At the completion of the course, *Introduction to Digital Integrated Circuits*, students will be expected to:

1) Have the skills and conceptual understanding needed to design digital integrated circuits from the transistor and functional-unit level.

2) Know how to define, analyze, and optimize noise margins, propagation delay, power consumption, and robustness of digital integrated circuits based on scaled CMOS technologies.

3) Be familiar with the topologies and circuit styles used in modern digital integrated circuits.

4) Know how to analyze and optimize the trade-offs between the key metrics.