
Automatic Synthesis of Clock Gating Logic with
Controlled Netlist Perturbation

Aaron P. Hurst

University of California, Berkeley
Berkeley, CA

ABSTRACT
Clock gating is the insertion of combinational logic along the
clock path to prevent the unnecessary switching of registers and
reduce dynamic power consumption. The conditions under which
the transition of a register may be safely blocked can either be
explicitly specified by the designer or detected automatically. We
introduce a new method for automatically synthesizing these
conditions in a way that minimizes netlist perturbation and is
both timing- and physical-aware. Our automatic method is also
scalable, utilizing simulation and satisfiability tests and
necessitating no symbolic representation. On a set of
benchmarks, our technique successfully reduces the dynamic
clock power by 14.5% on average. Furthermore, we demonstrate
how to apply a straightforward logic simplification to utilize
resulting don’t cares and reduce the logic by 7.0% on average.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids

General Terms
Algorithms, Design.

Keywords
Clock Gating, Low Power, Dynamic Power, Logic Optimization.

I. INTRODUCTION

The dynamic switching of the clock network typically
accounts for 30-40% of the total power consumption of a
modern design, and with the proliferation of low-power
requirements and thermal limitations, minimizing this
portion of the power consumption is imperative. One of
the most effective and widely adopted techniques is clock
gating, whereby the clock signal is selectively blocked for
registers in the design that are inactive or do not otherwise
need to be updated, thus reducing the average capacitance
that must be switched per cycle. The most common
approach is to manually identify architectural components
that can be deactivated, but in this work, we focus on
automatic techniques that can be applied to netlist-level
circuits.

The condition under which a register’s clock can be
stopped may be derived from its current and next state
functions, and previous methods have considered such
direct computation and synthesis [4][7]. However, the
limits of such symbolic functional manipulation are
typically reached far below the size of many moderately
sized designs, especially when multiple registers must be
gated simultaneously. Furthermore, once a gating function
has been selected it must be synthesized, and in general,
this requires additional logic. Even if the physical design is
not disrupted by the additional area and routing, its
dynamic power consumption eats away from the power-
saving benefits that it seeks to provide. The coverage of
the function can be safely pruned to save implementation
cost, but determining a good balance between coverage
and cost is a difficult synthesis problem.

We propose an approach that addresses the dual problems
of gating condition selection and synthesis by constructing
these functions out of signals in the existing logic network.
While the maximal gating condition is rarely present in the
network, there are often many signals whose functions (or
complements) are strictly contained within it; these
provide a set of sufficient conditions to determine if the
register will not switch and can therefore be safely gated.
While this is less flexible than the synthesis of an arbitrary
function, the result is still quite good and, importantly,
scalable to large designs with very predictable results.

The identification of the potential components of a gating
condition is accomplished through the combination of
simulation and SAT testing. The resulting candidates are
then collected and grouped, and a subset of these is
selected to inhibit the greatest degree of register switching
with the smallest number of clock gates. A byproduct of
using simulation in the generation of the clock gating logic
is the probabilistic information it provides about the
sequential behavior of the circuit; an accurate model of the
power savings can be used as the optimization objective.

Because the next state of a register is not dependent upon
its input when the gating condition is active, clock gating
also introduces observability don’t cares into its next state
function. When the gating condition is a disjunction of
functions already present in the logic network, a
straightforward structural simplification can be applied to
minimize the logic. We demonstrate a moderate reduction
in the total network size after clock gating.

II. CLOCK GATING

Clock gating involves the insertion of conditions on the
propagation of a clock to one or more registers in the
design. By limiting any unnecessary switching, the
dynamic power required to charge and discharge the
capacitive load of the register inputs is reduced. The
condition under which a clock transition is inhibited is
known as the gating condition, clock disable, or activation
function [9]. In general, the condition may a sequential
function of variables from previous time frames, though
we restrict the problem to the combinational version.

Let x be the set of external inputs and current state
variables. xR is the current state of register R, and FR(x) is
its next state function. To maintain the functional
correctness of the circuit, each register’s gating condition
GR(x) must only be active when the register does not
change state. This functional correctness condition is
described by Equation 1.

 RRR xxFxG ⊕⇒)()((1)

If
RRR xxFxG ⊕=)()(, then it is the unique maximal

gating condition. Because the timing requirements of the
clock gate typically necessitate that GR is available earlier
than FR, it is desirable to find an incomplete gating
condition that can be generated early in the clock cycle
with maximal coverage and minimal implementation cost.
This problem was studied in [4] and [9].

The local dynamic clock power saved by gating the clock
at R with function GR is proportional to the probability that
GR is true, ()RGP , and the register input capacitance cR

(which includes internally switched capacitance). The
dynamic clock power consumed to generate each gated
clock signal clkG is proportional to the additional
capacitance seen by the clock network, cG. The resulting
power objective is expressed by Equation 2. Additional
dynamic power may be dissipated in the logic network by
increasing the fan-out loads, but we restrict our power

consideration to the clock network. In practice, the overall
dynamic power of the logic network is also decreased
through the optimizations described in Section 4.
Additional power is also saved by moving any common
clock drivers behind the clock gates.

 () ∑∑
∀∀

−
) unique(G

G
R

RR cGc P (2)

Typical values of cG and cR imply that the gated clock
signals must be shared amongst multiple registers, for each
of which the corresponding gating condition must be valid.
To be effective, clock gating synthesis problem must span
multiple registers at a time.

III. ALGORITHM

We model a circuit to be clock gated as a hierarchical
hypergraph whose nodes may be either single-bit registers
or single-output combinational logic nodes. If there are
multiple clock domains, each group of registers must be
gated separately. We define a literal to be either one of
these node outputs or its complement.

The goal of the gating algorithm is to maximize the power
savings by finding an incomplete gating condition GR for
each register R, such that GR is the disjunction of up to M
literals, as described in Equation 3.

)()(
..1

xgxG R
i

Mi
R =

∨= (3)

The steps of our technique are summarized in Algorithm 1
and described in the following sections in sequential order.

A. Candidate Identification

The first step consists of extracting a set of candidate
literals for the)(xg R

i
 terms of the gating signal GR, for

each register R. All literals could be initially be considered
as candidates for each register, but it is useful and
necessary to immediately narrow the set by removing ones
that violate either timing, physical, or structural
constraints.

i) Timing constraints. The added delay of the clock
gating logic and the stricter timing constraints of the
clock signal dictates that the clock gating condition be
available earlier than latest next state function. It is
therefore only necessary to select from amongst
signals with early enough arrival times to meet these
requirements.

ii) Physical constraints. It is undesirable to route gated
clock signals over large distances, and constraints
between the proximity of the candidate gating signals
and the gated registers are necessary to prevent
difficult or unroutable connections. This type of
constraint provides a worst-case linear bound on the
number of pairs that must be considered.

 (i) (ii)

Figure 1. Two common implementations of clock gating for
positive edge-triggered registers. The gated clock signals
clkG are inhibited when

21 ggG ∨= is true. If G is

monotonic or stable during either half-period of the clock,
the gating can be implemented with only a logic gate.
Otherwise, circuit (ii) is a glitch-safe version. Several
standard cell libraries provide such a combined cell.

iii) Structural constraints. The candidate literals can be
restricted to those whose structural support are
partially common to the next state function or include
the register output. This is implied by Equation 1.

B. Candidate Pruning

Because the sum of a set of terms satisfies the correctness
condition (Equation 1) only if each term satisfies it, a
literal is only kept as a candidate if it is not inconsistent
with this condition. Simulation is applied in several passes
to prune the set of candidate literal/register pairs. The
pruning passes are quite fast and effective, and if any
literal is found to violate the correctness condition, it is
immediately removed from consideration.

C. Candidate Proving

Once the set of candidates has been reduced with pruning
to literal/register pairs that are reasonably likely to be
legal, these are proved to satisfy the correctness condition
using a satisfiability solver in incremental mode. Because
the portion of the problem describing the circuit
functionality does not change, learned clauses are kept to
speed up future runs. The test structure is depicted in
Figure 2. If the output is satisfiable, then there exists an
input that violates the correctness condition; otherwise,
g(x) in now known to be a valid gating condition for
register R.

D. Covering

Besides generating counterexamples to the correctness
condition for illegal candidate literals, simulation provides
a probabilistic estimate of the number of unnecessary clock
transitions that each legal literal g will block, ()gP . This

provides more accurate information than assuming that the
size of the Boolean ON-set of a gating condition correlates
to its actual ON-probability (e.g. [4]).

However, assuming that it is not possible to keep the full

set of simulation values for every net, we lack any
information about the correlations between these
probabilities: the gating probability of any disjunction of
these signals is unknown. To overcome this limitation, we
group them into useful candidate sets g1..M; the details of
this heuristic are not described here.

The circuit is simulated again—with actual simulation
traces, if available—and probabilistic information is
collected about the candidate sets, thereby capturing the
correlated probabilities. The correlation between sets is not
pertinent: each register can only be switched by a single
gated clock, generated by the one cover that is chosen for
it. This restriction can be relaxed by amending our
technique to employ hierarchical clock gating.

The problem now reduces to the weighted maximum set
cover problem, where the weight of each element set is
exactly its net contribution to Equation 2, the total
dynamic power. If an insufficient number of registers or
clock transitions are gated, the net weight of an element
may be negative; these will never be selected. The
maximum set cover problem is NP-hard, but there exist
good heuristics. The problem is also less difficult for
practical circuits because of the relatively small number of
partially overlapping covers. We utilize the greedy-
addition heuristic [5].

Once a subset of candidate sets has been selected, each of
these is used to drive a clock gate and produce a single
gated clock signal. This clock is then connected to the
covered registers.

IV. POST-GATING OPTIMIZATION

The insertion of a clock gating condition creates a set of
observability don’t cares (ODCs) for the next state
function FR(x) at the input of register R. When the gated
clock signal is inactive, the value of the next state function
is irrelevant; the output of the register will remain constant.
This fact can be used to minimize the logic implementation
of the next state function.

In general, the task of reducing a large logic network with
ODCs is difficult, but in this specific case, a structural
simplification can be immediately applied. Let h be an
immediate fan-out of the node of literal g(x). If the
combinational transitive fan-out of any h does not include
any (i) primary outputs, (ii) clock gate inputs, or (iii)
register inputs not gated by g(x), this connection can be
replaced with a constant. The inserted constants are then
propagated forward in the network and any dangling
portions dropped. In many instances, the function GR is
constructed of terms entirely from within R’s fan-in cone.

Multiple ODC-based simplifications can generally not be
simultaneously applied, but in this case, their mutual
compatibility is guaranteed because the structure of all GR
signals is perfectly preserved.

Figure 2. A candidate literal g(x) is being tested for validity
as a gating cover component for register R. If the output is
satisfiable, the candidate is discarded. This is first checked
with simulation and then conclusively proven with SAT.

V. EXPERIMENTAL RESULTS

A set of benchmarks [2] was synthesized to minimize area
and delay using the ABC logic synthesis package [3]. The
mapped Verilog was then imported into OAGear Func
package [6], the platform on which the algorithm was
implemented. The internal random simulator and
integrated MiniSat package [10] were used. All
experiments were done on 2.66Ghz x64 machines.

A representative subset of the results of the gating
algorithm is presented in Table 1. The first two columns
describe the size of the original circuit. First, a purely
structural gating approach was applied to identify MUX-
loops and synchronous enables that can be used as gating
conditions. Our clock gating algorithm was then applied.
The resulting number of gated clock signals is listed in
column Gated Clks; these signals were shared by the
number of registers in column Gated Regs. Based upon the
simulation data and the capacitance and power values from
[1], the estimated power savings of both techniques was
measured and presented in the columns labeled ∆ClkPow.

The post-gating optimization described in Section 4 was
then applied, and the resulting netlist optimized with the
ABC package using the same procedure described above.

The number and improvement in the number of AND
nodes are reported in the final two columns. On average,
the size of the combinational logic was reduced by 7.0%.
In five of the benchmarks, the depth of the combinational
logic was also reduced, resulting in a potential
performance improvement.

The correctness of both the gating conditions (modeled as
synchronous enables) and the logic optimization was
successfully verified using comb. equivalence checking.

VI. CONCLUSIONS

We introduced a method for clock gating synthesis that
constructs the gating condition out the disjunction of
signals and their complements that are already present in
the existing logic. Applied to a set of industry-supplied
benchmarks, the dynamic clock power consumption is
reduced by 14.5% and the size of the logic network by
7.0%.

ACKNOWLEDGEMENT

This work has continued to be developed in collaboration
with Christoph Albrecht, Arthur Quiring, and Andreas
Kuehlmann. Many wonderful suggestions have also been
provided by Alan Mishchenko and Robert Brayton.

REFERENCES

[1] C. Albrecht, IWLS 2005 Benchmarks,
http://www.iwls.org/iwls2005/benchmarks.html.

[2] Altera Corp., Quartus II University Interface Program,
www.altera.com/education/univ/research/unv-quip.html

[3] Berkeley Logic Synthesis and Verification Group, ABC: A
System for Sequential Synthesis and Verification, Release
61225. http://www.eecs.berkeley.edu/~alanmi/abc/

[4] L. Benini, G. De Micheli, E. Macii, M. Poncino, and R.
Scarsi, “Symbolic synthesis of clock-gating logic for
power optimization of synchronous controllers”, ACM
Trans. Des. Autom. Electron, Oct. 1999.

[5] S. Khuller, A. Moss, and J. Naor, “The budgeted
maximum coverage problem”, Information Processing
Letters, 1999.

[6] A. Hurst, “OpenAccess Gear Functionality: A Platform for
Functional Representation, Synthesis, and Verification,”

presentation at IWLS, 2006.
http://www.iwls.org/challenge/iwls06-oagearFunc.pdf

[7] W. Qing, M. Pedram, and W. Xunwei, “Clock-gating and
its application to low power design of sequential circuits”,
IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, Vol.47, Iss.3, Mar
2000.

[8] P. Babighian, L. Benini, and E. Macii, “A scalable
algorithm for RTL insertion of gated clocks based on
ODCs computation”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 24,
Jan. 2005.

[9] L. Benini, G. De Micheli, “Automatic synthesis of low-
power gated-clock finite-state machines”, IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol.15, Iss.6, Jun 1996.

[10] N. Een and N. Sorensson. An extensible SAT solver. In
SAT 2003, volume 2919 of LNCS, pages 502–518, 2004.

Table 1: Results of Fast Clock Gating Optimization

Name Size Struct Gating New Gating Post-Gating Opt.

 |and| |reg| Gated Regs ∆ClkPow Gated Clks Gated Regs ∆ClkPow Runtime (s) |and| %Improv
oc_ssram 274 95 0 0.00% 2 32 13.71% 0.78s 179 34.7%
oc_sdram 894 112 54 23.26% 10 91 34.38% 2.56s 720 19.5%
oc_hdlc 1873 426 62 3.23% 16 133 9.16% 5.03s 1734 7.4%
oc_vga_lcd 6923 1108 659 26.44% 35 707 28.44% 44.0s 6555 5.3%
oc_ethernet 8926 1272 254 4.66% 35 367 8.04% 40.5s 8890 0.4%
oc_cfft 9177 1051 143 3.71% 16 279 7.02% 26.3s 9124 0.6%
oc_8051 9746 754 236 11.03% 34 339 17.92% 58.9s 9622 1.3%
oc_fpu 16260 659 8 0.76% 2 56 2.46% 40.7s 16179 0.5%
radar20 60835 6001 2679 15.06% 81 2968 17.74% 475.3s 60576 0.4%
uoft_raytracer 138895 13079 2216 5.28% 102 2355 5.72% 1691.1s 138542 0.3%
AVERAGE 9.34% 2.1x struct 14.46% 7.04%

