Electrical Engineering
      and Computer Sciences

Electrical Engineering and Computer Sciences

COLLEGE OF ENGINEERING

UC Berkeley

   

2008 Research Summary

Towards A Balanced Exercise Program: Tracking Free Weight Exercises

View Current Project Information

Keng-hao Chang, Mike Chen and John F. Canny

Weight training, in addition to aerobic exercises, is an important component of a balanced exercise program. However, mechanisms for tracking free weight exercises have not yet been explored. In this paper, we study methods that automatically recognize what type of exercise you are doing and how many repetitions you have done so far. We incorporated a three-axis accelerometer into a workout glove to track hand movements and put another accelerometer on a user's waist to track body posture. To recognize types of exercises, we tried two methods: a Naïve Bayes Classifier and Hidden Markov Models. To count repetitions we developed and tested two algorithms: a peak counting algorithm and a method using the Viterbi algorithm with a Hidden Markov Model. Our experimental results showed overall recognition accuracy of around 90% over nine different exercises, and overall miscount rate of around 5%. We believe that the promising results will potentially contribute to the vision of a digital personal trainer, create a new experience for exercising, and enable physical and psychological well-being.

Figure 1
Figure 1: Experimental setup: 3-axis accelerometers on gloves