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Abstract incorrect sanitization. Additionally, the application stunot
break functionality by overzealous application of saaitian.
Filtering or sanitization is the predominant mechanism The goal of this paper is to systematically understand the
in today’s applications to defend against cross-site 8odp challenges in implementing these two components, evaluate
(XSS) attacks. XSS sanitization can be difficult to get right support for them in existing web frameworks, and develop
it ties in closely with the parsing behavior of the browsenisT a basic understanding of sanitizer usage in large, reddwor
paper explains some of the subtleties of ensuring corredi-sa applications today.

zation, as well as common pitfalls. We study several emgrgi[& dressing Identification of Untrusted Data. A goal of

web application frameworks including those presently use[\[ is paper is to understand how web application frameworks

Loc:\,sivffe;(éﬁ\r,ze?ﬁggg?glmﬂiﬁ?@aﬁfl'CSS? dnni V\;e ae|\r/§tu ? ddress the challenges of identifying untrusted data biygusi
9 g ag ML templating, as well as the flexibility of built-in suppto

Svoergrfr;gpnep\)/:};?:(lz chfesir;trgzt'c;?hs\t/\{ﬁefg]:] EE?LHW ?2EMZZT%r embedding untrusted data in web application outpubrPri
9 9 b y research has focused on addressing this problem by employin

T e, T e Secu ot chniques sueh s tantracang (36,436,651 or e
P P tt\éms [46]. We aim to quantify how web applications address
this challenge differently and how the two may interplayhwit

1. Introduction each other in the future.

Addressing Correctness.Ensuring correctness for cross-site

Cross-site scripting (or XSS) attacks continue to plagu@ripting sanitizers can be tricky, primarily because Vbines
existing and emerging web applications, despite receivindjeep understanding of the behavior of web browsers. We first
intense focus from both industry and academia. Researchgy$nalize XSS sanitization by developing a detailed model o
have proposed many novel defenses, ranging from purehs web browser, demystifying some of the cryptic intrieaci
server-side to browser-based or bafanitizationor filtering,  of prowser behavior. We explain some of the subtleties in
the practice of encoding or eliminating dangerous contruegetting sanitization right,” including how sanitizatiapplied
in untrusted data, remains the predominant defense sjrategpy the server can be “undone” during the lifetime of untrdste
existing applications. data. Based on this understanding of browser behavior, we

A variety of web application frameworks, including thosguminate error-prone cases for sanitization, and therlyeo
used for major commercial applications, have emerged. fgderstood subtle cases worthy of further attention. Previ
these frameworks gain wide acceptance as platforms for ggrs research has addressed correctness of the sanitization
curing applications, it becomes important to quantify st process [5, 48,49, 59], but we focus on why the sanitization
to which web frameworks address the fundamental causespga(f)Cess goes wrong rather than how to verify that it is correc

XSS vulnerabilities in existing web applications. Web application frameworks have gained popularity, as they

_An XSS attack occurs when the web browser executes, 33 mise ease of development and a more principled approach
higher-privileged application code, data input contdlley a 1 gecyrity. To study their role, we gather 13 popular web
low-privileged ent|ty._San|t|zat|0nriL:;)r XSS defense inv@$  f5meworks, including several in commercial use. We first
the following two main compone - o quantify how these frameworks provide sanitization dedens

(@) Identifying Untrusted Datdor “what to sanitize”): EVen ¢, xss. particularly interesting is the support fauto-
for the simplest applications, only untrusted input datauth ¢4 pitization a feature in which the web framework takes the

be sanitized before being emitted in the HTTP reSponse_C%gponsibility for eliminating XSS attacks for the devedop

written by the developer is implicitly trusted and should NGy, find that while most frameworks do not provide this

be sanitized. o S feature, in the ones that do, it often provides little more
(b) Correctness of Sanitizatiorfter identifying untrusted 21 a false sense of security: unlike SQL injection (a eelat

data, the sanitization performed needs to be complete gpdy, ,yinerability), cross-site scripting attacks requioatext-
correct to prevent code injection attacks due to insufflo@n o gjtivesanitization, yet most of these frameworks provide

context-insensitive sanitization. We also quantify sorhéhe

Ivulnerabilities in web browsers and its components as weluader other Interesting variations in underlylng prlnC|pIes 4 d

specification of web standards have been another reasonS8rattacks [7, in these framework_s pertaining to: (a) where to sanmzé, (b
8,30]. However, we do not consider these in this paper. support for separation of HTML templates from data, and (c)



degree of expressiveness in sanitizers. blocks do not represent sub-parsers themselves, but other

In order to understand whether real-world applicationayod components of the browser that interact with the sub-parser
could take advantage of existing web frameworks in thEhe DOM stores all the parse-tree outputs of the sub-parsers
near future, we perform an empirical evaluation of 8 populéunnels input fragments between them, and provides methods
applications ranging from 10 KLOC to over 500 KLOC. Weor manipulating both the parsed outputs as well as thegstrin
find that most advanced web frameworks do offer support firagments corresponding to them. The JavaScript runtires us
all HTML contexts actually used by our subject applicationshe DOM to effect changes to the page loaded in the browser,

Finally, we outline sanitization practices in real-worlg-a causing sub-parser invocation in the process.
plications that web frameworks do not currently support, Web applications embed data from untrusted input sources
pointing out the need for extensible sanitization polisieseb (such as lower privileged users) in the HTTP response, which
frameworks. We formulate the abstraction ofsanitization is then served to a higher privileged entity. In a cross-site
policy functionthat captures how applications pick sanitizerscripting attack, parsing of untrusted data as a dangerous
to apply. We show that sanitization policy functions areyonlnon-terminal leads to injected code execution. Informailg
implicitly enforced (rather than being explicitly stated) say that untrusted data “breaks out” of a trustedbedding
application logic, are complex, and vary significantly frome context causing script execution. The set of attack strings
application to another. that accomplish this varies significantly based on the édist

In the following sections, we: context in which untrusted data is embedded. For clarity, we

« Formalize the concepts of embedding contexts, sanitizebggin by formalizing this notion of embedding context.

and browser transductions, and use these formalizati%bedding Contexts.

to guide our inquiry into the subtleties and pitfalls of XSS pefinition 1: (Embedding Contexi) Let G = (V, %, S, P)

sanitization. _ be a context-free grammar for a sub-language defined by a
o Analyze the correctness and completeness of samtlzat@unadrume consisting of a set of non-terminal symbbls
mechanisms of web frameworks. terminal symbolsZ, start symbolS and a set of productions

« Discuss our empirical analysis of web applications, which | ot p . g -+ ~ denote the leftmost derivation sequence
allows us to compare sanitization mechanisms supportggi,e sentence under the production rules @f.
in frameworks and those required by real web applica-| ot each step in the derivation sequence apply a production

tions. rule and yield a “sentential form,” i.e., a sequence coimgjst
.. of non-terminals and terminals.
2. Contexts, Sanitizers and Correctness A given untrusted substring € >¥* in the browser input

e . . 1 € ¥* is said to be embedded in a context (or non-terminal)
The correctness of sanitization mechanisms is closely ti if

to the parsing behavior of the web browser. We present aﬁ(a) the derivation¥ : aCj =% awvws is a subsequence
. . : &

gbs.trac.t model of the.\-/veb. browser which explains hqw ﬂ?ﬁ the leftmost derivation of, for terminal wordsx, v andw

intricacies of XSS sanitization are more complex than atass

4 iniect itizati M ¢ lati f consisting only of trusted characters, and
command injection sanitization. Many formulations of os (b) X is minimal, i.e., 3C", X' : o/C'8 =% o/uvw! §

site scripting defense already exist in the literature 421, hereX” is a subsequence df, for terminal wordsy, v/ and
50,59, 62]. Our formalization of the browser model and XSg, - ' ’
w' consisting only of trusted characters.

builds upon previous work [50], with an enhanced focus on To make our definition concrete, we list some examples of

browser transductions. embedding contexts in Table 1. Although we can define several
such contexts with the above formalism, we wish to restrict
ourselves to those that real-world applications actualy and
FEI,OSG that web application frameworks support.

2.1. A Model of The Web Browser

We can view the browser as a collection of sub-gramma
each corresponding to the different languages recognized i
the web browser: HTML, JavaScript, CSS, the grammar f&-2. Context Transitions
URI schemes, and so on. The browser parses documents it
retrieves, such as HTML pages, in stages. The browser parseAssociated with each sub-grammar in the browser are
each portion of the input by one or more sub-grammarsansition non-terminalsi.e., non-terminals that recognize
For example, the browser parses HTML input according foagments of the input that belong to another sub-grammar.
HTML syntax rules (the latest specification effort for whish For instance, the parser recognizes data embedded in event
HTML 5). Certain portions of the input may contain fragmentbandler attributes of HTML tags as JavaScript statements, a
from other languages, such as withiscript> blocks; these the browser must parse the attributes further and interpret
fragments are then shipped to the corresponding sub-darserthem in the JavaScript engine. Whenever the parser derives a
that language. fragment of the input from a transition non-terminal, thesga
Figure 1 depicts the complexity of the interaction betweeships the fragment to the corresponding sub-parser fondurt
the various sub-parsers in the browser. Note that the shagedcessing (corresponding to the edges in Figure 1). We refe



| Example | Sub-grammar(s) | Embedding contexts |
<p>unt r ust ed</ p> HTML HTML tag content
<p id="untrusted"> HTML Double-quoted HTML attribute
<a onclick="document.title="untrusted ;"> | JavaScript, HTML| Single-quoted JavaScript string in double-quoted HTMlilaite
<img src=http://untrusted> URI, HTML Domain of a URI in an unquoted HTML attribute
<div style="color: rgb(untrusted);"> CSS, HTML RGB color specification in double-quoted HTML attribute
TABLE 1. Examples of common embedding contexts.
|
HTML code
——1. PCDATA—> <— 4. DOM Core —» JavaScriot
HTML parser ~ }—2. CDATA—> DOM runtimep
<«—3. innerHTML—| <« 5. DOM HTML —»
T
T 11. eval() |
7. stylesheets 8 s 12. JSON
"iots y 13.AST
. 1
URI avaScript
3 ol CsS b |  JavaScrip
parser 9. url() parser 10. JavaScript parser

’\ expressions

14. JavaScript URIs

Fig. 1. A model of a web browser showing the possible flows of data between the parsers, the DOM, and the JavaScript
runtime. The DOM stores all syntax-tree outputs of the parsers, and the JavaScript runtime manipulates the DOM. For
most of the edges, the browser applies a transduction when they are traversed. See Table 2 for more details about the
edges.

to this transition between a context in one sub-grammar toeach transition from context; to C, accompanied by a
context in another sub-grammar ag@ntext transition transductionl” asCy —7T Cs.

Static Transitions. Some context transitions can be statically Transductions are important because they make reasoning

determined by the placement of the untrusted data in the w@Put sanitization non-trivjal. AS described later, sames
application’s output, whereas others result from exeeutit these transductions can “undo” the sanitization applied on

client-side application code. Take the following example: untrusted data, leading to subtle bugs in the sanitization
process.

<ing src="untrusted"> Transductions are edge-specific; we detail them in Table 2.

This shows a fragment of HTML code with a context transitiol’ p_articular, Table 3 details the transductions .that an@-_alu
from an HTML attribute context to the URI parser's schem@tically performed by the browser upon reading or writing

(e.g.,nttp: Or mailto:) context. Identifying static transitions DOM elements via JavaScript. .
is feasible using a high fidelity model of a web browser for Ther_e.are. subtle features of thesg accesses that are importa
parsing. for sanitization correctness. Specnjcally, note that: _

_ » i » (a) Data values are HTML entity decoded when written
Dynamic Context Transitions. Dynamic context transitions fom the HTML parser to the DOM via edge 1 in Figure 1.

occur when data is programmatically read from or written ¥herefore, when a program reads a value via JavaScript, e.g.

the DOM by JavaScript. There are several ways for data par?ﬁdgetElementById(’a’) .getAttribute(’id’), the value is entity

by the HTML engine to be read and placed into the DOM Vigecoded and if it is subsequently evaluated as HTML code,
JavaScript. Table 3 shows a common subset of these methgdg,gyits in code injection. This automatic entity decode c

Identifying dynamic transitions requires an involved a8& 1 5e the effect of negating sanitization applied by the eserv
of the application’s JavaScript code. on untrusted data.

Browser Transductions.A significant complication is thatthe (b) DOM access methods expose two different ways of
browser applies a transduction on input along each transitiaccessing DOM content. One set of read access APIs creates
edge. For instance, when the data in a URL attribute is foural serialized string of the AST representation of an element.
the browser first decodes HTML entities [28] in it befor&These correspond to entries named “HTML serialization,”
shipping it to the URI parser. For example, we formally denotCSS serialization,” and “URI normalization” (which adidib-



[ Edge [ Trigger for traversal | Transduction function | Example (input — outpuf) |
1 Normal HTML markup. HTML parsing <p>1&lt; 2</p> — DOM
node “p” containing1<2

2 Character data in HTML, which is not parsed (esgcript> blocks). None

3 Setting thei nner HTML property on a DOM node, which invokes tHeHTML parsing <p>1&lt; 2</p> — DOM
HTML parser to obtain a corresponding DOM tree from the ingtiing. node “p” containing1<2

4 Uses of Core DOM APIs, such gt Attri bute orset Attri bute. | None

5 Uses of HTML-specific DOM APIs, such as nner HTM. or . styl e. | See Table 3

6 Delivery from HTML parser of attribute contents that are 9igd.g.href , | None
src).

7 Instantiation of CSS stylesheets, frorstyl e> blocks orstyl e at- | CSS escape sequence decoding6l — a
tributes.

8 JavaScript source code, #1scr i pt > blocks or in event handler attributes. JavaScript parsing \u6l — a

9 URI specifiers in CSS stylesheets. None

10 JavaScript in CSS stylesheets (e@xpr essi on). JavaScript parsing \u6l — a

11 Call of JavaScript'seval function. JavaScript parsing \u6l — a

12 Use of built-in JSON parser. JSON parsing \u6l — a

13 Result of parsing a JavaScript program. N/A

TABLE 2. Data flows between the components of our browser model as depicted in Figure 1. Edge corresponds to
the numbered arrows in Figure 1.

| Transductions on reading [ Transductions on writing |

DOM property | Access method

get/setAttribute None None
dat a- = attribute . dat aset None None
in markup N/A HTML entity decoding
get/setAttribute None None
src, href attributes .src, . href URI normalization None
in markup N/A HTML entity decoding
get/setAttribute None None
id, alt, title, type, lang, class, dir attributes [attribute name] None None
in markup N/A HTML entity decoding
get/setAttribute None None
style attribute .style.* CSS serialization CSS parsing
in markup N/A HTML entity decoding
HTML contained by node . i nner HTML HTML serialization HTML parsing
Text contained by node .innerText, .textContent None None
HTML contained by node, including the node itself . out er HTML HTML serialization HTML parsing
Text contained by node, surrounded by markup for nodeout er Text None None

TABLE 3. Transductions applied by the browser for various accesses to the DOM. These summarize transductions
when traversing edges 1, 4, or 5 in Figure 1.

ally makes the URI absolute and applies URI encoding). Thierform the transformation on the server or in JavaScrigeco
API corresponds to DOM HTML APIs (edge 5 in Figure 1)running on the client.
For example, when reading amr ef attribute that has a Definition 2: (Sanitizer) A sanitizer is a function
relative URI using the href attribute of the DOM node,
the browser will produce a canonicalized absolute URI. The
other API methods simply read the text values of the string Defining sanitizers as general string transformers allows
versions (without serializing the ASTs to a string) and perf s to include buggy/incorrect sanitizers in our definitidn.
no canonicalization of the values. correctsanitizer is a sanitizer that provides some confinemen-
(c) The transductions vary significantly for the DOM write/safety property on the output.
access API as well, as detailed in Table 3.
Section 2.5 explains in further detail how these subtletieés4. Correctness of Sanitization
can result in bugs.

f i string — string

Checking correctness of XSS sanitization is more complex
than command injection sanitization, formalized by Wasser
man et. al. [56]. We recall below their basic definition ofetgf

Intuitively, a sanitizer is a function that aims to transfor and then bulid on it.
content to ensure that the browser’s parser confines the conbefinition 3: (Syntactic Confinemen) A derivation D is
tent to explicitly allowed syntactic elements. Sanitizeen syntactically confined to a set of non-terminalsdenoted by

2.3. Sanitizers



D, c L(A), if all the sentential forms generatedihcontain 1 text = elenent.getAttribute(’title');
Only non-_terminals from the Se_4' . . i ii:es;:' = ilriag?g_éi ément(’ span’, ’bottoni);

A function f ensures syntactic confinement to a given set of desc. i nner HTM. = text;
allowed non-terminals in a sub-gramm@if Vo, D : § = ° 'oo!tip-appendChild(desc);

F(), Dy C L(A) . . .

We highlight that the actual safety property that sanitirat F19- 2 A bug in PHPBB3 that results due to failure to
aims to achieve is theontext chain safetylefined below, perform sanitization for a dynamic context transition
which accounts for context transitions and the complicetio
introduced by browser transductions.

Definition 4: (Context Chain Safety) Let C; —T
Cy =™ ... C,_1 =»T1 C, be a chain of context transitions
induced by a fragment of untrusted datdan the browser. A
sanitizerf is correctonly itvCy, T;—1 (... (T1(f(u)))) ensures
syntactic confinement to only the allowed non-terminal€’jn

As highlighted earlier in this section, transductions caryv
significantly based on the context chain and based on the
of access methods in JavaScript. The next section preseis
several examples of common modes of failure in sanitizatiqlqg <
usage.

application’s JavaScript code reads data sanitized byeihves
(using HTML-entity encoding) from a parsed attribute. (gsi
HTML-entity encoding). It dynamically places the data in an
HTML content context and evaluates the string as HTML.
The browser automatically decodes HTML entities, undoing
the server’s sanitization, and the:attribute DOM API reads
the decoded string, which allows injection oé&aipt block on
L evaluation. In particular, the safe strirge;scriptggt;
e decoded tGscript> by thegetattribute call and writ-
script> Via innerHTML results in XSS. JavaScript-heavy
web applications are likely to have many of these vulnerabil
. ) ) _ities. Previously developed vulnerability analysis tagoes
2.5. Evaluating Effectiveness Against Common Fail- 4im to solve this problem; however, their applicability to
ures of Sanitization securing web applications during construction has not been
demonstrated [48, 49].
We describe a number of failure reasons for XSS sanitiza-In our evaluation, we aim to evaluate whether existing web
tion, and formulate the questions pertaining to correctieat frameworks address the issue of identifying dynamic cdntex
our evaluation in this paper aims to answer. transfers, and if so, to what extent they enable correctndefe

Incomplete sanitization for nested contextsConsider the against them.

earlier example that shows a nested context for the un@elrlirganitizing difficult contexts. Certain contexts are in-
untrusted data: herently difficult to sanitize. For instance, sanitization
inside an unquoted HTML attribute requires elimina-
tion of a variety of untrusted characters (including
If the developer HTML entity escapes only the untrusted datgpace] % * + , - / ; < => -~ and |), Which varies across
the attacker can not break out of the HTML attribute conteXtrowsers. However, if the attributes are quoted, defensiles
However, because the underlined portion is a URI contegt, tto ensure syntactic confinement are simple and do not vary
attacker is still able to attack the URI parser. An attaclkgtr much across browsers [44]. Similarly, embedding data tirec
such agavascript: Will, when parsed by the URI parser, causénside a<script> block outside of string and number literal

it to recognize the protocol as a JavaScript URI, initiatingontexts is problematic because one must have knowledge of
another context transition to the JavaScript parser. the JavaScript statement parser.

Another possible problem is the failure to account for An important question we empirically study in Section 4 is
transductions. For instance, in the above example, evencifaracterizing the set of contexts security-conscioudiaap
the server performs HTML entity encoding of dangerousons use in practice and those contexts that web applitatio
characters (such a3 in the untrusted input, the browser mayaim to safeguard.

“undo” the encoding to execute the attack. For instance, {gjtelisting vs. blacklisting. Several sanitizers aim to black-
attack stringjavascriptess; will execute script code in this jist sets of known attack strings. For instance, in SANER, th
example, because browsers HTML entity decodeteeback 5 thors present examples of a blacklisting approach where t
to a: character before giving it to the URI parser.  ¢5iyre to account for browser variation or failure to reni

An important objective of our evaluation is to identifyyangerous non-terminals results in attacks (examplegs2-5)
whether built-in sanitizers in state-of-the-art web fravoeks Another approach to sanitization ishitelisting-based
handle static tra_nsmons well for the contexts in Wh'ChythecanonicaIizatior,lwhich we observe is pervasively employed in
support embedding data. state-of-the-art web frameworks as well as HTML purificatio
Incomplete sanitization for dynamic context transitions. engines in use by web applications. The idea is to: (a) parse
JavaScript code execution can read untrusted data from thrgrusted data on the server within the context where it will
DOM and force evaluation or re-parsing of the data in a diffebe embedded, generating a parse tree, (b) eliminate all but
ent context. Consider the example of a bug shown in Figure& whitelist of HTML elements in the parse tree, and (c) re-
which we found in PHPBB3, a popular forum application. Thencode the parse tree representation into a canonical HTML

<inmg src="untrusted">



form, the interpretation of which does not vary across wedanitization from the rest of the web application’s outpwie
browsers. first outline how the web application frameworks address thi
We empirically study what fraction of web applications andhallenge, and then put it in perspective with other teahesq
web frameworks enable this form of sanitization. Previoysroposed in research.
research has not shown the insecurity of this mechanismOf all the frameworks we studied, four frameworks dis-
nor has research applied formal analysis to prove its ggcurtinctly support a separation between HTML code output and
This mechanism stands in contrast to previous sanitizatiaata — namely Django, GWT, Ctemplate and ClearSilver.
free defenses that assume browser variance is probleratic\While the others do encourage separation to some extegt, the

a sanitization defense [59]. do not supportemplateghat make the distinction explicit. A
template is a document representing an HTML output of the
3. Web Frameworks application but withrdata holesplaced throughout. A data hole

is a location in a template filled by content that is not static
We evaluate a set of popular web frameworks that coverg\L. A data hole can be as simple as a variable or contain

most of the widely used web programming languages. Ogsmplicated application logic. This separation betweaticst
focus is on picking popular frameworks, especially those isted content and potentially untrusted input allowsséhe
commercial use. frameworks to conservatively auto-sanitize all the date$io
The separation makes the sanitization a default fail-close
design, i.e., even data that is trusted but not included én th

We evaluated the set of contexts for which each framewot&rnplate will be treated _by the er!gine as untrgsted. The fact
supports sanitization. That is, for each context, we detem that these systems are in pervasive commercial use suggests
whether the framework provides developers with a buiIt-iW"“lt the mechanism _has had success ““?5 far. ) )
sanitizer sufficient to safely emit untrusted data into that Much of the previous research on taint-tracking aims to
context. For contexts not natively supported, developarstm 2ddress the issue of distinguishing what to sanitize ves$izs
write their own sanitizer. The results of this analysis ar§ HTML content. Tracking data dependencies only in taint-
presented in Table 4. tracking can have false negatives [51]. Mechanisms degloye

We observe that 6 out of 13 of the frameworks do ndf Web frameworks coerce programs to restrictive form to err

support contexts other than the HTML tag content conte®f' the side of conservativeness. These offer a differemttpoi
(e.g., as the content body of a tag), HTML attributes and urRf evaluation as compared to taint-based defenses. Securit
attributes. The most commonly supported sanitizers fosetheYP€d languages such as JIF [15,46, 57] also aim to take user

are HTML entity encoding and URI encoding, reSIoeCtiveh;}nnotation as a way to ensure this distinction. In compariso
with customization features available. templating, both taint-tracking and type-based solutioffier

Four web frameworks, ClearSilver, Ctemplate, Django, arffB°"® expressive separation between content than a binary

Smarty, provide appropriate sanitization functions foiténg Metric (data and template).

untrusted data into a JavaScript string. Only 1 framework,

namely Google Ctemplate, provides a sanitizer for emitting3. Support for Auto-Sanitization

data into JavaScript, outside of the string literal contebaw-

ever, the sanitizer is a very restrictive whitelist, allogionly ~ Next, we evaluated the degree of support for automatic

numeric or boolean literals. Allowing untrusted JavaScriganitization in these frameworks. Of the 13 frameworksieval

code to be emitted into JavaScript contexts is not supptedated, seven support some form of automatic sanitizatioes&h

any framework that we studied. Typically, code embedded @&ppear in Table 5. Auto-sanitization is a feature that shife

such contexts is outside the scope of the safety property obrden of ensuring safety against XSS from the developers

lined in Section 2. Instead, properties such as authorfgtga to the framework. Essentially, in a framework that includes

are desired [38], which are the target of other mechanisigto-sanitization, the application developer is resggasior

such as Yahoo's ADsafe [2] or Google’s Caja [12]. indicating which variables will require sanitization. Theb
Four web frameworks, namely Django, GWT, Ctemplat@pplication framework is supposed to ensure that the correc

and Clearsilver, provide sanitizers for URI attributes ihigh ~ sanitizer is applied to each variable that fills a hole.

a complete URI (i.e., including the URI protocol scheme)

can be emitted. These sanitizers reject URLs that use th&.1. Context-Insensitive SanitizationMost of these frame-

javascri pt: scheme and accept only a whitelist of safworks provide automatic sanitization only for HTML tag

schemes, likdnt t p: . The defense for static context transitiorcontent contexts. For example, Djangaat oescape will

attacks outlined in Section 2.5 is correct in these fram&s:or Not protect against untrusted input that is placed in theeval

of anhr ef attribute:

3.1. Expressiveness

3.2. Support for Identification of Untrusted Data

<a href="{{ untrusted_link }}">Link supplied by user.</a>

One of the reasons for XSS vulnerabilities in previousiuntrusted_link}} iS @ template variable in a data hole, in this
systems has been failure to identify untrusted data thalsneease referring to an untrusted user input. In this case, dltee d



Language Framework HTML URL URL JS String JS Number| Style

Attribute Attribute or Boolean | Attribute
(excluding | (including or Tag
scheme) scheme)
Mason [1, 40] v v
Perl Template Toolkit [58] v v
Jifty [32] v v
CakePHP [13] v v
Smarty Template Engine [54] v/ v v
PHP Yii [29, 66] v v
Zend Framework [67] v v
Codelgniter [17, 18] v v
VB, C#, C++, F#| ASP.NET [3] v v
Ruby Rails [47] v v
Python Django [20] v v v v
Java GWT SafeHtml [24] v v v
C++ Ctemplate [19] v v v v v v
Language-neutral| ClearSilver [16] v v v v v

TABLE 4. Set of manually-invocable sanitizers provided by languages and/or frameworks for various contexts. For
frameworks, we also include sanitizers provided by standard packages or modules for the language. We differentiate
between a sanitizer for URL contexts that can correctly sanitize a complete URL (i.e., ensure it does not use the
j avascri pt: scheme and one that need only concern itself with URLs for which the scheme is already set. For the
latter, simple URI encoding is sufficient.

Language Framework, Automatically Sanitizes| Performs  Context-| Pointcut
Plugin, or Feature in HTML Context Aware Sanitization
PHP Codelgniter v Request Reception
VB, C#, C++, F#| ASP.NET Request v Request Reception
Validation [4]
Ruby xss terminate Rails plugin [64]] v Database Insertion
Python Django v Template Processing
Java GWT SafeHtml v v Template Processing
C++ Ctemplate v v Template Processing
Language-neutral| ClearSilver v v Template Processing

TABLE 5. Extent of automatic sanitization support in various frameworks and pointcut where the automatic
sanitization occurs.

hole is simply a variable that happens to refer to user input.The above case is interesting for two reasons. First, we

The double bracket notation for data holes is common in mangtice that the developer chose not to rely on auto-satigiza

of the frameworks we examine. This untrusted link can contaior the header . ur | variable, manually escaping it instead.

ajavascript: URL, which enables a cross-site scriptingJnfortunately, escape is the wrong sanitizer; it merely

attack. Django’saut oescape correctly handles only HTML HTML entity encodes the value resulting in an XSS vulnera-

contexts. bility via the javascript: URI vector. The second interesting
A plugin for Rails called xss-terminate automatically repoint is that had the developer relied on the auto-sanitimat

moves (or escapes, depending on its configuration) tagseéefmechanism, the automatically applied sanitizer would have

content is persisted to the database. This suffers from theen wrong as well.

same problem as Django; it does nothing to prevent vul- Consider another example taken from the Malaysia Crime

nerabilities in which untrusted content is included in otheapplication, authored in the Django framework:

contexts. Similarly, Codelgniter’s automatic sanitinatiuses

. . _ ) " map.addOverlay(new GMarker (point, {{ crime.icon 1}}))
its XSS_Cl ean function in a context-insensitive manner.

Context-insensitive Sanitization is inadequate.Context- Thecrime.icon variable is filled in at runtime as an argument to
insensitive sanitization provides a false sense of sacurft JavaScript function call. Clearly, the auto-sanitizafio this
to developers. For example, the Django framework af@Se performs an inconsistent sanitization, and if theldpee

plies the HTML entity escape to all untrusted data in telied on it, an XSS bug would result; additional dangerous

context-insensitive way. Consider the following code frora  characters (includings \r \ ;) can be used to break out of the
GRAMPS application authored on Django: context into whichcri me. i con is emitted. In this case, the

_ incorrect sanitization did not lead to a vulnerability besa
{% if header.sortable %} . . licitl itized . hiteli f
<a href="{{ header.url|escape }}"> crime. i con was explicitly sanitize (against a whitelist o
{% endif %} acceptable strings) at the time of input.



We conclude that context-insensitive sanitization is exadinstead of just{{NAME}}. For the second holef{{URL}},
guate. Developers using context-insensitive sanitimatruust the : url _escape_wi t h_ar g=ht Ml modifier is applied
implement their own sanitizers to ensure security anyway. indicating that the data hole is in a URL context and should be
verify this, we investigated how often sites rely on Djarggo’sanitized appropriately. Finally, théht M _escape modifier
auto-sanitization and for what fraction of the incorreclyto- is automatically applied to the value Of{PAGENAME}}
sanitized sinks the developer resorted to manual sandtizat before the third hole is filled, indicating that the data hole

We examined a random sample of 10 Django applicatioissin an HTML context and variables should be HTML entity
(from a list of open-source Django applications [21]) t@ncoded.

determine the fraction of variables (_amitted into an apitices Handling Nested Contexts or Static Context Transitions.
templates that are protected by Djangatst oescape. Our Support for nested contexts varies significantly, as shawn i

results are presented in Table 6. Table 4. The Google Ctemplate framework offers sanitiza-

. In all the applications in our sample, the_m_ajority of_vah'ab tion for the maximum number of contexts, including some
sml;s were autoescaped. Though the majority of variables f those that involve implicit static transition contexi&he
emitted into HTML tag content contexts, and are therefonigTML attribute context (e.ghr ef , styl e, oncl i ck) is a

protected byaut oescape, a significant fraction are not. transition context as defined in section 2, i.e., certainbaites

Table 6 further distinguishes the fraction of sinks appegri are recognized as URI attributes. JavaScript event handler
style attributes are examples of these. Most of the other

in HTML tag content context versus others. In all contexts
other than the HTML tag content context, inconsistent (aq meworks do not support any nesting of contexts

technically incorrect) sanitization is applied, which daad ) ) -
to XSS vulnerabilities. Our subsequent manual invesogesif  Handling Dynamic Context Transitions. None of the web

all these cases revealed that the developer explicitlyrieso frameworks support sanitization for dynamic context tfarss
to manual sanitization. That is, they do not identify potential context transferse du

to the execution of JavaScript for auto-sanitization. Etren
3.3.2. Context-Sensitive Sanitization. Three web frame- cases that can be dispatched with simple static analyses are
works, namely GWT, Clearsilver, and Ctemplate, supponbt handled, such as in the following example
context-sensitive automatic sanitization. As in the ofr@me- <script>
works, when each template is emitted to the output, tR€cument.write("<div> {{ untrusted_data }} </div>");
platform automatically sanitizes the data embedded in ket@p </script>
data holes. However, in these frameworks, the context foin ea
hole is inferred as the template is parsed, and the santtzei3.4. Sanitization Strategy: Blacklists vs. Whitelists
apply is selected based on the context of the data hole in

the template. Thus, a sanitizer is automatically applie@to e web framework we studied employs a blacklist-based

variable in a data hole based on its context in the documerbitization approach. Codelgniter employs a blacklist of
For example, consider the following simple Ctemplate tengjarg in its xss clean function, which applies several reg-

plate: ular expression replacements in sequence. These regular ex

{{/AUTOESCAPE context="HTML"}} pressions serve to blacklist potentially dangerous cod¢ th

zht’“}xmdy) may appear in any context. For example, all instances of

script> ) ;

function showName() { docunent . cooki e are replaced with the tektr enoved] .
dOﬁument~§etE%ementByI§<"namespan") -textContent = \ Unfortunately, this blacklisting approach inspires dtttonfi-

) Name: " + "{{NAME}}"; dence in the completeness of the filter. Additionally, it may

</script> break functionality because it essentially applies eacihed’s

<S(P;an id="namespan" onclick="shouName()"> filter regardless of which context the data will ultimately
lick to display name. : f

</span><br/> appear in. This means, fo_r exa_mple, that any occurrence of

Homepage : the termdocunent . cooki e will be removed, even if it

<a href="{{URL}}"> {{PAGENAME}} </a> is simply in the body of a user’s forum post, and therefore

</body></html>

intended to be placed in an HTML context.

This template contains three separate data holes in whictOther than Codelgniter, all frameworks used a whitelisting
values of variables will be emitted. When the template is prbased canonicalization approach described in Section 2. Fo
cessed, the context of the first hold NAME}}, is recognized HTML tag contexts, basic HTML entity encoding was sup-
as a JavaScript string context, and just before the holepsrted in all frameworks. In addition, we found more com-
filled with the value ofNAME, the: j avascri pt _escape prehensive handling of HTML contexts in a number of other
modifier will be applied to the variable. This modifier in-frameworks. For instance, Yii provides an interface to HTML
dicates to the template parser that the JavaScript esc&ueifier [29] and its documentation recommends this interfa
sanitizer should be applied to variables in this data hods the preferred XSS defense mechanism. HTML Purifier fully
before variable substitution. This auto-escaping is emuivparses an HTML snippet, and it claims to remove arbitrarily
lent to explicitly writing {{NAME: j avascri pt _escape}} nested scripts in HTML tag content contexts. While it robust



Web Application | Num. % Auto- | % Sinks | % Sinks | % % Sinks | % Sinks | % Sinks | % Sinks | % Sinks

Sinks sanitized | not man- Sinks in | in URL | in URL | in JS | in JS | in Style

Sinks sanitized | ually HTML Attr. Attr. (in- | Attr. Num- Attr.
(marked | sanitized | Context | (ex- cluding Context | ber/String| Context
safe) cluding scheme) Context
scheme)

GRAMPS 286 77.9 0.0 22.0 66.4 3.4 30.0 0.0 0.0 0.0
Genealogy
Management
HicroKee’s Blog 92 83.6 7.6 8.6 83.6 6.5 7.6 1.0 0.0 1.0
FabioSouto.eu 55 90.9 9.0 0.0 67.2 7.2 23.6 0.0 1.8 0.0
Phillip Jones’ 94 925 7.4 0.0 73.4 11.7 12.7 0.0 21 0.0
Eportfolio
EAG cms 19 94.7 5.2 0.0 84.2 0.0 5.2 0.0 0.0 10.5
Boycott Toolkit 347 96.2 3.4 0.2 71.7 1.1 25.3 0.0 1.7 0.0
Damned Lies 359 96.6 3.3 0.0 74.6 0.5 17.8 0.0 0.2 6.6
oebfare 149 97.3 2.6 0.0 85.2 6.0 8.0 0.0 0.0 0.6
Malaysia Crime 235 98.7 1.2 0.0 77.8 0.0 1.7 0.0 20.4 0.0
Philippe 13 100.0 0.0 0.0 84.6 0.0 15.3 0.0 0.0 0.0
Marichal's  web
site

TABLE 6. Actual usage of auto-sanitization in Django applications. The first two columns are the number of sinks in
the templates and the percentage of these sinks for which auto-sanitization has not been disabled. Each of the
remaining columns shows the percentage of sinks that appear in the given context.

handles untrusted data emitted into an HTML tag contefwhich is not sanitized) does not match any stored username
context, it does not provide functionality for emitting wndted (all of which have been sanitized). As in the request reoepti

data into any other contexts. pointcut, this problem results from a lack of knowledge
regarding where the untrusted data will end up being used.
3.5. Placement of Sanitizers In this case, its correct use in a comparison is precluded by

being sanitized before database insertion.

Finally, we find that for frameworks that support autoTemplate processingSanitizing at template processing time
sanitization, there are variations in where to apply the- saas the advantage of being fail-safe because every output
itizers. Borrowing terminology from aspect-oriented m&W- s sanitized by default. The disadvantage of this pointcut
ming, we refer to each set of program points at which auts very much the inverse of that of the request reception
sanitization is applied assanitization pointcutWe have iden- pointcut: at template processing time, the separation dwstw
tified three different sanitization pointcuts in the franoels | ntrusted and trusted data might have been lost. You cannot
we studied; Table 5 indicates which one is employed by eagd) at this pointcut whether the data is trusted or untmiste
framework. For this reason, some variables may accidentally be escaped
Request reception.Sanitizing at request reception has thewltiple times, which could break functionality. The deysbr
advantage of precisely identifying all untrusted data. kesv, is responsible for manually marking the pieces of data that
the disadvantage is that at this pointcut, there is no knigde should be considered trusted, which is an inconvenient and
of where this untrusted data is going to end up. This makesgitror-prone process, though the errors do fall on the side of
impossible to apply the least restrictive safe sanitizggiolicy; breaking functionality rather than security.
instead you must apply an extremely restrictive sanitirati
policy under the assumption that the untrusted data coudd e, \Web Applications
up being emitted into any context.

Database insertion. Sanitizing at database insertion time We evaluate a set of large, widely used web applications
ensures that no unsafe data is ever stored. Accordingly, tto compare the features provided by web frameworks with
pointcut does not protect against reflected XSS vulnetasili those required for authoring real-world applications. \V&éher

but only stored XSS vulnerabilities (and SQL injection \ain empirical evidence from 8 diverse web applications, raggin
abilities, which we do not consider in the present work). Weom email clients to medical record management systems,
have anecdotal evidence that this pointcut can lead toesul#bout their use of embedded contexts and sanitizers. fiest,
bugs. In a program that we analyzed, all data was sanitizegaluate whether applications use contexts that are intigre
before entering the database. This meant that when a udificult to secure (as outlined in Section 2.5). Second, we
registered for the web site, his username was escaped befmmpare the set of contexts used by applications with the set
being stored. For a user whose name contains a character tiatontexts supported by web frameworks. Third, we evaluate
is escaped, all login attempts fail because the usernareeseht whether these applications employ whitelisting or blastldig



Application Description LOC | HTML URL URL JS Attr. [ JS Num-| Number | Number
Context | Attr. Attr. (in- | Context | ber/String| of Sani- | of Sinks
(ex- cluding Context | tizers
cluding scheme)
scheme)

RoundCube IMAP Email Client 19,038 ° ° ° ° ° 30 75
Drupal Content Management Systemh 20,995 ° ° ° ° ° 32 2557
Joomla Content Management Systemh 75,785 ° ° ° ° 22 538

WordPress Blogging Application 89,504 ° ° ° ° 95 2572

MediaWiki Wiki Hosting Application 125,608 ° ° ° ° ° 118 352

PHPBB3 Bulletin Board Software 146,991 ° ° ° ° ° 19 265

OpenEMR | Medical Records Management 150,384 ° ° ° 18 727

Moodle E-Learning Software 532,359 ° ° ° ° ° 43 6282

TABLE 7. Details of the web applications we study and details on various contexts used by these applications.

based sanitizers. Finally, we evaluate whether the level @) identifies all uses of GET, POST, and COOKIE input

expressiveness supported by web frameworks is sufficientpgarameters, and (c) re-executes each file with random values

enforce the sanitization policy that applications prelsemse. for the newly identified inputs found in step (b). PHP func-
tionality that was not properly explored using this mecbani

4.1. Subject Applications & Analysis Infrastructure ~ Was subject to addition manual interaction as well. We found
a large number of distinct sinks containing untrusted data i

Systematically studying large code bases requires an alR§! @nalysis, which we summarize in Table 7.

matic analysis infrastructure. To limit our effort in buidgy Extracting Sanitizers. Using dynamic analysis, we identify
analysis infrastructure, we decided to focus on one languagets of sanitizers in web applications. We check the inpdt an
namely PHP. We chose PHP because it is a popular webtput of each function call that an application makes in a
application language with over 20 million domains runningynamic run. We use Definition 2 in Section 2.3 to identify
PHP applications [45]. sanitizer functions, and we identify sanitizers that pdevi
Our smallest subject application was over 19,000 lines BTML context chain safety, as per Definition 4.

PHP code, while the largest was over half a million lines For each dynamically executed path in the application, we
of code. Several of these applications, including PHPBBxtract all of the called functions with at least one string
WordPress and MediaWiki have been studied in previoasgument. We fork execution of the PHP engine, replacing
research evaluations. Finally, we believe that these egijtins the string arguments with an XSS attack vector known to
are widely used — for instance, MediaWiki is the frameworkause JavaScript execution in a large number of HTML
behind Wikipedia. contexts [25]. The modified PHP engine logs the argument

Analysis of PHP applications. We describe the analysisvalues and the return values for all such function calls.
infrastructure we build for systematically studying PHRlap  From these logs, we extract all the function calls that both
cations. It provides two primary featurematomatic extraction (00K an attack vector as an argument and returned a string.
of sanitizers (as defined by Definition 2 in Section 2) angY Definition 2, these functions are sanitizers. However, we
inference of contextim which untrusted data is embedded bjvant t approximate the fact that these are sanitizers that
applications. provide HTML context chain safety as per Definition 4. Thus,
PHP is a highly dynamic, interpreted language. PHP h4& Pass the return values of the sanitizers through an edit
dynamic types, dynamically dispatched functions, inviocet distapce algorithm, comparing the attack vector stringht® t
through dynamic arrays, and variable argument functioffgnction’s return value. We negate the effects of standard
which are challenging for static analysis. Notably, Fac® encoding functions liketmientities before running the edit
HipHop PHP compiler and analyzer provides a level of Wp@stance algorithm.. If the e(_jit distance is small, we mepek th
inference support [26], but the analysis is generally imjse, function as a sanitizer. While there are pathological cases

unable to infer types across function calls. Though previoli/Nich our algorithm would fail, we manually evaluated the

research has had success in automatic extraction of sasiti?2UtPut of the algorithm for Wordpress and MediaWiki and
in statically typed languages [37], these are not direcsighle found that the algqr!thm had very few false positives. At stor
in our study of PHP because they operate on the assumptioftt Number of sanitizers we find is andercounof the actual
having @ priori) inter-procedural dataflow graphs. As a resulf)Umber of sanitizers in the web application.
our entire analysis infrastructure relies on dynamic asialy Context Inference. Our aim is to identify the context in

To drive the analysis infrastructure, we used a combinatievhich an untrusted input was embedded. To define untrusted
of automated blackbox fuzzing and manual interaction witthata, we use the intuition that sanitized input data is very
the applications. Specifically, we built a PHP fuzzer that (dikely untrusted. Taking the list of extracted sanitizecs &
systematically invokes all the PHP files in each applicatioparticular web application, we instrument the sanitizerthie



application to surround untrusted data with a special ilent 4.3. Evaluating Usage of Contexts
markup. We feed all GET, POST and COOKIE inputs a
specific key string, so that the instrumentation in the szari$ As Table 7 shows, the various output contexts where we
can distinguish untrusted inputs from other internal défa. observed untrusted user input is fairly small. For instamce
use techniques similar to taint-inference [52] to identifyere MediaWiki, a user may create or edit a wiki entry. Their new
untrusted inputs are embedded in output. Finally, we log adixt passes through sanitizers and a database but evgntuall
web application output for context inference. flows to the HTML context of the output in that particular wiki

We use a modified Python HTML5 parser to parse thasticle. Thus, in the table, the "HTML” column is marked for
application output. While parsing, we search all conterts fMediaWiki because it allows untrusted content in the HTML
the special identifying markup. When found, we record tH@g content context.
context the parser is in. We repeat this until the documentThe listed contexts are as follows:
is completely parsed. When it is finished, we have a list of , HTML tag content: The basic HTML content context
all contexts where the key string appeared as well as which petween two tags. Note, however, that this does not
sanitizers it went through. We present the contexts we found include the content between script tags. Content between
in Table 7. script tags is a separate JavaScript context because the

JavaScript, not HTML, parser is applied to it
o URL: A context where a URL is expected, such as an
4.2. Evaluating Sanitization Practices anchor taghref attribute or an image tagrc attribute.
This also includes the document schema.
« JS String: A JavaScript context where data appears within

We manually evaluated whether these applications predomi- a quoted JavaScript string. For example, if the program
nantly use whitelisting sanitizers or blacklisting. Notat our places a user name inside a JavaScript string to add to a
goal isnot to check whether sanitizers in these applications DOM text node.
were correct, but only to illustrate what security-conssio o Attr: A non-URL HTML attribute context, such as the
applications are employing as a defense strategy. name attribute or thalt attribute.

We obse_rve_d that the number of sanitizers varied from JE%/aIuation Summary.
to 119, which is ”.“‘Ch Iarger than.the nu_mber of con.text.s W€ To the extent of our analysis, we find that the set of contexts
encountered. On inspection, we did not find any duplication. -

T L . ” : in use by web applications matches well with the expres-
this implies that applications have multiple sanitizerslayl siveness supported by the most expressive web frameworks

:;ﬁir;i;(; ::r;ﬁ)iizr?r? ;ggttg:i XVe characterize this variafon previous research [59]. This implies that, in princiiile
o the Ctemplate framework were available for PHP, its context
To the extent of our analysis, we observe that the commgfipport would be empirically sufficient for all the applicats
pattern of sanitization in the PHP applications is the wisite \ye study.
based canonicalization policy that we discussed prewousl another interesting point is that applications do not emit
The applications commonly allow only a whitelist of contextyata in HTML contexts that are inherently hard to secure.
specific syntactic constructs. For example, we did not find any untrusted content flows

Example 1 WordPress allows fairly expressive HTML con0 the general, non-string JavaScript context. Similaaly,

structs in untrusted user content. Users can place commentéhe applications refrained from embedding untrusted data i

blog posts, and these comments can contain some HTML t&?@uoted HTML attributes, which are hard to sanitize due to
with HTML tag attributes for a more rich editing experience® OWSer variation and a large set of attack vectors.

Of course, WordPress applies a variety of sanitizers to this _ ) o _
content to ensure its safety. 4.4. Evaluating Expressiveness of Sanitization Poli-

However, WordPress's sanitizers are a set of filters that tak!®S
a whitelist of allowed tags, attributes, protocols, or a bem
of other options depending on the sanitization context, andAs We observe in Table 7, there is more than one sanitizer
ensure that nothing off the whitelist is syntactically mnes for each embedding context. This implies that each web

These filters are sufficient for WordPress, and we see simig@plication may sanitize different fragments of untrusdeta
implementations in the other applicationm. in a different way based on its security policy. This notidn o

“picking a sanitizer” for each fragment of untrusted dattobe

Evaluation Summary. We find that primarily all of the ,ipytting it to the HTTP response is what we formulate as a
applications use a whitelisting-based canonicalizatto®tegy ¢4 nitization policy functiorbelow.

for the HTML tag context, as discussed earlier in Section 2.5 pafinition 5 (Sanitization Policy Function) The applica-
For instance, we find that thees library used in WordPress 4i's sanitization policy functions is ann-ary function

and Drupal, theitMepuritier library used in Moodle and the

PHPInputFilter library used in Joomla all employ this strategy. v (I, Ia,... 1) = S*



where S is the set of sanitizers in the application &nd. ., [,, Evaluation Summary. We find that sanitization policy func-
are application-specific policy attributes. tions are implicit in today’s web application code. Speailiig,
Note that the sanitization policy function returns an oedier we found that for many applications, sanitizetectioris more
list of sanitizers to apply, and could even return with an gmpcomplex than simply looking at the syntactic HTML context,
list. which is the functionality of the default auto-sanitizatio
One of our goals is to identify what the policy attributes arerotections enabled in those web frameworks that support
for real applications, how much they vary across appnmtiocontext-sensitive auto-sanitization. This implies the sani-
and how complex they may be. We argue that the larger theation policy functions are definitely beyond 0-ary fuoots
n, the more complex the decision for picking a sanitizer. (as context-insensitive auto-sanitization assumes), raryu
We find that an application’s sanitization policy can be verfgnctions (as assumed by context-sensitive auto-satittiga
complex. Specifically, how an applicatiselectsa sanitizer ~ We have found several variations in policy functions in
can be more complex than simply looking at the syntactig'Plicit use by these applications. One common sanitizatio

context. This real-world example from the Drupal applioati Policy attribute observed is that able-basedsanitization,
illustrates the complexity. where the application applies different sanity checks thase

the privilege of the content. Drupal’s variations in saréts
Example 2 In the content management system Drupal, ongypjied based on the user’s role is perhaps an extreme. Other

of the default behaviors is the ability to post and reply t@jmpler policies we observe are where the site administsato
comments on a page. By default, any logged in user can ggntent is not subject to sanitization (by design), as inctee
this, but one may enable it for “anonymous” (not logged iyt pHPBB3. For such simple policies, there are legitimatieco
users as well. paths which have no sanitization requirements.

When the user creates or replies to a post, the applicationsanitization policies have a direct impact on the security
presents a choice of HTML filters to apply to their post. Thgffered by web frameworks. If a framework does not recognize
set of roles assigned to a user by the system administrag@id support the intended security model of the application,
determines the choice of filters presented to the user. Bynnotensure that the sanitization is consistently agpjui¢he
default, “authenticated user” is the sole role of a Iogged Eppﬁcation_ Presenﬂy’ this represents a gap betweenxhe e
user, but the administrator may assign an arbitrary numbergessiveness of the abstractions supported by web frarkewor
roles. Similarly, the program assigns the “anonymous usefnd what web applications require and implement.
role to anonymous users.

An administrator may assign HTML filters to each role5, Results and Findings
By default, the “authenticated user” role is only assigned
the “Full HTML" filter that filters out all HTML control In this study, we characterized the nature of XSS sanitiza-
structures. However, the administrator can create arpitraion. Using a formal notion of XSS sanitization allowed us
HTML filter policies and assign them to various roles. Thusp systematically investigate and contrast the nature o XS
the administrator can apply the “Full HTML” filter to all user sanitization in applications and frameworks. The follogvare
by default, but explicitly allow trusted users to post conmtse some of our key findings:
with links in HTML anchor tags. The administrator is not 1) Only 3 out of the 13 frameworks studied support all the
governed by roles and is always allowed to post arbitrary  contexts that complex web applications employ (Tables
HTML.Thus, when a logged in user is posting a comment 4 and 7).

or a reply, a different sanitization function may be applied 2) Many existing frameworks that provide auto-sanitizatio
to her post based on her role. If she is an administrator, the  perform context-insensitivesanitization. With multiple

program will not apply a filter, but if she is in a different eol examples, we demonstrated that context-insensitive san-
the program may apply a restrictive filter. itization can give a false sense of security. We also find

Thus, context alone does not define the arity of the sanitiza-  that replacing auto-sanitization with the use of a manual
tion function policy. In this case, the role of the loggediser sanitizer is not uncommon.

increases the arity. That is, not just the context detersiine  3) Newer frameworks support simple templating mecha-
sanitizer to apply (a comment or reply HTML context in this nisms for identifying untrusted data, defaulting to a
case) but also on the user’s role. fail-closed design. Such mechanisms put the burden of
However, in this instance, it is even more complicated, trusted data identification on the developer.
because the user may select any of the valid filters assigned) We find that context-sensitive sanitization is the norm
by her roles. For example, if the user is both a trusted user across complex web applications.
for posting links and, separately, a trusted user for pgstin 5) Across frameworks and applications, the approach to
images, she may choose which filter (either the link or  sanitization generally adopted is whitelisting. Develop-
image filter) applies to her post. Therefore, the arity of the  ers identified a subset of HTML that is sufficiently
Drupal sanitization function policy again increases bseau expressive for their needs. Variance in browser imple-
user selection is also a deciding factor in sanitizatiorcfiom mentation does not seem to be a factor in any of the
application. ® sanitizers we observed.



6) Many web applications employ a set of sanitizers mudanguage-based solutions for customizable XSS security po
larger that the set of contexts they support. cies are also an area of active research [41]. Research shows

7) We also find that the decision to pick a sanitizer is nahat cross-site scripting attacks sometimes results frosaie
a simple zero- or single-arity function; fine grained datparsing of CSS [30], optimistic content-sniffing algorittm
attributes (e.g., is the source of the data an administia- browsers [7], and from vulnerabilities in extensions [6,
tor?) along with application configuration often dictat®]. Failure to isolate mashups and advertisements may also
the sanitizer picked for a particular flow. result in code injection vulnerabilities, but typicallyetisafety

8) None of the web frameworks we studied support th@operties that these attacks violate are treated as aasepar
complex sanitization policies we observed in real worldlass From XSS vulnerabilities. These violated properties
web applications. include isolation of principles in web browser primitivesl],

It is not clear to us why such a large number of sanitizé@uthority safety [38] and statically verified containme®2],
functions are employed by web applications. We conjectureBEEP, DSI and NonceSpaces investigated client-server col-
that in the absence of easy correctness arguments forzeaajti 1aborative defenses. In these proposals, the server i®mesp
applications err on the side of caution. Simple and prakticgible for identifying untrusted data which it reports to the
mechanisms for correctness guarantees of sanitizers aid sarowser, and a modified browser ensures that XSS attacks
tizer policies deserve research attention. The completera® can not result from parsing the untrusted data. While these
of support for complex multi-arity sanitizer policy in fram proposals are encouraging, they require updates in browser
works was also salient. We believe that the next generafionigplementations as well as server-side code. The closast pr
frameworks need to address this issue to achieve adoptiontigil implementation of such client-server defense aectitre
complex web applications — our notion of sanitization pplicis the recentontent security policgpecification [55].

function is one possible abstraction that newer framework$,rectness of Sanitization. While several systems have

could employ. analyzed server-side code, the SANER [5] system empiyicall
showed that custom sanitization routines in web applicatio
6. Related Work can be error-prone. FLAX [49] and KUDZU [48] empirically

showed that sanitization errors are not uncommon in client-

Cross-site scripting defense techniques have receiveebd gside JavaScript code. While these works highlight exam-
deal of attention in research. ples, the complexity of the sanitization process remained

XSS Analysis and DefenseMuch of the research on Cross_unexplained. Our observation is that sanitization is perva
site scripting vulnerabilities has focused on finding XS8/fa S|vely. used In emerging W.eb framevv_orks as well as large,
in web applications, specifically on server-side code [5,3 ecurity-conscious applications. We discuss whetheriapgpl
33 35 .36 39 43 63, 65] but also more recently on Javaécr' ns should use sanitization for defense in light of pregio
code [6,23,48,49]. These works have underscored the

main causes of XSS vulnerabilitiggentifying untrusted data S . o
at output anderrors in sanitizationby applications. There Sanitization-free strategy for preventing cross-sitépsieig at-

have been three kinds of defenses: purely server-sidelypurté‘Cks' which involved the explicit construction of the imded

browser-based, and those involving both client and senR§4'S€ tree in the browser via JavaScript. We observe that
collaboration. sanitization-free mechanisms stand in contrast to whiteli

BLUEPRINT [59], SCRIPTGARD [50] and XSS- based canonicalization sanitization which is what is gaiher

GUARD [11] are two server-side solutions that have providéH]plem,emed in emerging frameworks, the security of which
insight into context-sensitive sanitization. In partayl has neither been fundamentally broken nor proven. Research

BLUEPRINT provides a deeper model of the web brows@" string analysis and other automata-based verificatisn sy

and points to paths between the browser components nliggps is currently active, and this research is directlyvaaie

vary across browsers. The browser model detailed in tHf (hese questions [27,34, 48].
work builds upon BLUEPRINT’s model and more closelyTechniques for Separating Untrusted Content. Taint-
upon SCRIPTGARD's formalization. We provide additionafracking based techniques aimed to address the problem of
details in our model to demystify the browser's parsinglentifying and separating untrusted data from HTML output
behavior and explain subtleties in sanitization which therp to ensure that untrusted data gets sanitized before it is out
work did not address. put [14,33,43,51, 60, 65]. Challenges in implementingttain
Purely browser-based solutions, such as XSSAuditor, aadalysis as well as performance overheads have precludied th
client-only solutions, such as DSI, are implemented in moedeuse in deployed web applications. Security-typed langsiage
browsers. These mechanisms are useful in nullifying command type-systems offer another mechanism to ensure thetrobu
attack scenarios by observing HTTP requests and intergeptisolation of untrusted data from HTML code output [15, 46, 53
HTTP responses during the browser’s parsing. However, th&y]. The generality of type systems allows for creating arfine
do not address the problem of separating untrusted fraeparation between untrusted inputs, a property we metivat
trusted data, as pointed out by Barth et al. [10]. Othevith our empirical analysis. HTML templating engines, such

Among server-side defenses, BLUEPRINT provided a



as those studied in this work, offer a different model ife4]
which they coerce developers into explicitly specifyingsted
content. This offers a fail-closed design and has seen inxﬂopt[25]

in practice because of its ease of use. [26]
[27]
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