1. **Number and title of course:** CS C191 – Quantum Information Science and Technology

2. **Course objectives:** Introduction to quantum physics from a computational and information viewpoint. Leading into the design of quantum algorithms, the requirements for physical implementation of quantum computers.

3. **Topics Covered:**
 - Qubits, measurements, Hilbert spaces, tensor products
 - Unitary evolution, universal gates, no cloning theorem
 - Bell states, Bell Inequalities, quantum teleportation.
 - Schrodinger equation, Hamiltonians
 - Spin properties, angular momentum
 - Manipulating spins, B-fields
 - Spin precession, spin resonance, 2-slit experiment
 - Entanglement and spins, atomic qubits
 - Photon polarization, photon qubits
 - Reversibility, quantum circuits
 - Quantum fourier transform
 - Quantum factoring algorithm
 - Quantum search and quantum zeno effect
 - Density matrices
 - Implementing quantum computers:
 - Solid state quantum computation
 - Cavity QED.
 - Josephson junction qubits
 - Dirac equation and the origin of spin.

4. **Relationship of course to program objectives:** This course requires students to use their fundamental knowledge of mathematics; science, particularly physics and chemistry; and engineering to understand and analyze basic problems in nanoscience, and their emerging applications in information theory, computing devices, optics, networks, and cryptography.

5. **Prepared by:** Umesh Vazirani (3/2/06)