A Brief Tutorial on Models of Computation

The MESCAL Team
UC Berkeley
Fall 2001

- The laws that govern communication and concurrency

- What do you get?
 - Description that is natural to the application domain
 - Description that is expressive
 - Descriptive approach that is not cumbersome
 - Description amenable to formal analysis
 - Description should be executable and a high-performance simulation should be able to be generated from it
Brief Tutorial on Models of Computation

- CSP – concurrent threads with rendezvous
- PN – process networks
- TM – Timed multithreading, prioritization
- FSM – finite state machines
- SR – Synchronous Reactive
- CT – continuous-time modeling
- DE – discrete-event systems
- DDE – distributed discrete-event systems
- Giotto – time driven cyclic models
- Petri Nets – places and transitions
- GR – graphics
- SDF – synchronous dataflow
- xDF – other dataflow
- DT – discrete time, DF with time
- MescalPE – VLIW datapaths
- CLICK – Router packet dataflow
- Meta – function calls

Process Domains

- CSP
 - Components are sequential processes that run concurrently
 - Synchronous message passing
 - Good for resource management problems
 - Dining Philosophers
 - Hardware bus contention
 - Nondeterminism
 - Liveness
 - Fairness
 - Deadlock
Process Domains

- **PN**
 - Kahn-MacQueen Process Network
 - Components are sequential processes that run concurrently
 - Communication channels are unbounded FIFOs
 - Get operation blocks until data is available.
 - Processes cannot poll for data
 - Deterministic execution
 - Bounded memory with blocking writes
 - Good for streaming signal processing applications

Control Domains

- **FSM**
 - *charts formalism
 - Hierarchical decomposition of states
 - Concurrent FSMs with broadcast communication
 - Good for:
 - Sequential control logic
 - Modal models
CT - Continuous Time

- Components perform mathematical operations on signals
 - Includes Integrators
- Executing a model means solving ODEs numerically
- Good for modeling physical systems
 - Simulate analog circuit
 - Control systems
 - SPICE

DE - Discrete Event

- Components communicate with events that are ordered on a global timeline
- Send operation transmits an event with a timestamp
- Get operation only sees events that are available at the current time
- Good for:
 - Digital logic - VHDL and Verilog simulators are DE simulators
 - Less detailed than a CT simulation, and faster
- DDE - Distributed Discrete Event
 - Each component has a local notion of time
 - Global synchronization preserved
Petri Nets

• C.A. Petri, 1966
• Places
• Transitions
• Tokens
• Good for:
 • Modeling scheduling systems
 • Industrial control systems
 • Analyzing network protocols

Dataflow Models

• SDF – Synchronous Dataflow
 • Components execute according to a predetermined schedule
 • Communications is strictly controlled
 • Components must always consume a specified number of tokens on their input ports
 • Produce a specified number of tokens on their output ports
 • No time
 • Good for applications without complex control flow
 • Digital signal processing
Dataflow Variants

• HDF – Heterochronous Dataflow
 • A generalization of SDF
 • Components can change their token production/consumption rates between iterations
 • Must choose from a fixed selection of type signatures
 • Dataflow with different modes

• DT – Discrete Time
 • SDF with time
 • A model has a period and a global time
 • Each communication channel has a local time
 \[\text{global time} \leq \text{local time} \leq \text{global time} + \text{period} \]
 • Compose DF with other timed domains like DE or CT

Dataflow Variants

• Boolean-controlled dataflow (BDF)

• Integer-controlled dataflow (IDF)

• Dynamic dataflow (DDF)
Dataflow Variants

- MescalPE
 - Uses a BDF foundation to describe VLIW datapaths
 - Implicit pipeline registers
 - Extract reservation table
 - Generate a compiler

CLICK

- Process Network
- Processes are IDF-like blocks
- Hierarchical composition of PN and IDF
- Good for network routers
Meta

• Components are objects that communicate with imperative function call semantics
• An output port indicates that an object performs function calls
• An input port indicates that an object accepts function calls
• Control follows communication from component to component
• No strong guarantees or provisions like other MoCs
• Good for:
 • Metamodelling – making models of other models

Ptolemy II

• Java framework for experimenting with models of computation
• Models are composeable hierarchically
• Actors are type polymorphic and domain polymorphic
The MESCAL Team

- Kurt Keutzer
- Matthias Gries
- Christian Sauer
- Kees Vissers
- Yujia Jin
- Andrew Mihal
- Matt Moskewicz
- Will Plishker
- Kaushik Ravindran
- Niraj Shah
- Scott Weber