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Abstract

Filtering or sanitization is the predominant mechanism
in today’s applications to defend against cross-site scripting
(XSS) attacks. XSS sanitization can be difficult to get rightas
it ties in closely with the parsing behavior of the browser. This
paper explains some of the subtleties of ensuring correct saniti-
zation, as well as common pitfalls. We study several emerging
web application frameworks including those presently used
for development of commercial web applications. We evaluate
how effective these frameworks are in guarding against the
common pitfalls of sanitization. We find that while some
web frameworks safeguard against the empirically relevantuse
cases, most do not. In addition, some of the security features
in present web frameworks provide a false sense of security.

1. Introduction

Cross-site scripting (or XSS) attacks continue to plague
existing and emerging web applications, despite receiving
intense focus from both industry and academia. Researchers
have proposed many novel defenses, ranging from purely
server-side to browser-based or both.Sanitizationor filtering,
the practice of encoding or eliminating dangerous constructs
in untrusted data, remains the predominant defense strategy in
existing applications.

A variety of web application frameworks, including those
used for major commercial applications, have emerged. As
these frameworks gain wide acceptance as platforms for se-
curing applications, it becomes important to quantify the extent
to which web frameworks address the fundamental causes of
XSS vulnerabilities in existing web applications.

An XSS attack occurs when the web browser executes, as
higher-privileged application code, data input controlled by a
low-privileged entity. Sanitization for XSS defense involves
the following two main components1:

(a) Identifying Untrusted Data(or “what to sanitize”): Even
for the simplest applications, only untrusted input data should
be sanitized before being emitted in the HTTP response—code
written by the developer is implicitly trusted and should not
be sanitized.

(b) Correctness of Sanitization: After identifying untrusted
data, the sanitization performed needs to be complete and
correct to prevent code injection attacks due to insufficient or

1Vulnerabilities in web browsers and its components as well as under
specification of web standards have been another reason for XSS attacks [7,
8, 30]. However, we do not consider these in this paper.

incorrect sanitization. Additionally, the application must not
break functionality by overzealous application of sanitization.

The goal of this paper is to systematically understand the
challenges in implementing these two components, evaluate
support for them in existing web frameworks, and develop
a basic understanding of sanitizer usage in large, real-world
applications today.

Addressing Identification of Untrusted Data. A goal of
this paper is to understand how web application frameworks
address the challenges of identifying untrusted data by using
HTML templating, as well as the flexibility of built-in support
for embedding untrusted data in web application output. Prior
research has focused on addressing this problem by employing
techniques such as taint-tracking [36, 43, 60, 65] or type sys-
tems [46]. We aim to quantify how web applications address
this challenge differently and how the two may interplay with
each other in the future.

Addressing Correctness.Ensuring correctness for cross-site
scripting sanitizers can be tricky, primarily because it involves
a deep understanding of the behavior of web browsers. We first
formalize XSS sanitization by developing a detailed model of
the web browser, demystifying some of the cryptic intricacies
of browser behavior. We explain some of the subtleties in
“getting sanitization right,” including how sanitizationapplied
by the server can be “undone” during the lifetime of untrusted
data. Based on this understanding of browser behavior, we
illuminate error-prone cases for sanitization, and the poorly-
understood subtle cases worthy of further attention. Previ-
ous research has addressed correctness of the sanitization
process [5, 48, 49, 59], but we focus on why the sanitization
process goes wrong rather than how to verify that it is correct.

Web application frameworks have gained popularity, as they
promise ease of development and a more principled approach
to security. To study their role, we gather 13 popular web
frameworks, including several in commercial use. We first
quantify how these frameworks provide sanitization defense
for XSS. Particularly interesting is the support forauto-
sanitization, a feature in which the web framework takes the
responsibility for eliminating XSS attacks for the developers.
We find that while most frameworks do not provide this
feature, in the ones that do, it often provides little more
than a false sense of security; unlike SQL injection (a related
web vulnerability), cross-site scripting attacks requirecontext-
sensitivesanitization, yet most of these frameworks provide
context-insensitive sanitization. We also quantify some of the
other interesting variations in underlying principles employed
in these frameworks pertaining to: (a) where to sanitize, (b)
support for separation of HTML templates from data, and (c)



degree of expressiveness in sanitizers.
In order to understand whether real-world applications today

could take advantage of existing web frameworks in the
near future, we perform an empirical evaluation of 8 popular
applications ranging from 10 KLOC to over 500 KLOC. We
find that most advanced web frameworks do offer support for
all HTML contexts actually used by our subject applications.

Finally, we outline sanitization practices in real-world ap-
plications that web frameworks do not currently support,
pointing out the need for extensible sanitization policiesin web
frameworks. We formulate the abstraction of asanitization
policy functionthat captures how applications pick sanitizers
to apply. We show that sanitization policy functions are only
implicitly enforced (rather than being explicitly stated)in
application logic, are complex, and vary significantly fromone
application to another.

In the following sections, we:
• Formalize the concepts of embedding contexts, sanitizers,

and browser transductions, and use these formalizations
to guide our inquiry into the subtleties and pitfalls of XSS
sanitization.

• Analyze the correctness and completeness of sanitization
mechanisms of web frameworks.

• Discuss our empirical analysis of web applications, which
allows us to compare sanitization mechanisms supported
in frameworks and those required by real web applica-
tions.

2. Contexts, Sanitizers and Correctness

The correctness of sanitization mechanisms is closely tied
to the parsing behavior of the web browser. We present an
abstract model of the web browser which explains how the
intricacies of XSS sanitization are more complex than classic
command injection sanitization. Many formulations of cross-
site scripting defense already exist in the literature [11,42,
50, 59, 62]. Our formalization of the browser model and XSS
builds upon previous work [50], with an enhanced focus on
browser transductions.

2.1. A Model of The Web Browser

We can view the browser as a collection of sub-grammars,
each corresponding to the different languages recognized in
the web browser: HTML, JavaScript, CSS, the grammar for
URI schemes, and so on. The browser parses documents it
retrieves, such as HTML pages, in stages. The browser parses
each portion of the input by one or more sub-grammars.
For example, the browser parses HTML input according to
HTML syntax rules (the latest specification effort for whichis
HTML 5). Certain portions of the input may contain fragments
from other languages, such as within<script> blocks; these
fragments are then shipped to the corresponding sub-parserfor
that language.

Figure 1 depicts the complexity of the interaction between
the various sub-parsers in the browser. Note that the shaded

blocks do not represent sub-parsers themselves, but other
components of the browser that interact with the sub-parsers.
The DOM stores all the parse-tree outputs of the sub-parsers,
funnels input fragments between them, and provides methods
for manipulating both the parsed outputs as well as the string
fragments corresponding to them. The JavaScript runtime uses
the DOM to effect changes to the page loaded in the browser,
causing sub-parser invocation in the process.

Web applications embed data from untrusted input sources
(such as lower privileged users) in the HTTP response, which
is then served to a higher privileged entity. In a cross-site
scripting attack, parsing of untrusted data as a dangerous
non-terminal leads to injected code execution. Informally, we
say that untrusted data “breaks out” of a trustedembedding
context, causing script execution. The set of attack strings
that accomplish this varies significantly based on the trusted
context in which untrusted data is embedded. For clarity, we
begin by formalizing this notion of embedding context.

Embedding Contexts.
Definition 1: (Embedding Context) Let G = (V,Σ, S, P )

be a context-free grammar for a sub-language defined by a
quadruple consisting of a set of non-terminal symbolsV ,
terminal symbolsΣ, start symbolS and a set of productions
P . Let D : S ⇒∗ γ denote the leftmost derivation sequence
of the sentenceγ under the production rules ofG.

Let each step in the derivation sequence apply a production
rule and yield a “sentential form,” i.e., a sequence consisting
of non-terminals and terminals.

A given untrusted substringv ∈ Σ∗ in the browser input
I ∈ Σ∗ is said to be embedded in a context (or non-terminal)
C, if

(a) the derivationX : αCβ ⇒∗
G
αuvwβ is a subsequence

of the leftmost derivation ofI, for terminal wordsα, u andw
consisting only of trusted characters, and

(b) X is minimal, i.e.,∄C′, X ′ : α′C′β′ ⇒∗
G
α′u′vw′β′

whereX ′ is a subsequence ofX , for terminal wordsα, u′ and
w′ consisting only of trusted characters.

To make our definition concrete, we list some examples of
embedding contexts in Table 1. Although we can define several
such contexts with the above formalism, we wish to restrict
ourselves to those that real-world applications actually use and
those that web application frameworks support.

2.2. Context Transitions

Associated with each sub-grammar in the browser are
transition non-terminals, i.e., non-terminals that recognize
fragments of the input that belong to another sub-grammar.
For instance, the parser recognizes data embedded in event
handler attributes of HTML tags as JavaScript statements, and
the browser must parse the attributes further and interpret
them in the JavaScript engine. Whenever the parser derives a
fragment of the input from a transition non-terminal, the parser
ships the fragment to the corresponding sub-parser for further
processing (corresponding to the edges in Figure 1). We refer



Example Sub-grammar(s) Embedding contexts
<p>untrusted</p> HTML HTML tag content
<p id="untrusted"> HTML Double-quoted HTML attribute
<a onclick="document.title=’untrusted’;"> JavaScript, HTML Single-quoted JavaScript string in double-quoted HTML attribute
<img src=http://untrusted> URI, HTML Domain of a URI in an unquoted HTML attribute
<div style="color: rgb(untrusted);"> CSS, HTML RGB color specification in double-quoted HTML attribute

TABLE 1. Examples of common embedding contexts.

HTML parser

HTML code

DOM

JavaScript
parser

CSS
parser

URI
parser

1. PCDATA

2. CDATA

3. innerHTML

JavaScript
runtime

4. DOM Core

7. stylesheets 8. scripts
6. U

RI 
attr

ibu
tes

11. eval()

5. DOM HTML 

10. JavaScript
expressions 

14. JavaScript URIs

13. AST

12. JSON

9. url()

Fig. 1. A model of a web browser showing the possible flows of data between the parsers, the DOM, and the JavaScript
runtime. The DOM stores all syntax-tree outputs of the parsers, and the JavaScript runtime manipulates the DOM. For
most of the edges, the browser applies a transduction when they are traversed. See Table 2 for more details about the
edges.

to this transition between a context in one sub-grammar to a
context in another sub-grammar as acontext transition.

Static Transitions. Some context transitions can be statically
determined by the placement of the untrusted data in the web
application’s output, whereas others result from execution of
client-side application code. Take the following example:

<img src="untrusted">

This shows a fragment of HTML code with a context transition
from an HTML attribute context to the URI parser’s scheme
(e.g., http: or mailto:) context. Identifying static transitions
is feasible using a high fidelity model of a web browser for
parsing.

Dynamic Context Transitions. Dynamic context transitions
occur when data is programmatically read from or written to
the DOM by JavaScript. There are several ways for data parsed
by the HTML engine to be read and placed into the DOM via
JavaScript. Table 3 shows a common subset of these methods.
Identifying dynamic transitions requires an involved analysis
of the application’s JavaScript code.

Browser Transductions.A significant complication is that the
browser applies a transduction on input along each transition
edge. For instance, when the data in a URL attribute is found,
the browser first decodes HTML entities [28] in it before
shipping it to the URI parser. For example, we formally denote

each transition from contextC1 to C2 accompanied by a
transductionT asC1 →T C2.

Transductions are important because they make reasoning
about sanitization non-trivial. As described later, sometimes
these transductions can “undo” the sanitization applied on
untrusted data, leading to subtle bugs in the sanitization
process.

Transductions are edge-specific; we detail them in Table 2.
In particular, Table 3 details the transductions that are auto-
matically performed by the browser upon reading or writing
DOM elements via JavaScript.

There are subtle features of these accesses that are important
for sanitization correctness. Specifically, note that:

(a) Data values are HTML entity decoded when written
from the HTML parser to the DOM via edge 1 in Figure 1.
Therefore, when a program reads a value via JavaScript, e.g.,
in getElementById(’a’).getAttribute(’id’), the value is entity
decoded and if it is subsequently evaluated as HTML code,
it results in code injection. This automatic entity decode can
have the effect of negating sanitization applied by the server
on untrusted data.

(b) DOM access methods expose two different ways of
accessing DOM content. One set of read access APIs creates
a serialized string of the AST representation of an element.
These correspond to entries named “HTML serialization,”
“CSS serialization,” and “URI normalization” (which addition-



Edge Trigger for traversal Transduction function Example (input → output)
1 Normal HTML markup. HTML parsing <p>1&lt;2</p> → DOM

node “p” containing1<2
2 Character data in HTML, which is not parsed (e.g.<script> blocks). None
3 Setting theinnerHTML property on a DOM node, which invokes the

HTML parser to obtain a corresponding DOM tree from the inputstring.
HTML parsing <p>1&lt;2</p> → DOM

node “p” containing1<2
4 Uses of Core DOM APIs, such asgetAttribute or setAttribute. None
5 Uses of HTML-specific DOM APIs, such as.innerHTML or .style. See Table 3
6 Delivery from HTML parser of attribute contents that are URIs (e.g.,href,

src).
None

7 Instantiation of CSS stylesheets, from<style> blocks or style at-
tributes.

CSS escape sequence decoding\61 → a

8 JavaScript source code, in<script> blocks or in event handler attributes. JavaScript parsing \u61 → a
9 URI specifiers in CSS stylesheets. None
10 JavaScript in CSS stylesheets (e.g.,expression). JavaScript parsing \u61 → a
11 Call of JavaScript’seval function. JavaScript parsing \u61 → a
12 Use of built-in JSON parser. JSON parsing \u61 → a
13 Result of parsing a JavaScript program. N/A

TABLE 2. Data flows between the components of our browser model as depicted in Figure 1. Edge corresponds to
the numbered arrows in Figure 1.

DOM property Access method Transductions on reading Transductions on writing

data-* attribute
get/setAttribute None None
.dataset None None
in markup N/A HTML entity decoding

src, href attributes
get/setAttribute None None
.src, .href URI normalization None
in markup N/A HTML entity decoding

id, alt, title, type, lang, class, dir attributes
get/setAttribute None None
.[attribute name] None None
in markup N/A HTML entity decoding

style attribute
get/setAttribute None None
.style.* CSS serialization CSS parsing
in markup N/A HTML entity decoding

HTML contained by node .innerHTML HTML serialization HTML parsing
Text contained by node .innerText, .textContent None None
HTML contained by node, including the node itself .outerHTML HTML serialization HTML parsing
Text contained by node, surrounded by markup for node.outerText None None

TABLE 3. Transductions applied by the browser for various accesses to the DOM. These summarize transductions
when traversing edges 1, 4, or 5 in Figure 1.

ally makes the URI absolute and applies URI encoding). This
API corresponds to DOM HTML APIs (edge 5 in Figure 1).
For example, when reading anhref attribute that has a
relative URI using the.href attribute of the DOM node,
the browser will produce a canonicalized absolute URI. The
other API methods simply read the text values of the string
versions (without serializing the ASTs to a string) and perform
no canonicalization of the values.

(c) The transductions vary significantly for the DOM write
access API as well, as detailed in Table 3.

Section 2.5 explains in further detail how these subtleties
can result in bugs.

2.3. Sanitizers

Intuitively, a sanitizer is a function that aims to transform
content to ensure that the browser’s parser confines the con-
tent to explicitly allowed syntactic elements. Sanitizerscan

perform the transformation on the server or in JavaScript code
running on the client.

Definition 2: (Sanitizer) A sanitizer is a function

f : string → string

Defining sanitizers as general string transformers allows
us to include buggy/incorrect sanitizers in our definition.A
correct sanitizer is a sanitizer that provides some confinemen-
t/safety property on the output.

2.4. Correctness of Sanitization

Checking correctness of XSS sanitization is more complex
than command injection sanitization, formalized by Wasser-
man et. al. [56]. We recall below their basic definition of safety
and then bulid on it.

Definition 3: (Syntactic Confinement) A derivationD is
syntactically confined to a set of non-terminalsA, denoted by



D↓ ⊂ L(A), if all the sentential forms generated inD contain
only non-terminals from the setA.

A functionf ensures syntactic confinement to a given set of
allowed non-terminals in a sub-grammarG if ∀α, D : S ⇒∗

G

f(α), D↓ ⊂ L(A)
We highlight that the actual safety property that sanitization

aims to achieve is thecontext chain safetydefined below,
which accounts for context transitions and the complications
introduced by browser transductions.

Definition 4: (Context Chain Safety) Let C1 →T1

C2 →T2 . . . Cn−1 →Tn−1 Cn be a chain of context transitions
induced by a fragment of untrusted datau in the browser. A
sanitizerf is correct only if∀Ci, Ti−1(. . . (T1(f(u)))) ensures
syntactic confinement to only the allowed non-terminals inCi.

As highlighted earlier in this section, transductions can vary
significantly based on the context chain and based on the use
of access methods in JavaScript. The next section presents
several examples of common modes of failure in sanitization
usage.

2.5. Evaluating Effectiveness Against Common Fail-
ures of Sanitization

We describe a number of failure reasons for XSS sanitiza-
tion, and formulate the questions pertaining to correctness that
our evaluation in this paper aims to answer.

Incomplete sanitization for nested contexts.Consider the
earlier example that shows a nested context for the underlined
untrusted data:

<img src="untrusted">

If the developer HTML entity escapes only the untrusted data,
the attacker can not break out of the HTML attribute context.
However, because the underlined portion is a URI context, the
attacker is still able to attack the URI parser. An attack string
such asjavascript: will, when parsed by the URI parser, cause
it to recognize the protocol as a JavaScript URI, initiating
another context transition to the JavaScript parser.

Another possible problem is the failure to account for
transductions. For instance, in the above example, even if
the server performs HTML entity encoding of dangerous
characters (such as:) in the untrusted input, the browser may
“undo” the encoding to execute the attack. For instance, the
attack stringjavascript&58; will execute script code in this
example, because browsers HTML entity decode the&58; back
to a : character before giving it to the URI parser.

An important objective of our evaluation is to identify
whether built-in sanitizers in state-of-the-art web frameworks
handle static transitions well for the contexts in which they
support embedding data.

Incomplete sanitization for dynamic context transitions.
JavaScript code execution can read untrusted data from the
DOM and force evaluation or re-parsing of the data in a differ-
ent context. Consider the example of a bug shown in Figure 2,
which we found in PHPBB3, a popular forum application. The

1 text = element.getAttribute(’title’);
2 // ... elided ...
3 desc = create_element(’span’, ’bottom’);
4 desc.innerHTML = text;
5 tooltip.appendChild(desc);

Fig. 2. A bug in PHPBB3 that results due to failure to
perform sanitization for a dynamic context transition

application’s JavaScript code reads data sanitized by the server
(using HTML-entity encoding) from a parsed attribute. (using
HTML-entity encoding). It dynamically places the data in an
HTML content context and evaluates the string as HTML.

The browser automatically decodes HTML entities, undoing
the server’s sanitization, and thegetAttribute DOM API reads
the decoded string, which allows injection of ascript block on
HTML evaluation. In particular, the safe string&lt;script&gt;
will be decoded to<script> by thegetAttribute call and writ-
ing <script> via innerHTML results in XSS. JavaScript-heavy
web applications are likely to have many of these vulnerabil-
ities. Previously developed vulnerability analysis techniques
aim to solve this problem; however, their applicability to
securing web applications during construction has not been
demonstrated [48, 49].

In our evaluation, we aim to evaluate whether existing web
frameworks address the issue of identifying dynamic context
transfers, and if so, to what extent they enable correct defenses
against them.

Sanitizing difficult contexts. Certain contexts are in-
herently difficult to sanitize. For instance, sanitization
inside an unquoted HTML attribute requires elimina-
tion of a variety of untrusted characters (including
[space] % * + , - / ; < = > ^ and |), which varies across
browsers. However, if the attributes are quoted, defensiverules
to ensure syntactic confinement are simple and do not vary
much across browsers [44]. Similarly, embedding data directly
inside a<script> block outside of string and number literal
contexts is problematic because one must have knowledge of
the JavaScript statement parser.

An important question we empirically study in Section 4 is
characterizing the set of contexts security-conscious applica-
tions use in practice and those contexts that web applications
aim to safeguard.

Whitelisting vs. blacklisting. Several sanitizers aim to black-
list sets of known attack strings. For instance, in SANER, the
authors present examples of a blacklisting approach where the
failure to account for browser variation or failure to recognize
dangerous non-terminals results in attacks (examples 2-5)[5].

Another approach to sanitization iswhitelisting-based
canonicalization, which we observe is pervasively employed in
state-of-the-art web frameworks as well as HTML purification
engines in use by web applications. The idea is to: (a) parse
untrusted data on the server within the context where it will
be embedded, generating a parse tree, (b) eliminate all but
a whitelist of HTML elements in the parse tree, and (c) re-
encode the parse tree representation into a canonical HTML



form, the interpretation of which does not vary across web
browsers.

We empirically study what fraction of web applications and
web frameworks enable this form of sanitization. Previous
research has not shown the insecurity of this mechanism,
nor has research applied formal analysis to prove its security.
This mechanism stands in contrast to previous sanitization-
free defenses that assume browser variance is problematic for
a sanitization defense [59].

3. Web Frameworks

We evaluate a set of popular web frameworks that covers
most of the widely used web programming languages. Our
focus is on picking popular frameworks, especially those in
commercial use.

3.1. Expressiveness

We evaluated the set of contexts for which each framework
supports sanitization. That is, for each context, we determine
whether the framework provides developers with a built-in
sanitizer sufficient to safely emit untrusted data into that
context. For contexts not natively supported, developers must
write their own sanitizer. The results of this analysis are
presented in Table 4.

We observe that 6 out of 13 of the frameworks do not
support contexts other than the HTML tag content context
(e.g., as the content body of a tag), HTML attributes and URI
attributes. The most commonly supported sanitizers for these
are HTML entity encoding and URI encoding, respectively,
with customization features available.

Four web frameworks, ClearSilver, Ctemplate, Django, and
Smarty, provide appropriate sanitization functions for emitting
untrusted data into a JavaScript string. Only 1 framework,
namely Google Ctemplate, provides a sanitizer for emitting
data into JavaScript, outside of the string literal context. How-
ever, the sanitizer is a very restrictive whitelist, allowing only
numeric or boolean literals. Allowing untrusted JavaScript
code to be emitted into JavaScript contexts is not supportedby
any framework that we studied. Typically, code embedded in
such contexts is outside the scope of the safety property out-
lined in Section 2. Instead, properties such as authority safety
are desired [38], which are the target of other mechanisms
such as Yahoo’s ADsafe [2] or Google’s Caja [12].

Four web frameworks, namely Django, GWT, Ctemplate,
and Clearsilver, provide sanitizers for URI attributes in which
a complete URI (i.e., including the URI protocol scheme)
can be emitted. These sanitizers reject URLs that use the
javascript: scheme and accept only a whitelist of safe
schemes, likehttp:. The defense for static context transition
attacks outlined in Section 2.5 is correct in these frameworks.

3.2. Support for Identification of Untrusted Data

One of the reasons for XSS vulnerabilities in previous
systems has been failure to identify untrusted data that needs

sanitization from the rest of the web application’s output.We
first outline how the web application frameworks address this
challenge, and then put it in perspective with other techniques
proposed in research.

Of all the frameworks we studied, four frameworks dis-
tinctly support a separation between HTML code output and
data — namely Django, GWT, Ctemplate and ClearSilver.
While the others do encourage separation to some extent, they
do not supporttemplatesthat make the distinction explicit. A
template is a document representing an HTML output of the
application but withdata holesplaced throughout. A data hole
is a location in a template filled by content that is not static
HTML. A data hole can be as simple as a variable or contain
complicated application logic. This separation between static,
trusted content and potentially untrusted input allows these
frameworks to conservatively auto-sanitize all the data holes.

The separation makes the sanitization a default fail-close
design, i.e., even data that is trusted but not included in the
template will be treated by the engine as untrusted. The fact
that these systems are in pervasive commercial use suggests
that the mechanism has had success thus far.

Much of the previous research on taint-tracking aims to
address the issue of distinguishing what to sanitize versuswhat
is HTML content. Tracking data dependencies only in taint-
tracking can have false negatives [51]. Mechanisms deployed
in web frameworks coerce programs to restrictive form to err
on the side of conservativeness. These offer a different point
of evaluation as compared to taint-based defenses. Security-
typed languages such as JIF [15, 46, 57] also aim to take user
annotation as a way to ensure this distinction. In comparison to
templating, both taint-tracking and type-based solutionsoffer
more expressive separation between content than a binary
metric (data and template).

3.3. Support for Auto-Sanitization

Next, we evaluated the degree of support for automatic
sanitization in these frameworks. Of the 13 frameworks evalu-
ated, seven support some form of automatic sanitization. These
appear in Table 5. Auto-sanitization is a feature that shifts the
burden of ensuring safety against XSS from the developers
to the framework. Essentially, in a framework that includes
auto-sanitization, the application developer is responsible for
indicating which variables will require sanitization. Theweb
application framework is supposed to ensure that the correct
sanitizer is applied to each variable that fills a hole.

3.3.1. Context-Insensitive Sanitization.Most of these frame-
works provide automatic sanitization only for HTML tag
content contexts. For example, Django’sautoescape will
not protect against untrusted input that is placed in the value
of anhref attribute:

<a href="{{ untrusted_link }}">Link supplied by user.</a>

{{untrusted_link}} is a template variable in a data hole, in this
case referring to an untrusted user input. In this case, the data



Language Framework HTML URL
Attribute
(excluding
scheme)

URL
Attribute
(including
scheme)

JS String JS Number
or Boolean

Style
Attribute
or Tag

Perl
Mason [1, 40] X X

Template Toolkit [58] X X

Jifty [32] X X

PHP

CakePHP [13] X X

Smarty Template Engine [54] X X X

Yii [29, 66] X X

Zend Framework [67] X X

CodeIgniter [17, 18] X X

VB, C#, C++, F# ASP.NET [3] X X

Ruby Rails [47] X X

Python Django [20] X X X X

Java GWT SafeHtml [24] X X X

C++ Ctemplate [19] X X X X X X

Language-neutral ClearSilver [16] X X X X X

TABLE 4. Set of manually-invocable sanitizers provided by languages and/or frameworks for various contexts. For
frameworks, we also include sanitizers provided by standard packages or modules for the language. We differentiate

between a sanitizer for URL contexts that can correctly sanitize a complete URL (i.e., ensure it does not use the
javascript: scheme and one that need only concern itself with URLs for which the scheme is already set. For the

latter, simple URI encoding is sufficient.

Language Framework,
Plugin, or Feature

Automatically Sanitizes
in HTML Context

Performs Context-
Aware Sanitization

Pointcut

PHP CodeIgniter X Request Reception
VB, C#, C++, F# ASP.NET Request

Validation [4]
X Request Reception

Ruby xss terminate Rails plugin [64] X Database Insertion
Python Django X Template Processing
Java GWT SafeHtml X X Template Processing
C++ Ctemplate X X Template Processing
Language-neutral ClearSilver X X Template Processing

TABLE 5. Extent of automatic sanitization support in various frameworks and pointcut where the automatic
sanitization occurs.

hole is simply a variable that happens to refer to user input.
The double bracket notation for data holes is common in many
of the frameworks we examine. This untrusted link can contain
a javascript: URL, which enables a cross-site scripting
attack. Django’sautoescape correctly handles only HTML
contexts.

A plugin for Rails called xss-terminate automatically re-
moves (or escapes, depending on its configuration) tags before
content is persisted to the database. This suffers from the
same problem as Django; it does nothing to prevent vul-
nerabilities in which untrusted content is included in other
contexts. Similarly, CodeIgniter’s automatic sanitization uses
its xss_clean function in a context-insensitive manner.

Context-insensitive Sanitization is inadequate.Context-
insensitive sanitization provides a false sense of security
to developers. For example, the Django framework ap-
plies the HTML entity escape to all untrusted data in a
context-insensitive way. Consider the following code fromthe
GRAMPS application authored on Django:

{% if header.sortable %}
<a href="{{ header.url|escape }}">
{% endif %}

The above case is interesting for two reasons. First, we
notice that the developer chose not to rely on auto-sanitization
for the header.url variable, manually escaping it instead.
Unfortunately, escape is the wrong sanitizer; it merely
HTML entity encodes the value resulting in an XSS vulnera-
bility via the javascript: URI vector. The second interesting
point is that had the developer relied on the auto-sanitization
mechanism, the automatically applied sanitizer would have
been wrong as well.

Consider another example taken from the Malaysia Crime
application, authored in the Django framework:

map.addOverlay(new GMarker(point, {{ crime.icon }}))

Thecrime.icon variable is filled in at runtime as an argument to
a JavaScript function call. Clearly, the auto-sanitization in this
case performs an inconsistent sanitization, and if the developer
relied on it, an XSS bug would result; additional dangerous
characters (including\n \r \ ;) can be used to break out of the
context into whichcrime.icon is emitted. In this case, the
incorrect sanitization did not lead to a vulnerability because
crime.icon was explicitly sanitized (against a whitelist of
acceptable strings) at the time of input.



We conclude that context-insensitive sanitization is inade-
quate. Developers using context-insensitive sanitization must
implement their own sanitizers to ensure security anyway. To
verify this, we investigated how often sites rely on Django’s
auto-sanitization and for what fraction of the incorrectlyauto-
sanitized sinks the developer resorted to manual sanitization.

We examined a random sample of 10 Django applications
(from a list of open-source Django applications [21]) to
determine the fraction of variables emitted into an application’s
templates that are protected by Django’sautoescape. Our
results are presented in Table 6.

In all the applications in our sample, the majority of variable
sinks were autoescaped. Though the majority of variables are
emitted into HTML tag content contexts, and are therefore
protected byautoescape, a significant fraction are not.
Table 6 further distinguishes the fraction of sinks appearing
in HTML tag content context versus others. In all contexts
other than the HTML tag content context, inconsistent (and
technically incorrect) sanitization is applied, which canlead
to XSS vulnerabilities. Our subsequent manual investigation of
all these cases revealed that the developer explicitly resorted
to manual sanitization.

3.3.2. Context-Sensitive Sanitization.Three web frame-
works, namely GWT, Clearsilver, and Ctemplate, support
context-sensitive automatic sanitization. As in the otherframe-
works, when each template is emitted to the output, the
platform automatically sanitizes the data embedded in template
data holes. However, in these frameworks, the context for each
hole is inferred as the template is parsed, and the sanitizerto
apply is selected based on the context of the data hole in
the template. Thus, a sanitizer is automatically applied toa
variable in a data hole based on its context in the document.

For example, consider the following simple Ctemplate tem-
plate:

{{%AUTOESCAPE context="HTML"}}
<html><body>
<script>
function showName() {

document.getElementById("namespan").textContent = \
"Name: " + "{{NAME}}";

}
</script>
<span id="namespan" onclick="showName()">

Click to display name.
</span><br/>
Homepage:
<a href="{{URL}}"> {{PAGENAME}} </a>
</body></html>

This template contains three separate data holes in which
values of variables will be emitted. When the template is pro-
cessed, the context of the first hole,{{NAME}}, is recognized
as a JavaScript string context, and just before the hole is
filled with the value ofNAME, the:javascript_escape
modifier will be applied to the variable. This modifier in-
dicates to the template parser that the JavaScript escape
sanitizer should be applied to variables in this data hole
before variable substitution. This auto-escaping is equiva-
lent to explicitly writing{{NAME:javascript_escape}}

instead of just{{NAME}}. For the second hole,{{URL}},
the :url_escape_with_arg=html modifier is applied
indicating that the data hole is in a URL context and should be
sanitized appropriately. Finally, the:html_escape modifier
is automatically applied to the value of{{PAGENAME}}
before the third hole is filled, indicating that the data hole
is in an HTML context and variables should be HTML entity
encoded.

Handling Nested Contexts or Static Context Transitions.
Support for nested contexts varies significantly, as shown in
Table 4. The Google Ctemplate framework offers sanitiza-
tion for the maximum number of contexts, including some
of those that involve implicit static transition contexts.The
HTML attribute context (e.g.,href, style, onclick) is a
transition context as defined in section 2, i.e., certain attributes
are recognized as URI attributes. JavaScript event handlers
or style attributes are examples of these. Most of the other
frameworks do not support any nesting of contexts.

Handling Dynamic Context Transitions. None of the web
frameworks support sanitization for dynamic context transfers.
That is, they do not identify potential context transfers due
to the execution of JavaScript for auto-sanitization. Eventhe
cases that can be dispatched with simple static analyses are
not handled, such as in the following example

<script>
document.write("<div> {{ untrusted_data }} </div>");
</script>

3.4. Sanitization Strategy: Blacklists vs. Whitelists

One web framework we studied employs a blacklist-based
sanitization approach. CodeIgniter employs a blacklist of
filters in its xss clean function, which applies several reg-
ular expression replacements in sequence. These regular ex-
pressions serve to blacklist potentially dangerous code that
may appear in any context. For example, all instances of
document.cookie are replaced with the text[removed].
Unfortunately, this blacklisting approach inspires little confi-
dence in the completeness of the filter. Additionally, it may
break functionality because it essentially applies each context’s
filter regardless of which context the data will ultimately
appear in. This means, for example, that any occurrence of
the termdocument.cookie will be removed, even if it
is simply in the body of a user’s forum post, and therefore
intended to be placed in an HTML context.

Other than CodeIgniter, all frameworks used a whitelisting-
based canonicalization approach described in Section 2. For
HTML tag contexts, basic HTML entity encoding was sup-
ported in all frameworks. In addition, we found more com-
prehensive handling of HTML contexts in a number of other
frameworks. For instance, Yii provides an interface to HTML
Purifier [29] and its documentation recommends this interface
as the preferred XSS defense mechanism. HTML Purifier fully
parses an HTML snippet, and it claims to remove arbitrarily
nested scripts in HTML tag content contexts. While it robustly



Web Application Num.
Sinks

% Auto-
sanitized
Sinks

% Sinks
not
sanitized
(marked
safe)

% Sinks
man-
ually
sanitized

%
Sinks in
HTML
Context

% Sinks
in URL
Attr.
(ex-
cluding
scheme)

% Sinks
in URL
Attr. (in-
cluding
scheme)

% Sinks
in JS
Attr.
Context

% Sinks
in JS
Num-
ber/String
Context

% Sinks
in Style
Attr.
Context

GRAMPS
Genealogy
Management

286 77.9 0.0 22.0 66.4 3.4 30.0 0.0 0.0 0.0

HicroKee’s Blog 92 83.6 7.6 8.6 83.6 6.5 7.6 1.0 0.0 1.0
FabioSouto.eu 55 90.9 9.0 0.0 67.2 7.2 23.6 0.0 1.8 0.0
Phillip Jones’
Eportfolio

94 92.5 7.4 0.0 73.4 11.7 12.7 0.0 2.1 0.0

EAG cms 19 94.7 5.2 0.0 84.2 0.0 5.2 0.0 0.0 10.5
Boycott Toolkit 347 96.2 3.4 0.2 71.7 1.1 25.3 0.0 1.7 0.0
Damned Lies 359 96.6 3.3 0.0 74.6 0.5 17.8 0.0 0.2 6.6
oebfare 149 97.3 2.6 0.0 85.2 6.0 8.0 0.0 0.0 0.6
Malaysia Crime 235 98.7 1.2 0.0 77.8 0.0 1.7 0.0 20.4 0.0
Philippe
Marichal’s web
site

13 100.0 0.0 0.0 84.6 0.0 15.3 0.0 0.0 0.0

TABLE 6. Actual usage of auto-sanitization in Django applications. The first two columns are the number of sinks in
the templates and the percentage of these sinks for which auto-sanitization has not been disabled. Each of the

remaining columns shows the percentage of sinks that appear in the given context.

handles untrusted data emitted into an HTML tag content
context, it does not provide functionality for emitting untrusted
data into any other contexts.

3.5. Placement of Sanitizers

Finally, we find that for frameworks that support auto-
sanitization, there are variations in where to apply the san-
itizers. Borrowing terminology from aspect-oriented program-
ming, we refer to each set of program points at which auto-
sanitization is applied as asanitization pointcut. We have iden-
tified three different sanitization pointcuts in the frameworks
we studied; Table 5 indicates which one is employed by each
framework.

Request reception.Sanitizing at request reception has the
advantage of precisely identifying all untrusted data. However,
the disadvantage is that at this pointcut, there is no knowledge
of where this untrusted data is going to end up. This makes it
impossible to apply the least restrictive safe sanitization policy;
instead you must apply an extremely restrictive sanitization
policy under the assumption that the untrusted data could end
up being emitted into any context.

Database insertion. Sanitizing at database insertion time
ensures that no unsafe data is ever stored. Accordingly, this
pointcut does not protect against reflected XSS vulnerabilities,
but only stored XSS vulnerabilities (and SQL injection vulner-
abilities, which we do not consider in the present work). We
have anecdotal evidence that this pointcut can lead to subtle
bugs. In a program that we analyzed, all data was sanitized
before entering the database. This meant that when a user
registered for the web site, his username was escaped before
being stored. For a user whose name contains a character that
is escaped, all login attempts fail because the username entered

(which is not sanitized) does not match any stored username
(all of which have been sanitized). As in the request reception
pointcut, this problem results from a lack of knowledge
regarding where the untrusted data will end up being used.
In this case, its correct use in a comparison is precluded by
being sanitized before database insertion.

Template processing.Sanitizing at template processing time
has the advantage of being fail-safe because every output
is sanitized by default. The disadvantage of this pointcut
is very much the inverse of that of the request reception
pointcut: at template processing time, the separation between
untrusted and trusted data might have been lost. You cannot
tell at this pointcut whether the data is trusted or untrusted.
For this reason, some variables may accidentally be escaped
multiple times, which could break functionality. The developer
is responsible for manually marking the pieces of data that
should be considered trusted, which is an inconvenient and
error-prone process, though the errors do fall on the side of
breaking functionality rather than security.

4. Web Applications

We evaluate a set of large, widely used web applications
to compare the features provided by web frameworks with
those required for authoring real-world applications. We gather
empirical evidence from 8 diverse web applications, ranging
from email clients to medical record management systems,
about their use of embedded contexts and sanitizers. First,we
evaluate whether applications use contexts that are inherently
difficult to secure (as outlined in Section 2.5). Second, we
compare the set of contexts used by applications with the set
of contexts supported by web frameworks. Third, we evaluate
whether these applications employ whitelisting or blacklisting



Application Description LOC HTML
Context

URL
Attr.
(ex-
cluding
scheme)

URL
Attr. (in-
cluding
scheme)

JS Attr.
Context

JS Num-
ber/String
Context

Number
of Sani-
tizers

Number
of Sinks

RoundCube IMAP Email Client 19,038 • • • • • 30 75
Drupal Content Management System 20,995 • • • • • 32 2557
Joomla Content Management System 75,785 • • • • 22 538

WordPress Blogging Application 89,504 • • • • 95 2572
MediaWiki Wiki Hosting Application 125,608 • • • • • 118 352
PHPBB3 Bulletin Board Software 146,991 • • • • • 19 265

OpenEMR Medical Records Management 150,384 • • • 18 727
Moodle E-Learning Software 532,359 • • • • • 43 6282

TABLE 7. Details of the web applications we study and details on various contexts used by these applications.

based sanitizers. Finally, we evaluate whether the level of
expressiveness supported by web frameworks is sufficient to
enforce the sanitization policy that applications presently use.

4.1. Subject Applications & Analysis Infrastructure

Systematically studying large code bases requires an auto-
matic analysis infrastructure. To limit our effort in building
analysis infrastructure, we decided to focus on one language,
namely PHP. We chose PHP because it is a popular web
application language with over 20 million domains running
PHP applications [45].

Our smallest subject application was over 19,000 lines of
PHP code, while the largest was over half a million lines
of code. Several of these applications, including PHPBB,
WordPress and MediaWiki have been studied in previous
research evaluations. Finally, we believe that these applications
are widely used — for instance, MediaWiki is the framework
behind Wikipedia.

Analysis of PHP applications. We describe the analysis
infrastructure we build for systematically studying PHP appli-
cations. It provides two primary features:automatic extraction
of sanitizers (as defined by Definition 2 in Section 2) and
inference of contextsin which untrusted data is embedded by
applications.

PHP is a highly dynamic, interpreted language. PHP has
dynamic types, dynamically dispatched functions, invocations
through dynamic arrays, and variable argument functions,
which are challenging for static analysis. Notably, Facebook’s
HipHop PHP compiler and analyzer provides a level of type
inference support [26], but the analysis is generally imprecise,
unable to infer types across function calls. Though previous
research has had success in automatic extraction of sanitizers
in statically typed languages [37], these are not directly usable
in our study of PHP because they operate on the assumption of
having (a priori) inter-procedural dataflow graphs. As a result,
our entire analysis infrastructure relies on dynamic analysis.

To drive the analysis infrastructure, we used a combination
of automated blackbox fuzzing and manual interaction with
the applications. Specifically, we built a PHP fuzzer that (a)
systematically invokes all the PHP files in each application,

(b) identifies all uses of GET, POST, and COOKIE input
parameters, and (c) re-executes each file with random values
for the newly identified inputs found in step (b). PHP func-
tionality that was not properly explored using this mechanism
was subject to addition manual interaction as well. We found
a large number of distinct sinks containing untrusted data in
our analysis, which we summarize in Table 7.

Extracting Sanitizers. Using dynamic analysis, we identify
sets of sanitizers in web applications. We check the input and
output of each function call that an application makes in a
dynamic run. We use Definition 2 in Section 2.3 to identify
sanitizer functions, and we identify sanitizers that provide
HTML context chain safety, as per Definition 4.

For each dynamically executed path in the application, we
extract all of the called functions with at least one string
argument. We fork execution of the PHP engine, replacing
the string arguments with an XSS attack vector known to
cause JavaScript execution in a large number of HTML
contexts [25]. The modified PHP engine logs the argument
values and the return values for all such function calls.

From these logs, we extract all the function calls that both
took an attack vector as an argument and returned a string.
By Definition 2, these functions are sanitizers. However, we
want to approximate the fact that these are sanitizers that
provide HTML context chain safety as per Definition 4. Thus,
we pass the return values of the sanitizers through an edit
distance algorithm, comparing the attack vector string to the
function’s return value. We negate the effects of standard
encoding functions likehtmlentities before running the edit
distance algorithm. If the edit distance is small, we mark the
function as a sanitizer. While there are pathological casesin
which our algorithm would fail, we manually evaluated the
output of the algorithm for Wordpress and MediaWiki and
found that the algorithm had very few false positives. At worst,
the number of sanitizers we find is anundercountof the actual
number of sanitizers in the web application.

Context Inference. Our aim is to identify the context in
which an untrusted input was embedded. To define untrusted
data, we use the intuition that sanitized input data is very
likely untrusted. Taking the list of extracted sanitizers for a
particular web application, we instrument the sanitizers in the



application to surround untrusted data with a special identifier
markup. We feed all GET, POST and COOKIE inputs a
specific key string, so that the instrumentation in the sanitizers
can distinguish untrusted inputs from other internal data.We
use techniques similar to taint-inference [52] to identifywhere
untrusted inputs are embedded in output. Finally, we log all
web application output for context inference.

We use a modified Python HTML5 parser to parse the
application output. While parsing, we search all contexts for
the special identifying markup. When found, we record the
context the parser is in. We repeat this until the document
is completely parsed. When it is finished, we have a list of
all contexts where the key string appeared as well as which
sanitizers it went through. We present the contexts we found
in Table 7.

4.2. Evaluating Sanitization Practices

We manually evaluated whether these applications predomi-
nantly use whitelisting sanitizers or blacklisting. Note that our
goal is not to check whether sanitizers in these applications
were correct, but only to illustrate what security-conscious
applications are employing as a defense strategy.

We observed that the number of sanitizers varied from 18
to 119, which is much larger than the number of contexts we
encountered. On inspection, we did not find any duplication –
this implies that applications have multiple sanitizers applied
even for the same contexts. We characterize this variation in
sanitizer choice in Section 4.4.

To the extent of our analysis, we observe that the common
pattern of sanitization in the PHP applications is the whitelist
based canonicalization policy that we discussed previously.
The applications commonly allow only a whitelist of context-
specific syntactic constructs.

Example 1 WordPress allows fairly expressive HTML con-
structs in untrusted user content. Users can place commentson
blog posts, and these comments can contain some HTML tags
with HTML tag attributes for a more rich editing experience.
Of course, WordPress applies a variety of sanitizers to this
content to ensure its safety.

However, WordPress’s sanitizers are a set of filters that take
a whitelist of allowed tags, attributes, protocols, or a number
of other options depending on the sanitization context, and
ensure that nothing off the whitelist is syntactically present.
These filters are sufficient for WordPress, and we see similar
implementations in the other applications.

Evaluation Summary. We find that primarily all of the
applications use a whitelisting-based canonicalization strategy
for the HTML tag context, as discussed earlier in Section 2.5.
For instance, we find that thekses library used in WordPress
and Drupal, theHTMLPurifier library used in Moodle and the
PHPInputFilter library used in Joomla all employ this strategy.

4.3. Evaluating Usage of Contexts

As Table 7 shows, the various output contexts where we
observed untrusted user input is fairly small. For instance, in
MediaWiki, a user may create or edit a wiki entry. Their new
text passes through sanitizers and a database but eventually
flows to the HTML context of the output in that particular wiki
article. Thus, in the table, the “HTML” column is marked for
MediaWiki because it allows untrusted content in the HTML
tag content context.

The listed contexts are as follows:

• HTML tag content: The basic HTML content context
between two tags. Note, however, that this does not
include the content between script tags. Content between
script tags is a separate JavaScript context because the
JavaScript, not HTML, parser is applied to it

• URL: A context where a URL is expected, such as an
anchor taghref attribute or an image tagsrc attribute.
This also includes the document schema.

• JS String: A JavaScript context where data appears within
a quoted JavaScript string. For example, if the program
places a user name inside a JavaScript string to add to a
DOM text node.

• Attr: A non-URL HTML attribute context, such as the
name attribute or thealt attribute.

Evaluation Summary.
To the extent of our analysis, we find that the set of contexts

in use by web applications matches well with the expres-
siveness supported by the most expressive web frameworks
and previous research [59]. This implies that, in principleif
the Ctemplate framework were available for PHP, its context
support would be empirically sufficient for all the applications
we study.

Another interesting point is that applications do not emit
data in HTML contexts that are inherently hard to secure.
For example, we did not find any untrusted content flows
to the general, non-string JavaScript context. Similarly,all
the applications refrained from embedding untrusted data in
unquoted HTML attributes, which are hard to sanitize due to
browser variation and a large set of attack vectors.

4.4. Evaluating Expressiveness of Sanitization Poli-
cies

As we observe in Table 7, there is more than one sanitizer
for each embedding context. This implies that each web
application may sanitize different fragments of untrusteddata
in a different way based on its security policy. This notion of
“picking a sanitizer” for each fragment of untrusted data before
outputting it to the HTTP response is what we formulate as a
sanitization policy functionbelow.

Definition 5: (Sanitization Policy Function) The applica-
tion’s sanitization policy functionψ is ann-ary function

ψ : (I1, I2, . . . In) → S∗



where S is the set of sanitizers in the application andI1, . . . , In
are application-specific policy attributes.

Note that the sanitization policy function returns an ordered
list of sanitizers to apply, and could even return with an empty
list.

One of our goals is to identify what the policy attributes are
for real applications, how much they vary across applications
and how complex they may be. We argue that the larger the
n, the more complex the decision for picking a sanitizer.

We find that an application’s sanitization policy can be very
complex. Specifically, how an applicationselectsa sanitizer
can be more complex than simply looking at the syntactic
context. This real-world example from the Drupal application
illustrates the complexity.

Example 2 In the content management system Drupal, one
of the default behaviors is the ability to post and reply to
comments on a page. By default, any logged in user can do
this, but one may enable it for “anonymous” (not logged in)
users as well.

When the user creates or replies to a post, the application
presents a choice of HTML filters to apply to their post. The
set of roles assigned to a user by the system administrator
determines the choice of filters presented to the user. By
default, “authenticated user” is the sole role of a logged in
user, but the administrator may assign an arbitrary number of
roles. Similarly, the program assigns the “anonymous user”
role to anonymous users.

An administrator may assign HTML filters to each role.
By default, the “authenticated user” role is only assigned
the “Full HTML” filter that filters out all HTML control
structures. However, the administrator can create arbitrary
HTML filter policies and assign them to various roles. Thus,
the administrator can apply the “Full HTML” filter to all users
by default, but explicitly allow trusted users to post comments
with links in HTML anchor tags. The administrator is not
governed by roles and is always allowed to post arbitrary
HTML.Thus, when a logged in user is posting a comment
or a reply, a different sanitization function may be applied
to her post based on her role. If she is an administrator, the
program will not apply a filter, but if she is in a different role,
the program may apply a restrictive filter.

Thus, context alone does not define the arity of the sanitiza-
tion function policy. In this case, the role of the logged-inuser
increases the arity. That is, not just the context determines the
sanitizer to apply (a comment or reply HTML context in this
case) but also on the user’s role.

However, in this instance, it is even more complicated,
because the user may select any of the valid filters assigned
by her roles. For example, if the user is both a trusted user
for posting links and, separately, a trusted user for posting
images, she may choose which filter (either the link or
image filter) applies to her post. Therefore, the arity of the
Drupal sanitization function policy again increases because
user selection is also a deciding factor in sanitization function
application.

Evaluation Summary. We find that sanitization policy func-
tions are implicit in today’s web application code. Specifically,
we found that for many applications, sanitizerselectionis more
complex than simply looking at the syntactic HTML context,
which is the functionality of the default auto-sanitization
protections enabled in those web frameworks that support
context-sensitive auto-sanitization. This implies that the sani-
tization policy functions are definitely beyond 0-ary functions
(as context-insensitive auto-sanitization assumes), or unary
functions (as assumed by context-sensitive auto-sanitization).

We have found several variations in policy functions in
implicit use by these applications. One common sanitization
policy attribute observed is that ofrole-basedsanitization,
where the application applies different sanity checks based on
the privilege of the content. Drupal’s variations in sanitizers
applied based on the user’s role is perhaps an extreme. Other
simpler policies we observe are where the site administrator’s
content is not subject to sanitization (by design), as in thecase
of PHPBB3. For such simple policies, there are legitimate code
paths which have no sanitization requirements.

Sanitization policies have a direct impact on the security
offered by web frameworks. If a framework does not recognize
and support the intended security model of the application,it
cannot ensure that the sanitization is consistently applied in the
application. Presently, this represents a gap between the ex-
pressiveness of the abstractions supported by web frameworks
and what web applications require and implement.

5. Results and Findings

In this study, we characterized the nature of XSS sanitiza-
tion. Using a formal notion of XSS sanitization allowed us
to systematically investigate and contrast the nature of XSS
sanitization in applications and frameworks. The following are
some of our key findings:

1) Only 3 out of the 13 frameworks studied support all the
contexts that complex web applications employ (Tables
4 and 7).

2) Many existing frameworks that provide auto-sanitization
perform context-insensitivesanitization. With multiple
examples, we demonstrated that context-insensitive san-
itization can give a false sense of security. We also find
that replacing auto-sanitization with the use of a manual
sanitizer is not uncommon.

3) Newer frameworks support simple templating mecha-
nisms for identifying untrusted data, defaulting to a
fail-closed design. Such mechanisms put the burden of
trusted data identification on the developer.

4) We find that context-sensitive sanitization is the norm
across complex web applications.

5) Across frameworks and applications, the approach to
sanitization generally adopted is whitelisting. Develop-
ers identified a subset of HTML that is sufficiently
expressive for their needs. Variance in browser imple-
mentation does not seem to be a factor in any of the
sanitizers we observed.



6) Many web applications employ a set of sanitizers much
larger that the set of contexts they support.

7) We also find that the decision to pick a sanitizer is not
a simple zero- or single-arity function; fine grained data
attributes (e.g., is the source of the data an administra-
tor?) along with application configuration often dictate
the sanitizer picked for a particular flow.

8) None of the web frameworks we studied support the
complex sanitization policies we observed in real world
web applications.

It is not clear to us why such a large number of sanitizer
functions are employed by web applications. We conjecture
that in the absence of easy correctness arguments for sanitizers,
applications err on the side of caution. Simple and practical
mechanisms for correctness guarantees of sanitizers and sani-
tizer policies deserve research attention. The complete absence
of support for complex multi-arity sanitizer policy in frame-
works was also salient. We believe that the next generation of
frameworks need to address this issue to achieve adoption by
complex web applications — our notion of sanitization policy
function is one possible abstraction that newer frameworks
could employ.

6. Related Work

Cross-site scripting defense techniques have received a great
deal of attention in research.

XSS Analysis and Defense.Much of the research on cross-
site scripting vulnerabilities has focused on finding XSS flaws
in web applications, specifically on server-side code [5, 31,
33, 35, 36, 39, 43, 63, 65] but also more recently on JavaScript
code [6, 23, 48, 49]. These works have underscored the two
main causes of XSS vulnerabilities:identifying untrusted data
at output anderrors in sanitizationby applications. There
have been three kinds of defenses: purely server-side, purely
browser-based, and those involving both client and server
collaboration.

BLUEPRINT [59], SCRIPTGARD [50] and XSS-
GUARD [11] are two server-side solutions that have provided
insight into context-sensitive sanitization. In particular,
BLUEPRINT provides a deeper model of the web browser
and points to paths between the browser components may
vary across browsers. The browser model detailed in this
work builds upon BLUEPRINT’s model and more closely
upon SCRIPTGARD’s formalization. We provide additional
details in our model to demystify the browser’s parsing
behavior and explain subtleties in sanitization which the prior
work did not address.

Purely browser-based solutions, such as XSSAuditor, and
client-only solutions, such as DSI, are implemented in modern
browsers. These mechanisms are useful in nullifying common
attack scenarios by observing HTTP requests and intercepting
HTTP responses during the browser’s parsing. However, they
do not address the problem of separating untrusted from
trusted data, as pointed out by Barth et al. [10]. Other

language-based solutions for customizable XSS security poli-
cies are also an area of active research [41]. Research shows
that cross-site scripting attacks sometimes results from unsafe
parsing of CSS [30], optimistic content-sniffing algorithms
in browsers [7], and from vulnerabilities in extensions [6,
9]. Failure to isolate mashups and advertisements may also
result in code injection vulnerabilities, but typically the safety
properties that these attacks violate are treated as a separate
class From XSS vulnerabilities. These violated properties
include isolation of principles in web browser primitives [61],
authority safety [38] and statically verified containment [22].

BEEP, DSI and NonceSpaces investigated client-server col-
laborative defenses. In these proposals, the server is respon-
sible for identifying untrusted data which it reports to the
browser, and a modified browser ensures that XSS attacks
can not result from parsing the untrusted data. While these
proposals are encouraging, they require updates in browser
implementations as well as server-side code. The closest prac-
tical implementation of such client-server defense architecture
is the recentcontent security policyspecification [55].

Correctness of Sanitization. While several systems have
analyzed server-side code, the SANER [5] system empirically
showed that custom sanitization routines in web applications
can be error-prone. FLAX [49] and KUDZU [48] empirically
showed that sanitization errors are not uncommon in client-
side JavaScript code. While these works highlight exam-
ples, the complexity of the sanitization process remained
unexplained. Our observation is that sanitization is perva-
sively used in emerging web frameworks as well as large,
security-conscious applications. We discuss whether applica-
tions should use sanitization for defense in light of previous
bugs.

Among server-side defenses, BLUEPRINT provided a
sanitization-free strategy for preventing cross-site scripting at-
tacks, which involved the explicit construction of the intended
parse tree in the browser via JavaScript. We observe that
sanitization-free mechanisms stand in contrast to whitelist-
based canonicalization sanitization which is what is generally
implemented in emerging frameworks, the security of which
has neither been fundamentally broken nor proven. Research
on string analysis and other automata-based verification sys-
tems is currently active, and this research is directly relevant
to these questions [27, 34, 48].

Techniques for Separating Untrusted Content. Taint-
tracking based techniques aimed to address the problem of
identifying and separating untrusted data from HTML output
to ensure that untrusted data gets sanitized before it is out-
put [14, 33, 43, 51, 60, 65]. Challenges in implementing taint-
analysis as well as performance overheads have precluded their
use in deployed web applications. Security-typed languages
and type-systems offer another mechanism to ensure the robust
isolation of untrusted data from HTML code output [15, 46, 53,
57]. The generality of type systems allows for creating a finer
separation between untrusted inputs, a property we motivate
with our empirical analysis. HTML templating engines, such



as those studied in this work, offer a different model in
which they coerce developers into explicitly specifying trusted
content. This offers a fail-closed design and has seen adoption
in practice because of its ease of use.
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