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Abstract

SPFDs, a mechanism for expressing flexibility during logic synthe-
sis, were first introduced for FPGA synthesis. They were then ex-
tended to general, combinational Boolean networks and later the
concept of sequential SPFDs was introduced. In this paper, we ex-
plore the idea of using SPFDs for functional decomposition. A new
type of functional decomposition called topologically constrained
decomposition is introduced. An algorithm is provided for solving
this problem using SPFDs. Preliminary experimental results are
encouraging and indicate the feasibility of the approach. A scheme
is also presented for generating instances of the topologically con-
strained decomposition problem.

1 Introduction

SPFDs or Sets of Pairs of Functions to be Distinguished provide a
powerful new formalism for expressing the implementation flexibil-
ity of a node during logic synthesis. They were first introduced in
the context of FPGA synthesis [1] but were shown to have the abil-
ity for expressing the flexibility of a node in general, combinational
Boolean networks [2], as well as sequential circuits [3]. SPFDs are a
type of Multiple Boolean Relation (MBR)! [4] and thus can express
flexibility that cannot be expressed using don’t cares or Boolean
relations. In most previous applications of SPFDs, the flexibility
expressed by them has been used for simplifying the nodes in a
combinational network or for state re-encoding during sequential
synthesis.

In this paper, we present a new application of SPFDs to a partic-
ular type of functional decomposition. This problem is motivated
by the so-called wireplanning problem in which the wires or com-
munication channels are planned before synthesis. In Section 2, we
describe some previous work in functional decomposition. Section
3 provides some motivation for the relevance of SPFDs in functional
decomposition. The topologically constrained decomposition prob-
lem is introduced in Section 4. Section 5 describes an algorithm
for using SPFDs for solving this problem. The correctness of the
procedure is also established here. Some preliminary experimental
results are provided in Section 6. Section 7 provides some ideas for
generating instances of the topologically constrained decomposition
problem. The paper concludes with some directions for future work
in Section 8.

2 Previous Work
Decomposition is a fundamental problem in logic synthesis. Its goal

is to break a function into smaller functions. The problem can be
stated as

F(X) = G(H(X1),X2),

' An MBR can express more flexibility than an SPFD.
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Figure 1: Ashenhurst Decomposition.
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Figure 2: Decomposition Chart.

Xux, = X.

Generally, G and H are less complex than F. It is known, in the
worst case the circuit size realizing an n-input logic function is
O(2"/n). If F(X) has a decomposition G(H(X1),X>), the worst
case for the decomposed circuit is O(2™ /ny 4 22+ /(ny + 1)),
where n; = |X| and ny = |X3|. Thus functional decomposition can
reduce the circuit size exponentially.

The first systematic study of decomposition [5] characterized the
existence of a simple disjoint decomposition of a function. This is
a special case of the above equations, where X; N X, = ¢ and Gisa
single output function. The problem is shown in Figure 1.

The set X is called the bound set and X, the free set. We de-
scribe this procedure in some detail to explain the basic idea behind
functional decomposition.

The necessary and sufficient condition for the existence of a
decomposition was given in terms of the decomposition chart
D(X;|X,) for F for the partition X|X,. A decomposition chart is
a truth-table of F where the vertices of B" = {0, 1}" are arranged
in a matrix. The columns of the matrix correspond to the vertices
of BXt = B, and its rows correspond to the vertices of BX2 = B"~.
The entries in D(X;|X,) are the values that F' takes for all possible
input combinations. For example, if F(a,b,c) = abe +dc + bc, the
decomposition chart for F for the partition ab|c is shown in Figure
2.

Ashenhurst proved the following result, which relates the exis-
tence of a decomposition to the number of distinct columns in the
decomposition chart D(X1|X5).



Theorem 1 (Ashenhurst) A simple disjoint decomposition exists if
and only if the corresponding decomposition chart has at most two
distinct columns.

Two vertices x| and x; in B* are compatible if they have the same
column patterns. For an incompletely specified function, a don’t
care entry ’-’ cannot cause two columns to be incompatible. Thus,
two columns ¢; and c¢; are compatible if for each row k, either
ci(k) = —, orcj(k) = —, or ¢;(k) = c;(k). For a completely specified
function, compatibility is an equivalence relation and the set of ver-
tices that are mutually compatible form an equivalence class. Hence
the column multiplicity of the decomposition chart is the number of
equivalence classes. For incompletely specified functions, the com-
patibility relation is not an equivalence relation, i.e. there may be a
case wheni~ jA j~k,buti-4 k. So,acolumn may be contained in
two or more compatible sets and a nontrivial procedure, like graph
coloring, is needed for determining column multiplicity.

Since then, many more complicated functional decomposition
models have been introduced that don’t require either the bound set
and the free set to be disjoint or the node G to have a single out-
put. Recent research in the field also includes work on BDD-based
methods aimed at improving the efficiency of decomposition [6, 7].

3 SPFDs and Decomposition

We briefly review SPFDs and their ability to represent the infor-
mation content of a node (see [2] for a detailed overview) An
SPFD, R = {(gla,glb), (gZaaga)a ) (gnaagnb)}’ denotes a set of
pairs of functions that have to be distinguished i.e. for each pair
(gia,&ip) € R, the minterms in g;, has to produce a different value
from the minterms in g;. The functions contained in an SPFD
are all the functions that can satisfy the SPFD. A function f is
said to satisfy an SPFD, R = {(glaaglb)a (820782}))7 ) (gnaagnb)}’
if for each pair (gia,8i) € R, f(8ia) # f(8i»). An SPFD , R =
{(81a:810); - - - (8na,&up) }» can also be represented as a graph, G =
(V,E), where

vV =
E

{my|my € gij,1 <i<n,j={a,b}}
{mism;)|((mi € gpa) N (mj € gpp)) V
((m; € gpp) A (mj € gpa)), 1 < p <n}

Every e € E is referred to as an SPFD edge. It is easy to see that
any valid coloring of the SPFD graph is a multi-valued function that
satisfies the SPFD.

An SPFD attached to a node specifies which pairs of primary in-
put minterms can be or have to be distinguished by the node. This
can be thought of as the information content of the node, since it
tells what information the node contributes to its surrounding net-
work.

Example 1 Consider the simple node shown in Figure 3. Input A
has the ability to distinguish 00 and 01 from 10 and 11. Similarly,
input B has the ability to distinguish 00 and 10 from 01 and 11.
Thus, the two inputs together can distinguish every input minterm
from every other input minterm. However, the output of the node
only has the ability for distinguishing 00 from 10, 01 and 11.

A single-input single-output node (buffer or inverter) does not lose
information. Any single-output node that depends on more than one
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Figure 3: Information Flow through an OR-gate: Ry is a subset of
Riyn = RAURp

input always results in a loss of information. However, an n-input n-
output node, whose function is reversible (i.e. for each input combi-
nation there is exactly one output combination, and vice versa) does
not lose information.

Now consider the problem of disjoint decomposition. Consider
the example shown in Figure 1 and look at it in terms of information
flow. The original function F required that the onset minterms have
to be distinguished from the offset minterms. Each input of F does
a part of the distinguishing job. Now, if we want to re-implement
F as the decomposed circuit shown in Figure 1, it is necessary that
the new node G should be able to do all the distinguishing that the
inputs in X; did for the function at F. In order to achieve this, let’s
look at the following algorithm, com_decomp_w_spfd.

1. Compute the SPFD of F in terms of the input space X = X U
X>. Denote it as Rp.

2. Remove all edges of R that can be distinguished by the inputs
in Xo. Denote this new SPFD as R'.

3. Existentially quantify out the variables associated with the in-
puts in X, from R’ to get the SPFD of the node, G. Denote this
SPFD as Rg.

The new function at G can be obtained by coloring Rg. Simi-
larly, the new function at F' can be obtained by expressing Rr in
terms of (x, UX5) and coloring it. It can be shown that Ashenhurst
decompositions can be obtained using the above algorithm.

SPFDs can also be used for obtaining a non-disjoint decomposi-
tion. If a fanin, x;, belongs only to X, then it has to be assigned
to the SPFD of partition X,. On the other hand, if a fanin, x;, be-
longs to both X; and X5, then we could choose to assign an edge
distinguished by x; to either the SPFD of partition X; or the SPFD
of partition X,. Assigning it to X; could increase the complexity of
G whereas assigning it to X, could increase the complexity of H.

Given that SPFDs can be used for obtaining simple functional
decompositions, an interesting decomposition scheme can be devel-
oped.

4 Topologically Constrained Decomposition Prob-
lem

A generalization of the decomposition idea to an arbitrary network
of nodes is shown in Figure 4. Here, instead of specifying the free
set and the bound set, the topology of the network is given i.e. the
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Figure 4: Problem Definition.

fanin and fanout connections of all the nodes in the network are pro-
vided. The problem is to determine the functionalities of the nodes
so that the network implements the required output functions. The
nodes in the network can have multiple outputs (or equivalently can
be multi-valued). The number of outputs of the nodes in the network
are not specified a priori. However, it is desirable to have as many
nodes with binary outputs as possible. The configuration could be
generated by a wireplanning algorithm, where the communication
between the boxes is specified but the actual contents of each box is
not specified.

In the rest of this paper, we discuss the condition that the network
topology has to satisfy in order to ensure that the network can be
synthesized and a particular approach based on SPFDs for synthe-
sizing the nodes.

5 Problem Solution
5.1 Preliminaries

Definition 1 A cut is a set of nodes in the network that when re-
moved completely isolates the primary inputs from the primary out-
puts.

Obviously, a network can have many cuts.

Given a network, A, let S denote its required input-output speci-
fication. The functions of the nodes in A/ are not known. Consider
a node, 1, in network, A. Let L; denote its level in the network,
according to some topological order. A node, 15, in Al will be as-
sociated with two variables, y; and y’j. The variables associated
with the primary inputs of A’ are collectively denoted as X or X',
depending on whether the unprimed or primed variables are used.
Both X and X' are referred to as the primary space. Similarly, the
variables associated with the fanins of a node, 1;, are collectively
denoted as Y; or Yzl . In the sequel, both Y; and Yzl are often referred
to as the fanin space of 1;. The fanin and fanout nodes of m; are
collectively denoted as FI(n ;) and FO(n;), respectively. Similarly,
the transitive fanins and transitive fanouts of 1; are collectively de-
noted as TFI(n;) and TFO(n;), respectively. The primary outputs
in the transitive fanout of m; are denoted as PO(7;). R4 denotes
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Figure 5: Information flows through the network.

the maximum SPFD of m;. The SPFD of n; that is used for deriv-
ing its new function is denoted as R;. The synthesized function at
m; is denoted as f;. R; is expressed either in terms of the (Y; UY j’ )
space or the (X UX') space. G(X,Y;) is the characteristic relation
connecting the primary inputs of Al with the fanins of ;.

5.2 Algorithm

In this algorithm, we use the analogy of information flow through
the network. The network specification tells us what information
needs to be passed on from the primary inputs to the primary out-
puts. As discussed, SPFDs can be used for denoting the informa-
tion content of a node. So, the network function specification can
be thought of as the information content of the primary outputs and
can be re-expressed as SPFDs associated with the primary outputs.
Similarly, the information content of the primary inputs can be ex-
pressed as SPFDs associated with the primary inputs. It is instruc-
tive to think of SPFDs of the primary outputs as the required infor-
mation and the SPFDs of the primary inputs as the available infor-
mation (as shown in Figure 5). The task of the synthesis process is
to determine the information flow through the nodes in the network
so that the required information is present at the primary outputs. A
network can be thought of as a lossy information channel. For this
method to work, it is necessary to ensure that the available informa-
tion is not less than the required information. This translates into a
topology constraint given in Lemma 1.

Lemma 1 The network of empty nodes has to satisfy the following
requirement : each primary output should have at least one path to
each primary input in its true support.

Note that the constraints given by Lemma 1 are only a necessary
condition that each network topology has to satisfy. However, a two
level network that expresses a primary output solely in terms of the
primary inputs is also a network topology that satisfies Lemma 1.
Hence, this lemma is not useful for generating any multi-level net-
work topologies. In a later section, we will discuss some techniques
that can be used for generating some interesting network topologies.
The condition in Lemma 1, however, ensures that each edge in the
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SPFD of a primary output is contained in the SPFDs of one or more
primary inputs in its transitive fanin. This way of framing the prob-
lem in terms of SPFDs enables us to utilize some of the familiar
techniques of SPFD manipulation for determining the flow of infor-
mation through the network from the primary inputs to the primary
outputs.

Several other papers [8, 9] exploit the connection between infor-
mation flow and synthesis. The first paper takes an evolutionary ap-
proach towards network synthesis, where a function is corrected by
adding either a few constants or variables until it becomes the spec-
ified function. The second paper starts with a function expressed in
terms of its primary inputs and progressively decomposes the func-
tion at each step until some user-defined limit like the number of
fanins of each node is reached. This method looks at the informa-
tion content of each node for determining the function of the fanins.
At each node, either a serial or parallel decomposition is allowed.
However, this method does not use a fixed network topology.

The basic idea of our algorithm is to ensure that the information
necessary to meet the network specification is not lost as we move
from the primary inputs to the primary outputs. It accomplishes this
by defining a set of cuts in the network starting from the primary
inputs and moving towards the primary outputs, and ensuring that
each cut has all the necessary information. The general flow of the
algorithm is shown in Figure 6.

There are two basic steps in the algorithm:

1. Defining the cuts in the network.

2. Computing the SPFDs of the nodes in the cut and synthesizing
these nodes using their respective SPFDs.

Many schemes could be used for either of two steps; we describe
one scheme for each step.

5.3 Defining the Cuts in the Network
The procedure goes as follows :

1. Levelize all the nodes in the network starting from the primary
inputs. For each primary input, 1;, L(n;) = 0. For any other
node, M; € A,

L(M;) = max{L(n;) : (nj is a fanin of M;)} + 1.

2. Let max denote the maximum level of any node in the network.
Define the cuts in the network starting from the primary inputs
to the primary outputs. So, for i ={0,1,---, max},

(a) For each primary output, N, compute Cy, to include

i. All nodes in the transitive fanin of Ny with level = i

ii. All nodes with level < i that directly fanout to a node
with level > i in the transitive fanin of M.

Thus,

Ci = {njlmj € TFI(g)) A(L(M;) =10)}

U I(L(My) <) A[Bn, (LMp) > i)
AMp € FOM;))A(np € TFIMi))]}-

(b) Construct C; = UyCy. Thus, C; includes all nodes in N
with level = i and all nodes with level < i that directly
fanout to a node with level > i. Note that C; is a cut in N
as removing these nodes will completely disconnect the
primary inputs from the primary outputs. Cy, denotes the
subset of nodes of C; which provides all the information
to a primary output, Ng.

Co consists of the primary inputs of Al. A node m; definitely
appears in cut Cpy,). Furthermore, let Imax = max{L(ng) Mk €
FO(m;)}. Then, n; also appears in a cut, C;, where L(n;) < i <
Imax. Thus, two cuts in A\’ can share some nodes.

5.4 Synthesizing the nodes in the cut

Here, we briefly describe the algorithm for synthesizing the nodes
in a particular cut, C;. The main requirement that has to be satis-
fied after the synthesis step is that for each primary output, N, Ci
must be able to provide all the information that 1 requires. In the
rest of the section, we describe the algorithm that ensures that this
condition is satisfied.

The cuts are synthesized from the primary inputs to the primary
outputs. Hence, when the nodes in C; are being synthesized, all the
nodes in cuts Cp, - - - ,C;_ have already been synthesized. The nodes
in C; that have already been synthesized are denoted as C]. These
are the nodes of level< i. The nodes in C; with level = i have to be
synthesized and are denoted as C¥. Note that C; = Cj UC].

The algorithm syn_cuts first orders the nodes in C; according to
some heuristic such that all the nodes in C} are earlier in the ordering
than all the nodes in C}'. It then computes the maximum SPFD of
each node in Cj'. This maximum SPFD denotes the total set of edges
that a node can distinguish, derived solely from the distinguishing
ability of its fanins. The SPFD computation then proceeds from the
nodes earlier in the ordering to the ones later in the ordering. At
each node, 1, its SPFD, R, is derived from its maximum SPFD
as follows: For each primary output, g € PO(1;), the algorithm
determines the edges in Ry (X,X’) that cannot be distinguished by
the remaining nodes in Cj; (Cy is the subset of nodes of C; that
provide all the information to 1). The node’s SPFD , R}, is simply
the union of all these edges. The new function at 1; is derived from
R;. Then, the algorithm moves to the next node in the cut.



Algorithm syn_cuts(A/, S):

1. Assume that each primary output, M\, has an SPFD, Ri(X,X'),
associated with it. This can be derived from the given specifi-
cation, §.

2. Order the nodes in C;. All the nodes in C] should be earlier in
the ordering than all the nodes in C}'.

3. For each node, Mj € C}, compute the maximum SPFD of the
node and denote it as R’}’“’C.

RI(X,X') = Uy, erin, Rp(X.X')),

where R,(X,X') is the SPFD of M, expressed in terms of the
primary input space®. Thus, R';’“'x (X,X") denotes the maximum
set of edges that M j can distinguish. However, if we just assign
all the edges in R;f"”‘ to Rj, a lot of information will be dupli-
cated in the network. Hence, we try to minimize the amount of
redundant information in R in the next step.

4. Process the nodes in C}' in order, starting from the one earliest
in the ordering. For each node, M; € C}'

(a) Foreachm; € PO(n;),

i. Determine the edges in the SPFD of My that can
only be distinguished by M j according to the order-
ing computed in Step 2. Hence, from

Rjk(Xaxl) = R;"mx(X,X,) /\Rk(Xaxl),

A. Remove the edges that are distinguished by the
SPFDs of the nodes in Cy, that are earlier in the
ordering. Thus, for eachn, <1j,

Rix(X,X") < Ry(X,X") ARy(X,X").

B. Remove the edges that can be distinguished by
the nodes in Cy, that are later in the ordering.
Thus, for each M > M,

Ri(X,X') = Ry (X,X') A RJES(X,X0).

(b) Compute R;(X,X') = Ul_Ri(X,X'), where n =
[PO(;)I-

(c) Compute
This is the image of R;j(X,X') to the local input space of
nj-

(d) Determine the new function atM; by coloring R;(Y;,Y J')
and minimizing the resulting ISF using ESPRESSO-MV.

Let this new function be fj. Note that f;j can be multi-
valued, in general.

5. Stop.

2Since My is a fanin of 1, hence it has already been synthesized and has an SPFD
associated with it.

5.4.1 Global SPFDs vs Local SPFDs

In all our computations, the SPFDs were expressed in terms of the
primary inputs (global SPFDs) instead of the local inputs (local
SPFDs). While computations of global SPFDs can be fairly memory
intensive, the disadvantages of expressing the SPFDs of the nodes
in terms of the local fanin space are two- fold:

1. Expressing the SPFD in terms of the local space can add some
extra useless edges. For instance, suppose the primary input
edge (x1,x,) produces the edge (y1,y2) in the local fanin space
of ;. Now, if we take the inverse image of (y1,y2) back to the
primary input space, then in addition to (x,x;), a few more
edges may be obtained. Hence, expressing R;f"”‘ in terms of
the local inputs could add some useless edges. This, in turn,
may result in some useless edges in the SPFD, R, that is used
for deriving the new function at m;.

2. Translating the SPFD from one local space to another also re-
sults in some loss of precision due to early existential quan-
tification. Thus, suppose we want to remove the edges in the
SPFD, Ry, of 1, from the SPFD, R;’-“”". The current algorithm
would do the following (as shown in Step 4(a)(A)):

Rj(YjaY][) = EIX,X’(R;”M(Xa‘X,)RP(Xaxl))G(Xan)G(XaY;)'

On the other hand, if all the SPFDs were expressed in terms of
the local fanin spaces, the computation would be the following:

R;(Y},Y})

Y RI(Y; YA Gy, v Rp(Yp, Y})

7y
En(YjaYP)En(Y;,Ylg)),

where En(Y;,Y,) = IxG(X,Y;)G(X,Y,). So, in the second
equation, the quantification is done first, followed by the con-
junction. This could result in some additional edges.

In practice, these disadvantages were indeed operative. Hence, all
our computations are performed on global SPFDs.

5.5 Correctness

Lemma 2 Let Cj, and Cj, denote the synthesized and unsynthesized
nodes of Cy, respectively. Then,

Climty = CjUC™4,

where C*% = {n,|(m, € FI(M;)) A(n; € Ci)}.

Proof Sketch:
— C(i—l)k - Clrk UCaddi
Consider a node, np € C(;_y. Either nj, fans out to at least one
node of level > i or else the maximum level of its fanouts is = i. In
the first case, it belongs to Cj,. In the second case, it belongs to the
Cadd .

1 CpUCH C Cyyye
Any node M, € Cj, has level < i and fans out to at least one node
of level > i. Thus, M € C(;_1);. Consider a node, 1, € cadd Al
nodes in C} have level = i. Thus, L(n,) < (i —1). Two cases must
be distinguished.

1. L(np) = (i—1): Since n,, is in the transitive fanin of N, hence
MNp € Clim1)k-



2. L(np) < (i—1): Since, 1, has at least one fanout of level =,
thus it fans out to at least one node with level > (i—1). Hence,
Np € Cli-1)k- O

Theorem 2 [f the topology constraint given by Lemma 1 is satis-
fied, each primary output, N, can always be synthesized to satisfy
its network specification. The internal nodes in the network can be
multi-valued after synthesis.

Proof Sketch:

We prove the above for an arbitrary primary output, 1y.

Base case: The topology constraint ensures that Cy; has all the in-
formation that 1y requires.

Inductive step: Suppose Cj; has all the information required by 1.
We prove that the algorithm syn_cuts ensures that C(; 1y; will have
all the information that 1, requires.

Suppose that’s not true. Then, there exists an edge e = (x,x') €
Ri(X,X") that cannot be distinguished after synthesizing the nodes
in C;; 1)¢- This happens only if e is not in the SPFDs of the nodes
in C(’i 1)k hor does it appear in the union of the maximum SPFD
of the nodes in CE‘I. e Note that all nodes in Cz‘l. )k have level
= (i+1). Since the maximum SPFD of a node is simply the union
of the SPFDs of its fanin nodes, e does not belong to the SPFDs
of any of the fanin nodes of Cz‘i )k But the fanins of the nodes

in CZ’ )k together with the nodes in C(’l. 1k form the nodes in C
(Lemma 2). Thus e does not belong to the SPFDs of the nodes in
Ci. But this contradicts our assumption that e can be distinguished
by the nodes in Cy. ]

In the sequel, we refer to the entire algorithm shown in Figure 6
(comprised of defining the cuts in a network and synthesizing the

nodes in each cut using syn_cuts) as syn_spfd.

6 Experiments

In this section, we describe some experiments that we performed for
determining the practical feasibility of our scheme. As mentioned
before, our algorithm needs a network topology and an input-output
specification as its starting point. We are still currently investigating
different techniques for generating network topologies and suggest
one in Section 7. For now, we use circuits from the ISCAS bench-
mark suite (or their derivatives) and use their topology information
and input-output specifications as our starting point. The experi-
ments are set up to test if our procedures are valid and if they can
closely reproduce the original circuit.

In the first set of experiments, the initial topology of a given IS-
CAS benchmark circuit and its input-output specification is used as
the starting point. Thus, given the topology of the original circuit,
syn_spfd is used for synthesizing the nodes in these networks. The
initial results are shown in Table 1. Columns 2 and 3 show the literal
counts of the original circuit and the circuit after using syn_spfd. An
average improvement of 6.56% in literal count is obtained after us-
ing syn_spfd. One negative artifact of the greedy edge distribution
scheme used in syn_cuts is that some of the nodes may be multi-
valued 3. This is because a node that appears later in the ordering in
a cut may have to distinguish many edges and its SPFD graph may
no longer be bipartite. Practical results, however, indicate that on
average only 6.39% of the nodes are multi-valued (Column 4).

3Note that a solution exists for the given starting topology and the input-output
specification in which all the nodes are binary. This solution is the original circuit.

|| circuits || original | syn_spfd [ % MV-nodes |

apex7 292 291 9.09
cht 236 199 0
cmb 62 77 222
cc 99 102 0
cu 90 88 0

fSIm 195 194 0
lal 224 226 8.92
te2 339 298 8.51
terml 625 343 24.07
x2 71 59 11.11
| Average | 0 -6.56 6.39

Table 1: Results of using syn_spfd on ISCAS benchmark circuits

|| circuits || script.rugged | syn_spfd | % MV-nodes | simplify |

apex7 246 261 3.03 255
cht 165 196 9.75 189
cmb 51 59 16.67 53
cc 63 64 0 64
cu 60 62 0 61
fS1m 119 124 8.33 123
lal 106 107 0 107
tee2 219 287 23.4 254
terml 176 169 6.67 160
x2 48 49 0 49
[| Average || 0 7.97 6.78 3.87

Table 2: Results of using syn_spfd on optimized ISCAS benchmark
circuits

Table 2 provides results of using our scheme on optimized IS-
CAS benchmark circuits. In this experiment, a circuit is optimized
using script.rugged and the topology of the optimized circuit is used
as the starting point of syn_spfd. The input-output specification is
the functionality of the original circuit. This experiment is set up to
test if our procedure works under tighter topology constraints. The
results indicate we can reproduce the optimized circuit quite closely.
Even though, we do worse than the optimized circuit in some cases,
the average increase in literal count in only about 8%. The average
percentage of nodes that are multi-valued is 6.78%. The results of
Table 2 should be viewed from the point of view of a real applica-
tion. In a real application, we would not know a solution. We would
be given only the topology and the input-output specifications of the
network. There would be no way for judging the quality of our so-
lution. Table 2 supports the claim that the solution is pretty good.
In addition, network optimization methods which do not alter the
topology like don’t care optimization can be applied for improving
the solution. The results of running full_simplify [11] is shown in
Column 5 in Table 2. Thus essentially we are able to almost recover
the heavily optimized circuit that we started with.

Our preliminary results indicate that it is possible to use the al-
gorithm described in this paper for synthesizing the nodes in a net-
work from its topology and its input-output specification. In our
experiments with the topologies of the unoptimized circuits, there
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was also a reduction in the literal count with respect to the original
circuit. Also, in practice, we found that on average less than 7% of
the nodes are multi-valued in both the optimized and unoptimized
topologies.

The work up to this point assumes that a network topology is
provided to us. In the next section, we briefly discuss a technique
for generating a network topology that can be used as an input to
our algorithm, syn_spfd.

7 Generating Instances of Topologically Con-
strained Decomposition Problem

In the previous sections, we provided an algorithm for solving the
topologically constrained decomposition problem. It was assumed
that the data for the problem was given. Here, we briefly describe a
scheme for generating instances of the problem which can then be
input to the algorithm syn_spfd.

Our approach is a generalization of the use of don’t care wires
[12]. A very brief overview of that approach and its benefits are
provided.

The idea was to compute a set of alternate wires for each wire in
the original circuit C. In addition, the choice of an alternate wire for
one wire had to be independent of the choices made for the other
wires. This enabled a placement algorithm to pick alternates for
all the wires in C at the same time, thereby obtaining a more glob-
ally optimized solution. Below, we give a brief description of the
algorithm used in [12] for generating these “compatible” sets of
alternate wires.

Let Sy denote the set of alternate wires for wire wn, ;.

Definition 2 Given a set of sets of nodes S = {Sy}, a selection is
a ordered set of nodes {ny,... ’Tllskjl} such that My € Sg;.

Definition 3 A set of sets S = {Si;} is compatible if for each selec-
tion, there exist logic functions at each node such that the implied
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netlist for that selection can implement the specifications at the pri-
mary outputs.

The basic idea for generating the sets Sy; is the following: Given a
circuit C, the SPFDs of all the nodes are computed using the algo-
rithm presented in [2]. Then the sets Sy ; are computed such that the
following two properties are satisfied:

1. For any selection of {Sy;}, the resulting network is acyclic.

2. Given Sy, wn,—m; € Skj — ank_‘n/' C Ry, where ank_‘n/' and
Ry denote the SPFDs of wy, _y, and 1, respectively.

It was shown that any set of sets Sy; that satisfied the above two
properties is compatible. Given the sets of alternate wires, a mod-
ified placement algorithm called AWC was used for selecting an
alternate wire for each wire such that the total wirelength (i.e. the
sum of the half perimeters of the bounding boxes of each net) was
minimized. The choice of an alternate wire for each wire in C cre-
ated a new network A’ with an improved topology from the point
of view of total wirelength. The SPFDs of the nodes in A were
the same as the SPFDs of the same nodes in C because the alternate
wires were selected such that all the information that was originally
available at any node in C was still available at the corresponding
node in A'. However, the local functions of the nodes in A were
no longer the same as the corresponding ones in C. Hence a new
function had to be synthesized at each node using its SPFDs for en-
suring that 2’ implemented the same function as C. The entire flow
is shown in Figure 7.

It was found that 7.5% of the wires had alternate wire sets and an
improvement of 12% in wirelength was obtained after using these
sets. Experimental results also indicated a positive correlation be-
tween the improvement in wirelength and the percentage of wires
that had alternate wires. The generalization that we present in the
rest of the section is an attempt at increasing the number of wires
that have alternate wires.



In [12], wire wn sy is considered an alternate for wire wn,
only if the SPFD of wn,—y; is completely contained in the SPFD
of My (Condition 2 above). In practical experiments, it was found
that this requirement might be too restrictive, thereby limiting the
number of wires that have alternate wire sets. Here we relax the re-
quirement for a wire to be an alternate for another wire in an attempt
to increase the number of wires with alternate wire sets.

We say that wire wn,—; is an alternate for wire wy,—y; if the
following condition is satisfied:

'X(WT]k—”]j) g X(nS)v

X(Wnk—mj) = {ni (M; is a primary input ) A
Gl (10 # @)} and X)) = {0
(niis aprimary input ) A3y wer, (1(0) # x2(0)}.  The
terms x; (i) and x,(i) denote the value of 1; in the minterms x; and
xp, respectively. The X values for all the nodes and wires in C are
computed in a topological fashion from the primary inputs to the
primary outputs.

The above condition checks if the set of all primary inputs that
can distinguish all the edges in the SPFD of wy,—y; is contained in
the set of all primary inputs that can distinguish all the edges in the
SPFD of 1. This ensures that all the primary inputs that are needed
for distinguishing the edges in meﬁn_f are definitely contained in
the transitive fanins of 1y, independent of the wiring changes in the
transitive fanin of ;. However, this condition does not try to match
the edges in ankﬂnj and Ry as the original condition of an alternate.
Hence, this requirement on an alternate is more relaxed than the
requirement on an alternate in [12]. We believe that by using it
more wires in C will have alternate wire sets. We call these sets
of alternate wires partial don’t care wires because now an alternate
wire may only provide a fraction of the information that the original
wire provides. Note that during the construction of the sets S; in
our scheme, we use the same restrictions that were used in [12] for
ensuring that any selection of Sy ;, the resulting network is acyclic.

The flow shown in Figure 7 can be modified to obtain an instance
of the topologically constrained decomposition problem. The new
flow is shown in Figure 8. Using this definition of alternates, the
sets Sy j are constructed. Then the AWC placement algorithm is used
for selecting an alternate for each wire such that the total wirelength
is minimized. The network A that is obtained after this selection
process has a topology that satisfies Lemma 1. This is because this
definition of alternates ensures that the set of all primary inputs that
are needed to distinguish all the edges in the SPFD of a primary out-
put (i.e. the primary inputs in its true support) in C have a path to it.
Hence, A is an instance of topologically constrained decomposition
problem. The algorithm syn_spfd can then be used to synthesize the
functions of the nodes in A’ so that it implements the same function
as the initial netlist C. Note that since an alternate of a wire may now
provide only a part of the information provided by the original wire,
the SPFDs of the nodes in A are not the same as the SPFDs of the
corresponding nodes in C. Hence, the simple resynthesis algorithm
used in Figure 7 cannot be used.

where

8 Conclusions and Future Work

This paper discusses the synthesis process for “topologically con-
strained decomposition”. The initial results are very encouraging.
Using our algorithm, we were able to recover the starting circuit to a

great extent using just its topology information and its input-output
specification. One problem was the presence of some multi-valued
nodes in a topology that has an implementation where all the nodes
are binary. Since the multi-valued nodes had to be encoded for de-
termining the final literal count of the synthesized circuits, they also
contribute to a significant fraction of the total literal count. We are
currently investigating schemes for reducing the number of multi-
valued nodes in the synthesized circuits. We plan to experiment with
some ordering schemes to offset the negative effects of the greedy
edge distribution scheme. The current ordering scheme uses a ran-
dom ordering for the unresynthesized nodes in a cut. In addition,
we are also investigating schemes for edge distribution that attempt
to limit the chromatic number of the SPFDs of the nodes in the cut.
Another problem of the present algorithm is the memory usage of
the global SPFDs. There are a few approaches for dealing with this
problem. It may be beneficial from the memory perspective to rep-
resent the global SPFDs as asymmetric relations. Another help in
this direction is the use of SAT as described in [10]. Also, for large
networks, this algorithm can be applied to portions of a partitioned
network.

We are currently investigating schemes for generating an initial
topology. One idea involves using a generalization of the concept
of ”don’t care” wires as discussed in Section 7. We also believe this
algorithm could be useful in other wireplanning scenarios where the
interconnect structure is planned out before the node functionalities
are decided.
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