// common K-feasible bound-sets for all the trees

set of varsets BSets[V] = {∅};

 for each cofactor Cof of function F w.r.t. cofvars {

 DSDtree Tree = performDSD(Cof);

 set of varsets BSetsC =

 computeBoundSets(Cof, Tree, K-V);

 BSets[V] = mergeSets(BSets[V], BSetsC, K-V);

 }

// check if at least one good bound-set is already found

if (BSets[V] contains bound-set B of size K-V)

 return B;

 // before trying to use more shared variables, try to find

 // bound-sets of the same size with fewer shared variable

 for (int M = 0; M ≤ V; M++)

 if (BSets[M] contains bound-set B of size K-V-1)

 return B;

}

return NONE;

}

Figure 4.1. Computing a good support-reducing bound-set.

First, the procedure derives the DSD tree of the function itself.

The tree is used to compute the set of all feasible bound-sets

whose size does not exceed K. Bound-sets of larger size are not

interesting because they cannot be implemented using K-LUTs.

For each of the bound-sets found, decomposition with a single

output and no shared variables is possible. If a bound-set of size K

exists, it is returned. If such bound set does not exist (for example,

when the function has no DSD), the second best would be to have

a bound-set of size K-1. Thus, the computation enters a loop, in

which cofactoring of the function with respect to several variables

is tried, and common support-reducing bound-sets of the cofactors

are explored.

When the loop is entered, cofactoring with respect to one

variable is tried first. If the two cofactors of the function have

DSDs with a common bound-set of size K-1, it is returned. In this

case, although the decomposed block has K variables, the support

of F is only reduced by K-2 because the cofactoring variable is

shared and the output of the block is a new input. If there is no

common bound-set of size K-1, the next best outcome is one of

the following:

1. There is a bound-set of size K-2 of the original function.

2. There is a common bound-set of size K-2 of the two

cofactors with respect to the cofactoring variable.

3. There is a common bound-set of size K-2 of the four

cofactors with respect to two variables.

The loop over M at the bottom of Figure 4.1 tests for outcomes (1)

and (2). If these are impossible, V is incremented and the next

iteration of the loop is performed, which is the test for the

outcome (3).

In the next iteration over V, cofactoring with respect to two

variables is attempted and the four resulting cofactors are

searched for common bound-sets. The process is continued until a

bound-set is found, or the cofactoring with respect to K-2

variables is tried without success. When V exceeds K-2 (say, V is

K-1), the decomposition is not support-reducing, because the

composition function depends on shared K-1 variables plus the

output of the decomposed block. In other words, the

decomposition takes away K variables from the composition

function and returns K variables. In this case, NONE is returned,

indicating that there is no support-reducing decomposition.

Example. Consider the decomposition of function F of the 4:1

MUX shown in Figure 3.1 (left). Assume K = 4. This function

does not have a non-trivial DSD, that is, its DSD is composed

of one prime block. The set of K-feasible bound-sets is trivial in

this case: { {∅}, {a}, {b}, {c}, {d}, {x}, {y} }. Clearly, none of

these bound-sets has size K or K-1. The above procedure enters

the loop with V = 1. Suppose x is chosen as the cofactoring

variable. The cofactors are
xF ya yb= + and

xF yc yd= + .

The K-1-feasible bound-sets are {{∅}, {a}, {b}, {y}, {a, b, y}},

and {{∅}, {c}, {d}, {y}, {c, d, y}}. A common bound-set {a, b,

y} of size K-1 exists. The loop terminates and this bound-set is

returned, resulting in the decomposition in Figure 3.1 (right).

4.3 Experimental results

The proposed algorithm is implemented in ABC [5] as

command lutpack. Experiments targeting 6-input LUTs were run

on an Intel Xeon 2-CPU 4-core computer with 8Gb of RAM. The

resulting networks were all verified using the combinational

equivalence checker in ABC (command cec) [28].

The following ABC commands are included in the scripts used

to collect the experimental results, which targeted area

minimization while preserving delay:

• resyn is a logic synthesis script that performs 5 iterations of

AIG rewriting [27] trying to improve area without increasing

depth

• resyn2 is a script that performs 10 iterations of a more

diverse set of AIG rewritings than those of resyn

• choice is a script that allows for accumulation of structural

choices; choice runs resyn followed by resyn2 and collects

three snapshots of the network: the original, the final, and the

one after resyn, re3sulting in a circuit with structural choices.

• if is an efficient FPGA mapper using priority cuts [31], fine-

tuned for area recovery (after a minimum delay mapping) and

using subject graphs with structural choices6

• imfs is an area-oriented resynthesis engine for FPGAs [30]

based on changing a logic function at a node by extracting

don’t cares from a window and using Boolean resubstitution

to rewrite the node function using possibly new inputs

• lutpack is the new resynthesis described in this section.

The benchmarks used in this experiment are 20 large public

benchmarks from the MCNC and ISCAS’89 suites used in

previous work on FPGA mapping [22][11][29]7.

Table 1 shows four experimental runs. We use the exponent, n,

notation to denote iteration of the expression in parenthesis n

times, e.g. (com1; com2)3 means iterate (com1; com2) three times.

• “Baseline” = (resyn; resyn2; if). It corresponds to a typical

run of technology-independent synthesis followed by default

mapping

• “Choices” = resyn; resyn2; if; (choice; if)4.

• “Imfs” = resyn; resyn2; if; (choice; if; imfs)4.

• “Lutpack” = resyn; resyn2; if; (choice; if; imfs)4; (lutpack)2.

The table lists the number of primary inputs (“PIs”), primary

outputs (“POs”), registers (“Reg”), area calculated as the number

of 6-LUTs (“LUT”) and delay calculated as the depth of the

6-LUT network (“Level”). The ratios in the tables are the ratios of

geometric averages of values reported in the columns.

The Baseline and Choices columns have been included to show

that repeated re-mapping has a dramatic impact over strong

conventional mapping (Baseline). However, the main purpose of

the experiments is to demonstrate the additional impact that the

proposed command lutpack has on top of this very strong flow.

Thus we only focus on the last line of the table, which compares

lutpack against the strongest result obtained using other methods

(imfs). Given the power of imfs, it is somewhat unexpected that

lutpack can achieve an additional 5.4% reduction in area8.

This additional area reduction speaks for the orthogonal nature

of lutpack over imfs. While imfs tries to reduce area by analyzing

alternative resubstitutions at each node, it cannot efficiently

compact large fanout-free cones that may be present in the

mapping. The latter is done by lutpack, which iteratively collapses

fanout-free cones with up to 16 inputs and re-derives new

implementations using the minimum number of LUTs.

The runtime of one run of lutpack did not exceed 20 sec for any

of the benchmarks reported in Table 1. The total runtime of the

experiments was dominated by imfs. (It has been tuned only

recently for higher speed). Also, it should be pointed out that

Table 1 illustrates only two passes of lutpack as a final processing,

but several iterations where lutpack is in the iteration loop (e.g.

(choice; if; imfs; lutpack)4 often show similar additional gains.

5 Conclusions and future work

The paper presented a fast algorithm for decomposition of logic

functions. We focused on an application to area-oriented

resynthesis of K-LUT structures. The new algorithm, lutpack, is

based on cofactoring and disjoint-support decomposition and is

6 The mapper was run with the following settings: at most 12 6-input

priority cuts are stored at each node; five iterations of area recovery are

performed, three with area flow and two with exact local area.
7 In the above set, circuit s298 was replaced by i10 because the former

contains only 24 6-LUTs
8 Some readers may suspect that the result after imfs can be improved on

easily. We can only invite them to take any of the benchmarks (which are

publicly available) and come up with a better result than that recorded in

the imfs column.

much faster than previous solutions that rely on BDD-based

decomposition and Boolean satisfiability. It achieved an

additional 5.4% reduction in area, when applied to a network

obtained by iterated high-quality technology mapping and another

type of powerful resynthesis using don’t cares and windowing.

Future work in this area will include:

• Improving the DSD-based analysis, which occasionally fails

to find a feasible match and is the most time-consuming part.

• Exploring other data structures for cofactoring and DSD

decomposition, to allow processing of functions with more

than 16 inputs. This will improve the quality of resynthesis.

Some possible future applications include;

1. computing all decompositions of a function and using them

to find common Boolean divisors among all functions of a

logic network,

2. speeding up a network by finding fanin cones on critical

paths, and collapsing and re-factoring them,

3. merging fanin blocks of two functions, where the blocks

share common supports.

4. extracting a common Boolean divisor from a pair of

functions (using Theorem 3.3),

5. mapping into fixed macro-cells, where the divisors must have

a fixed but given structure as exemplified by Altera Stratix II

[3] or Actel ProASIC3 devices [2].

Acknowledgements

This work was supported in part by SRC contracts 1361.001

and 1444.001, NSF contract CCF-0702668, and the California

MICRO Program with industrial sponsors Actel, Altera, Calypto,

IBM, Intel, Intrinsity, Magma, Synopsys, Synplicity, Tabula, and

Xilinx. The authors are indebted to Stephen Jang of Xilinx for his

masterful experimental evaluation of the proposed algorithms. We

thank Slawomir Pilarski and Victor Kravets for careful readings

and useful comments, and to an anonymous reviewer for pointing

out critical errors in the original manuscript. This work was done

while the third author was at Berkeley.

References
[1] A. Abdollahi and M. Pedram, "A new canonical form for fast

Boolean matching in logic synthesis and verification", Proc. DAC

‘05, pp. 379-384.

[2] Actel Corp., “ProASIC3 flash family FPGAs datasheet,”

http://www.actel.com/documents/PA3_DS.pdf

[3] Altera Corp., “Stratix II device family data sheet”, 2005,

http://www.altera.com/literature/hb/stx/stratix_section_1_vol_1.pdf

[4] R. L. Ashenhurst, “The decomposition of switching functions”,

Proc. Intl Symposium on the Theory of Switching, Part I (Annals of

the Computation Laboratory of Harvard University, Vol. XXIX),

Harvard University Press, Cambridge, 1959, pp. 75-116.

[5] Berkeley Logic Synthesis and Verification Group, ABC: A System

for Sequential Synthesis and Verification, Release 70911.

http://www.eecs.berkeley.edu/~alanmi/abc/

[6] V. Bertacco and M. Damiani. "The disjunctive decomposition of

logic functions". Proc. ICCAD '97, pp. 78-82.

[7] R. Brayton and C. McMullen, “The decomposition and factorization

of Boolean expressions,” Proc. ISCAS ‘82, pp. 29-54.

[8] D. Chai and A. Kuehlmann, “Building a better Boolean matcher and

symmetry detector,” Proc. DATE ‘06, pp. 1079-1084.

[9] S. Chatterjee, A. Mishchenko, and R. Brayton, "Factor cuts", Proc.

ICCAD '06, pp. 143-150. http://www.eecs.berkeley.edu/~alanmi/

publications/2006/iccad06_cut.pdf

[10] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,

“Reducing structural bias in technology mapping”, Proc. ICCAD

'05, pp. 519-526. http://www.eecs.berkeley.edu/~alanmi/

publications/2005/iccad05_map.pdf

[11] D. Chen and J. Cong. “DAOmap: A depth-optimal area optimization

mapping algorithm for FPGA designs,” Proc. ICCAD ’04, 752-757.

[12] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a

general and efficient FPGA mapping solution,” Proc. FPGA’99, pp.

29-36.

[13] A. Curtis. New approach to the design of switching circuits. Van

Nostrand, Princeton, NJ, 1962.

[14] D. Debnath and T. Sasao, “Efficient computation of canonical form

for Boolean matching in large libraries,” Proc. ASP-DAC ‘04, pp.

591-596.

[15] A. Farrahi and M. Sarrafzadeh, “Complexity of lookup-table

minimization problem for FPGA technology mapping,” IEEE

TCAD, Vol. 13(11), Nov. 1994, pp. 1319-1332.

[16] C. Files and M. Perkowski, “New multi-valued functional

decomposition algorithms based on MDDs”. IEEE TCAD, Vol.

19(9) , Sept. 2000, pp. 1081-1086.

[17] Y. Hu, V. Shih, R. Majumdar, and L. He, “Exploiting symmetry in

SAT-based Boolean matching for heterogeneous FPGA technology

mapping”, Proc. ICCAD ’07.

[18] V. N. Kravets. Constructive Multi-Level Synthesis by Way of

Functional Properties. Ph. D. Thesis. University of Michigan, 2001.

[19] V. N. Kravets and K. A. Sakallah, ”Constructive library-aware

synthesis using symmetries”, Proc. of DATE, pp. 208-213, March

2000.

[20] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic

decomposition during technology mapping,” IEEE TCAD, Vol.

16(8), 1997, pp. 813-833.

[21] A. Ling, D. Singh, and S. Brown, “FPGA technology mapping: A

study of optimality”, Proc. DAC ’05, pp. 427-432.

[22] V. Manohara-rajah, S. D. Brown, and Z. G. Vranesic, “Heuristics for

area minimization in LUT-based FPGA technology mapping,” Proc.

IWLS ’04, pp. 14-21.

[23] Y. Matsunaga. "An exact and efficient algorithm for disjunctive

decomposition". Proc. SASIMI '98, pp. 44-50.

[24] K. Minkovich and J. Cong, "An improved SAT-based Boolean

matching using implicants for LUT-based FPGAs," Proc. FPGA’07.

[25] A. Mishchenko and T. Sasao, "Encoding of Boolean functions and

its application to LUT cascade synthesis", Proc. IWLS '02, pp. 115-

120. http://www.eecs.berkeley.edu/~alanmi/publications/2002/

iwls02_enc.pdf

[26] A. Mishchenko, X. Wang, and T. Kam, "A new enhanced

constructive decomposition and mapping algorithm", Proc. DAC

'03, pp. 143-148.

[27] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG

rewriting: A fresh look at combinational logic synthesis”, Proc.

DAC’06, pp. 532-536.

[28] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een,

"Improvements to combinational equivalence checking", Proc.

ICCAD '06, pp. 836-843. http://www.eecs.berkeley.edu/

~alanmi/publications/2006/iccad06_cec.pdf

[29] A. Mishchenko, S. Chatterjee, and R. Brayton, "Improvements to

technology mapping for LUT-based FPGAs". IEEE TCAD, Vol.

26(2), Feb 2007, pp. 240-253. http://www.eecs.berkeley.edu/

~alanmi/publications/2006/tcad06_map.pdf

[30] A. Mishchenko, R. Brayton, J.-H. R. Jiang, and S. Jang, "SAT-based

logic optimization and resynthesis". Submitted to FPGA'08.

http://www.eecs.berkeley.edu/~alanmi/publications/2008/

fpga08_imfs.pdf

[31] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton,

“Combinational and sequential mapping with priority cuts”, Proc.

ICCAD ’07. http://www.eecs.berkeley.edu/~alanmi/

publications/2007/iccad07_map.pdf

[32] A. Mishchenko, S. Chatterjee, and R. Brayton, "Fast Boolean

matching for LUT structures". ERL Technical Report, EECS Dept.,

UC Berkeley. http://www.eecs.berkeley.edu/~alanmi/publications/

2007/tech07_lpk.pdf

[33] P. Pan and C.-C. Lin, “A new retiming-based technology mapping

algorithm for LUT-based FPGAs,” Proc. FPGA ’98, pp. 35-42.

[34] M. Perkowski, M. Marek-Sadowska, L. Jozwiak, T. Luba, S.

Grygiel, M. Nowicka, R. Malvi, Z. Wang, and J. S. Zhang.

“Decomposition of multiple-valued relations”. Proc. ISMVL’97, pp.

13-18.

[35] S. Plaza and V. Bertacco, "Boolean operations on decomposed

functions", Proc. IWLS’ 05, pp. 310-317.

[36] J. P. Roth and R. Karp, “Minimization over Boolean graphs”, IBM

J. Res. and Develop., 6(2), pp. 227-238, April 1962.

[37] S. Safarpour, A. Veneris, G. Baeckler, and R. Yuan, “Efficient SAT-

based Boolean matching for FPGA technology mapping,'' Proc.

DAC ’06.

[38] H. Sawada, T. Suyama, and A. Nagoya, “Logic synthesis for lookup

tables based FPGAs using functional decomposition and support

minimization”, Proc. ICCAD, 353-358, Nov. 1995.

[39] T. Sasao and M. Matsuura, "DECOMPOS: An integrated system for

functional decomposition," Proc. IWLS‘98, pp. 471-477.

[40] N. Vemuri and P. Kalla and R. Tessier, “BDD-based logic synthesis

for LUT-based FPGAs”, ACM TODAES, Vol. 7, 2002, pp. 501-525.

[41] B. Wurth, U. Schlichtmann, K. Eckl, and K. Antreich. “Functional

multiple-output decomposition with application to technology

mapping for lookup table-based FPGAs”. ACM Trans. Design

Autom. Electr. Syst. Vol. 4(3), 1999, pp. 313-350.

Table 1. Evaluation of resynthesis applied after technology mapping for FPGAs (K = 6).

Baseline Choices Imfs Imfs + Lutpack
Designs PI PO Reg

LUT Level LUT Level LUT Level LUT Level

alu4 14 8 0 821 6 785 5 558 5 453 5

apex2 39 3 0 992 6 866 6 806 6 787 6

apex4 9 19 0 838 5 853 5 800 5 732 5

bigkey 263 197 224 575 3 575 3 575 3 575 3

clma 383 82 33 3323 10 2715 9 1277 8 1222 8

des 256 245 0 794 5 512 5 483 4 480 4

diffeq 64 39 377 659 7 632 7 636 7 634 7

dsip 229 197 224 687 3 685 2 685 2 685 2

ex1010 10 10 0 2847 6 2967 6 1282 5 1059 5

ex5p 8 63 0 599 5 669 4 118 3 108 3

elliptic 131 114 1122 1773 10 1824 9 1820 9 1819 9

frisc 20 116 886 1748 13 1671 12 1692 12 1683 12

i10 257 224 0 589 9 560 8 548 7 547 7

pdc 16 40 0 2327 7 2500 6 194 5 171 5

misex3 14 14 0 785 5 664 5 517 5 446 5

s38417 28 106 1636 2684 6 2674 6 2621 6 2592 6

s38584 12 278 1452 2697 7 2647 6 2620 6 2601 6

seq 41 35 0 931 5 756 5 682 5 645 5

spla 16 46 0 1913 6 1828 6 289 4 263 4

tseng 52 122 385 647 7 649 6 645 6 645 6

geomean 1168 6.16 1103 5.66 716 5.24 677 5.24

Ratio1 1.000 1.000 0.945 0.919 0.613 0.852 0.580 0.852

Ratio2 1.000 1.000 0.649 0.926 0.614 0.926

Ratio3 1.000 1.000 0.946 1.000

