Adjoint based optimization to enable single mirror optic for extreme ultraviolet lithography

THIS REPORT HAS BEEN WITHDRAWN

Greggory Scranton

EECS Department
University of California, Berkeley
Technical Report No. UCB/EECS-2015-131
May 15, 2015

Traditionally, aberration correction in extreme ultraviolet (EUV) projection optics requires the use of multiple lossy mirrors, which results in prohibitively high source power requirements. We analyze a single spherical mirror projection optical system where aberration correction is built into the mask itself, through Inverse Lithography Technology (ILT). By having fewer mirrors, this would reduce the power requirements for EUV lithography. We model a single spherical mirror system with orders of magnitude more spherical aberration than would ever be tolerated in a traditional multiple mirror system. By using ILT, (implemented by an adjoint-based gradient descent optimization algorithm), we design photomasks that successfully print test patterns, in spite of these enormous aberrations. This mathematical method was tested with a 6 plane wave illumination source. Nonetheless, it would have poor power throughput from a totally incoherent source.

Advisor: Eli Yablonovitch