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ABSTRACT 
Clock gating is the insertion of combinational logic along the 
clock path to prevent the unnecessary switching of registers and 
reduce dynamic power consumption. The conditions under which 
the transition of a register may be safely blocked can either be 
explicitly specified by the designer or detected automatically. We 
introduce a new method for automatically synthesizing these 
conditions in a way that minimizes netlist perturbation and is 
both timing- and physical-aware. Our automatic method is also 
scalable, utilizing simulation and satisfiability tests and 
necessitating no symbolic representation. On a set of 
benchmarks, our technique successfully reduces the dynamic 
clock power by 14.5% on average. Furthermore, we demonstrate 
how to apply a straightforward logic simplification to utilize 
resulting don’t cares and reduce the logic by 7.0% on average. 
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B.6.3 [Logic Design]: Design Aids 

General Terms 
Algorithms, Design. 
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I. INTRODUCTION 

The dynamic switching of the clock network typically 
accounts for 30-40% of the total power consumption of a 
modern design, and with the proliferation of low-power 
requirements and thermal limitations, minimizing this 
portion of the power consumption is imperative. One of 
the most effective and widely adopted techniques is clock 
gating, whereby the clock signal is selectively blocked for 
registers in the design that are inactive or do not otherwise 
need to be updated, thus reducing the average capacitance 
that must be switched per cycle. The most common 
approach is to manually identify architectural components 
that can be deactivated, but in this work, we focus on 
automatic techniques that can be applied to netlist-level 
circuits. 

The condition under which a register’s clock can be 
stopped may be derived from its current and next state 
functions, and previous methods have considered such 
direct computation and synthesis [4][7]. However, the 
limits of such symbolic functional manipulation are 
typically reached far below the size of many moderately 
sized designs, especially when multiple registers must be 
gated simultaneously. Furthermore, once a gating function 
has been selected it must be synthesized, and in general, 
this requires additional logic. Even if the physical design is 
not disrupted by the additional area and routing, its 
dynamic power consumption eats away from the power-
saving benefits that it seeks to provide. The coverage of 
the function can be safely pruned to save implementation 
cost, but determining a good balance between coverage 
and cost is a difficult synthesis problem. 

We propose an approach that addresses the dual problems 
of gating condition selection and synthesis by constructing 
these functions out of signals in the existing logic network. 
While the maximal gating condition is rarely present in the 
network, there are often many signals whose functions (or 
complements) are strictly contained within it; these 
provide a set of sufficient conditions to determine if the 
register will not switch and can therefore be safely gated. 
While this is less flexible than the synthesis of an arbitrary 
function, the result is still quite good and, importantly, 
scalable to large designs with very predictable results. 

The identification of the potential components of a gating 
condition is accomplished through the combination of 
simulation and SAT testing. The resulting candidates are 
then collected and grouped, and a subset of these is 
selected to inhibit the greatest degree of register switching 
with the smallest number of clock gates.  A byproduct of 
using simulation in the generation of the clock gating logic 
is the probabilistic information it provides about the 
sequential behavior of the circuit; an accurate model of the 
power savings can be used as the optimization objective. 

Because the next state of a register is not dependent upon 
its input when the gating condition is active, clock gating 
also introduces observability don’t cares into its next state 
function. When the gating condition is a disjunction of 
functions already present in the logic network, a 
straightforward structural simplification can be applied to 
minimize the logic. We demonstrate a moderate reduction 
in the total network size after clock gating. 



II. CLOCK GATING 

Clock gating involves the insertion of conditions on the 
propagation of a clock to one or more registers in the 
design. By limiting any unnecessary switching, the 
dynamic power required to charge and discharge the 
capacitive load of the register inputs is reduced. The 
condition under which a clock transition is inhibited is 
known as the gating condition, clock disable, or activation 
function [9]. In general, the condition may a sequential 
function of variables from previous time frames, though 
we restrict the problem to the combinational version. 

Let x be the set of external inputs and current state 
variables. xR is the current state of register R, and FR(x) is 
its next state function. To maintain the functional 
correctness of the circuit, each register’s gating condition 
GR(x) must only be active when the register does not 
change state. This functional correctness condition is 
described by Equation 1. 
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gating condition. Because the timing requirements of the 
clock gate typically necessitate that GR is available earlier 
than FR, it is desirable to find an incomplete gating 
condition that can be generated early in the clock cycle 
with maximal coverage and minimal implementation cost. 
This problem was studied in [4] and [9]. 

The local dynamic clock power saved by gating the clock 
at R with function GR is proportional to the probability that 
GR is true, ( )RGP , and the register input capacitance cR 

(which includes internally switched capacitance). The 
dynamic clock power consumed to generate each gated 
clock signal clkG is proportional to the additional 
capacitance seen by the clock network, cG. The resulting 
power objective is expressed by Equation 2. Additional 
dynamic power may be dissipated in the logic network by 
increasing the fan-out loads, but we restrict our power 

consideration to the clock network. In practice, the overall 
dynamic power of the logic network is also decreased 
through the optimizations described in Section 4. 
Additional power is also saved by moving any common 
clock drivers behind the clock gates. 
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Typical values of cG and cR imply that the gated clock 
signals must be shared amongst multiple registers, for each 
of which the corresponding gating condition must be valid. 
To be effective, clock gating synthesis problem must span 
multiple registers at a time. 

III. ALGORITHM 

We model a circuit to be clock gated as a hierarchical 
hypergraph whose nodes may be either single-bit registers 
or single-output combinational logic nodes. If there are 
multiple clock domains, each group of registers must be 
gated separately. We define a literal to be either one of 
these node outputs or its complement. 

The goal of the gating algorithm is to maximize the power 
savings by finding an incomplete gating condition GR for 
each register R, such that GR is the disjunction of up to M 
literals, as described in Equation 3. 
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The steps of our technique are summarized in Algorithm 1 
and described in the following sections in sequential order. 

A. Candidate Identification 

The first step consists of extracting a set of candidate 
literals for the )(xg R

i
 terms of the gating signal GR, for 

each register R. All literals could be initially be considered 
as candidates for each register, but it is useful and 
necessary to immediately narrow the set by removing ones 
that violate either timing, physical, or structural 
constraints. 

i) Timing constraints. The added delay of the clock 
gating logic and the stricter timing constraints of the 
clock signal dictates that the clock gating condition be 
available earlier than latest next state function. It is 
therefore only necessary to select from amongst 
signals with early enough arrival times to meet these 
requirements. 

ii) Physical constraints. It is undesirable to route gated 
clock signals over large distances, and constraints 
between the proximity of the candidate gating signals 
and the gated registers are necessary to prevent 
difficult or unroutable connections. This type of 
constraint provides a worst-case linear bound on the 
number of pairs that must be considered. 
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Figure 1. Two common implementations of clock gating for 
positive edge-triggered registers. The gated clock signals 
clkG are inhibited when 

21 ggG ∨=  is true. If G is 

monotonic or stable during either half-period of the clock, 
the gating can be implemented with only a logic gate. 
Otherwise, circuit (ii) is a glitch-safe version. Several 
standard cell libraries provide such a combined cell. 



iii) Structural constraints. The candidate literals can be 
restricted to those whose structural support are 
partially common to the next state function or include 
the register output.  This is implied by Equation 1. 

B. Candidate Pruning 

Because the sum of a set of terms satisfies the correctness 
condition (Equation 1) only if each term satisfies it, a 
literal is only kept as a candidate if it is not inconsistent 
with this condition. Simulation is applied in several passes 
to prune the set of candidate literal/register pairs. The 
pruning passes are quite fast and effective, and if any 
literal is found to violate the correctness condition, it is 
immediately removed from consideration. 

C. Candidate Proving 

Once the set of candidates has been reduced with pruning 
to literal/register pairs that are reasonably likely to be 
legal, these are proved to satisfy the correctness condition 
using a satisfiability solver in incremental mode. Because 
the portion of the problem describing the circuit 
functionality does not change, learned clauses are kept to 
speed up future runs. The test structure is depicted in 
Figure 2. If the output is satisfiable, then there exists an 
input that violates the correctness condition; otherwise, 
g(x) in now known to be a valid gating condition for 
register R.  

D. Covering 

Besides generating counterexamples to the correctness 
condition for illegal candidate literals, simulation provides 
a probabilistic estimate of the number of unnecessary clock 
transitions that each legal literal g will block, ( )gP . This 

provides more accurate information than assuming that the 
size of the Boolean ON-set of a gating condition correlates 
to its actual ON-probability (e.g. [4]). 

However, assuming that it is not possible to keep the full 

set of simulation values for every net, we lack any 
information about the correlations between these 
probabilities: the gating probability of any disjunction of 
these signals is unknown. To overcome this limitation, we 
group them into useful candidate sets g1..M; the details of 
this heuristic are not described here. 

The circuit is simulated again—with actual simulation 
traces, if available—and probabilistic information is 
collected about the candidate sets, thereby capturing the 
correlated probabilities. The correlation between sets is not 
pertinent: each register can only be switched by a single 
gated clock, generated by the one cover that is chosen for 
it. This restriction can be relaxed by amending our 
technique to employ hierarchical clock gating. 

The problem now reduces to the weighted maximum set 
cover problem, where the weight of each element set is 
exactly its net contribution to Equation 2, the total 
dynamic power. If an insufficient number of registers or 
clock transitions are gated, the net weight of an element 
may be negative; these will never be selected. The 
maximum set cover problem is NP-hard, but there exist 
good heuristics. The problem is also less difficult for 
practical circuits because of the relatively small number of 
partially overlapping covers. We utilize the greedy-
addition heuristic [5]. 

Once a subset of candidate sets has been selected, each of 
these is used to drive a clock gate and produce a single 
gated clock signal. This clock is then connected to the 
covered registers. 

IV. POST-GATING OPTIMIZATION 

The insertion of a clock gating condition creates a set of 
observability don’t cares (ODCs) for the next state 
function FR(x) at the input of register R. When the gated 
clock signal is inactive, the value of the next state function 
is irrelevant; the output of the register will remain constant. 
This fact can be used to minimize the logic implementation 
of the next state function.  

In general, the task of reducing a large logic network with 
ODCs is difficult, but in this specific case, a structural 
simplification can be immediately applied. Let h be an 
immediate fan-out of the node of literal g(x). If the 
combinational transitive fan-out of any h does not include 
any (i) primary outputs, (ii) clock gate inputs, or (iii) 
register inputs not gated by g(x), this connection can be 
replaced with a constant. The inserted constants are then 
propagated forward in the network and any dangling 
portions dropped. In many instances, the function GR is 
constructed of terms entirely from within R’s fan-in cone.  

Multiple ODC-based simplifications can generally not be 
simultaneously applied, but in this case, their mutual 
compatibility is guaranteed because the structure of all GR 
signals is perfectly preserved. 

 
Figure 2. A candidate literal g(x) is being tested for validity 
as a gating cover component for register R. If the output is 
satisfiable, the candidate is discarded. This is first checked 
with simulation and then conclusively proven with SAT. 



V. EXPERIMENTAL RESULTS 

A set of benchmarks [2] was synthesized to minimize area 
and delay using the ABC logic synthesis package [3]. The 
mapped Verilog was then imported into OAGear Func 
package [6], the platform on which the algorithm was 
implemented. The internal random simulator and 
integrated MiniSat package [10] were used. All 
experiments were done on 2.66Ghz x64 machines.  

A representative subset of the results of the gating 
algorithm is presented in Table 1. The first two columns 
describe the size of the original circuit. First, a purely 
structural gating approach was applied to identify MUX-
loops and synchronous enables that can be used as gating 
conditions. Our clock gating algorithm was then applied. 
The resulting number of gated clock signals is listed in 
column Gated Clks; these signals were shared by the 
number of registers in column Gated Regs. Based upon the 
simulation data and the capacitance and power values from 
[1], the estimated power savings of both techniques was 
measured and presented in the columns labeled ∆ClkPow.  

The post-gating optimization described in Section 4 was 
then applied, and the resulting netlist optimized with the 
ABC package using the same procedure described above. 

The number and improvement in the number of AND 
nodes are reported in the final two columns. On average, 
the size of the combinational logic was reduced by 7.0%. 
In five of the benchmarks, the depth of the combinational 
logic was also reduced, resulting in a potential 
performance improvement. 

The correctness of both the gating conditions (modeled as 
synchronous enables) and the logic optimization was 
successfully verified using comb. equivalence checking. 

VI. CONCLUSIONS 

We introduced a method for clock gating synthesis that 
constructs the gating condition out the disjunction of 
signals and their complements that are already present in 
the existing logic. Applied to a set of industry-supplied 
benchmarks, the dynamic clock power consumption is 
reduced by 14.5% and the size of the logic network by 
7.0%. 
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Table 1: Results of Fast Clock Gating Optimization 

Name Size Struct Gating New Gating Post-Gating Opt. 

 |and| |reg| Gated Regs ∆ClkPow Gated Clks Gated Regs ∆ClkPow Runtime (s) |and| %Improv 
oc_ssram 274 95 0 0.00% 2 32 13.71% 0.78s 179 34.7%
oc_sdram 894 112 54 23.26% 10 91 34.38% 2.56s 720 19.5%
oc_hdlc 1873 426 62 3.23% 16 133 9.16% 5.03s 1734 7.4%
oc_vga_lcd 6923 1108 659 26.44% 35 707 28.44% 44.0s 6555 5.3%
oc_ethernet 8926 1272 254 4.66% 35 367 8.04% 40.5s 8890 0.4%
oc_cfft 9177 1051 143 3.71% 16 279 7.02% 26.3s 9124 0.6%
oc_8051 9746 754 236 11.03% 34 339 17.92% 58.9s 9622 1.3%
oc_fpu 16260 659 8 0.76% 2 56 2.46% 40.7s 16179 0.5%
radar20 60835 6001 2679 15.06% 81 2968 17.74% 475.3s 60576 0.4%
uoft_raytracer 138895 13079 2216 5.28% 102 2355 5.72% 1691.1s 138542 0.3%
AVERAGE   9.34%  2.1x struct 14.46%  7.04% 


