Design and Characterization of the Berkeley
Multimedia Workload

Nathan T. Singerland and Alan Jay Smith

.

g

O
[
S |/y\ Report No. UCB/CSD-00-1122
o | December 2000
P : < Computer Science Division (EECS)
I

University of California
Berkeley, California 94720

Design and Characterization of the Berkeley Multimedia Workload

Nathan T. Slingerland and Alan Jay Smith
{slingn, smith}@cs.berkeley.edu

Computer Science Division
EECS Department
University of California at Berkeley

December 21, 2000

Abstract

The last decade has seen the integration of audio, video, and
3D graphics into ezisting workloads as well as the emer-
gence of new workloads dominated by the processing of these
forms of media. Unfortunately, widely accepted benchmarks
which capture these new workloads in a realistic way have not
emerged. The goal of this work is to present the Berkeley
multimedia workload, which was developed in order to facili-
tate our own studies on architectural support for multimedia.
Here we present a survey of existing multimedia benchmark-
ing methods, a description of the Berkeley multimedia work-
load, as well as a full workload characterization including the
extraction of computationally important multimedia kernels,
and a detailed description of their constituent algorithms.

1 Introduction

What is multimedia and why is it important to study? We
will define multimedia as proposed in [Bhas97]: an amalgama-
tion of various data types such as audio, 2D and 3D graphics,
animation, images and video within a computing system or
within a user application. Put simply, a multimedia appli-
cation is one which operates on data that takes form either
visually or aurally. Multimedia applications are important
to study because the multimedia industry is growing rapidly
both in terms of consumer use and acceptance as well as eco-
nomic impact. Figures la-1c graph current and projected
trends for several key product areas in multimedia including
digital video (DVD players, Figure 1a), digital imaging (dig-
ital cameras, Figure 1b), and digital audio (portable MP3
players, Figure 1c). Each of these industries relies either di-
rectly or indirectly on the ability of desktop computers to
manipulate and process multimedia data. [Cont97] discusses
some of the challenges involved in bringing these new work-
loads to desktop computers.

Funding for this research has been provided by the State of Califor-
nia under the MICRO program, and by Cisco Corporation, Fujitsu Mi-
croelectronics, IBM, Intel Corporation, Maxtor Corporation, Microsoft
Corporation, Sun Microsystems, Toshiba Corporation and Veritas Soft-
ware Corporation.

Benchmark performance is important for justifying the pro-
posed architectural features to be included in a next genera-
tion processor. Many current microprocessor features (branch
prediction, large caches, 32-bit and 64-bit data paths) have re-
sulted from emphasis on performance for integer benchmarks
such as SPECint92 and SPECint95 [Cont97]. Perhaps the
most difficult task of any multimedia researcher is determin-
ing what applications constitute a multimedia workload. The
lack of a standard, realistic multimedia workload has forced
multimedia performance studies to focus either on existing
digital signal processing kernels or on MPEG video play-
back ([Kuro98], [Lee95], [Zuck96]). Only recently have true
multimedia application benchmarks begun to emerge ([Intel],
[Lee97]). In order to construct a relevant and realistic work-
load we first survey what other researchers in multimedia have
done in Section 2. We then present the Berkeley multimedia
workload in Section 3, outlining the component applications
and data sets, and analyzing it in Section 4.

2 Multimedia Workloads

The simplest types of benchmarks are toy benchmarks (algo-
rithmic problems such as Towers of Hanoi, or Nine Queens),
and synthetic benchmarks (small programs especially con-
structed for benchmarking which do not perform any useful
computation in themselves, but are intended to statistically
represent the average characteristics of a target workload)
[Cont91]. Thus far, no studies of multimedia have employed
either of these types of benchmarks. Instead, kernel bench-
marks (code fragments extracted from real programs which
are believed to represent a significant portion of the execu-
tion time of the original application) and sometimes appli-
cation benchmarks (full applications performing a particular
task with real input data sets) are used. Full application
benchmarks are usually preferred to kernel benchmarks be-
cause they perform the actual task of interest in the same
manner as the actual workload. Kernel benchmarks can be
appropriate depending on the scope of the study as well as
whether or not they are justifiably important within the work-
load they are intended to represent.

The importance of studying complete applications with re-

g
8

g
|
BooNoN W
5 8 B 8

Units Sold per Month

Units Sold per Year (Millions)
.
1S

)
G

8

N
o

3

PN
o

5

-

Units Sold per Year (Millions)
2
o

)

—

o

1997 1998 1999

(a) DVD Player Sales

(b) Digital Camera Sales

2000% 2001* 2002% 2003* 1999 2000% 2001* 2002% 2003* 2004

(c) Portable MP3 Player Sales

Figure 1: Multimedia Industry Trends [CEA], [Robe00], [Taka00] - data denoted with (*) are projected values

alistic data sets can not be overstated. Small code sizes
and undemanding data sets make coding easy and verifica-
tion straightforward, but are not appropriate for performance
analysis. A system’s performance on a kernel which has been
selected a priori without any supporting analysis is not a good
indication of the actual end user’s experience. Designing a
useful application level benchmark consists of the selection of
the applications to be included, and the data sets on which
these applications will operate.

2.1 Media Libraries

Several studies have recoded DSP and multimedia algorithms
(kernels) for various multimedia instruction set extensions in
order to measure the performance benefits of such instruc-
tions. [Nguy99] recoded a set of DSP and multimedia al-
gorithms in Motorola’s AltiVec extension and measured the
speedup over C. [Bhar98] analyzed Intel’s MMX extension on
a set of DSP kernels and applications taken from Intel’s sig-
nal processing, recognition primitives and image processing
libraries. [Rice96] quantified the performance of the VIS ex-
tension to Sun’s UltraSPARC architecture on a set of image
processing algorithms from Sun’s XIL imaging foundation li-
brary. Sun’s VIS extension was also examined in [Naka96]
for a different set of imaging kernels. Unfortunately, this ap-
proach simply shifts the responsibility of kernel selection from
the multimedia researcher to the library’s author, who may or
may not have relied upon an extensive and representative per-
formance analysis of multimedia applications. The inclusion
of a given function within a library intended for multimedia
is not sufficient to conclude that the function is of actual per-
formance importance, as the workload it is derived from is in
most cases left a mystery.

2.2 DSP Benchmarks

Early attempts at integrating multimedia processing with
desktop computers enhanced a general-purpose processor
with a DSP as a media coprocessor [Lee96]. From this, it was
a small jump from borrowing DSP hardware technology for
desktop multimedia processing to borrowing DSP benchmarks

to measure desktop media processing performance. DSP
benchmarks are still being used (and in some cases created)
for measuring desktop multimedia performance ([Bhar98|,
[Zivo94]). An example of a typical DSP specific benchmark,
the BDTi benchmark, is given in Table 1 [BDTi97]. Although
these kernels have been widely studied for DSP and are justi-
fiably important in low power portable devices, it is not clear
that they have the same importance in desktop multimedia
applications. DSPs and general purpose processors are sig-
nificantly different in their architectures and design tradeoffs
presumably in order to support widely different workloads.
DSPs typically do not support virtual memory and may not
include data or instruction caches. DSPs have specialized
addressing modes and pipelined multiply-accumulate opera-
tions; DSPs are often also designed for applications where
power consumption and cost, rather than just performance,
are important design guidelines.

2.3 Multimedia Benchmarks
2.3.1 MPEG

At the time of the introduction of the MPEG-1 standard, no
one seriously considered anything but a dedicated hardware
solution for MPEG video decoding. Even so, much of the
original MPEG standard consisted of C based pseudo code.
It was not long after its publication that it was found that
real time MPEG playback could be done in software on high-
end workstations [Rowe93]. Software based decoding is now a
widespread solution to DVD viewing on personal computers
(DVD video employs a subset of the MPEG-2 coding stan-
dard). The original work on software MPEG decoding also
first used frames per second of SIF format (352x240 resolu-
tion) video decoding as a metric for measuring multimedia
performance. Many architectural studies of multimedia have
employed this metric. It is simple to understand and measure,
and the underlying MPEG coding application is motivating
because of the broadly attractive applications such as DVD
and HDTYV that it facilitates.

Software based MPEG decoding is a hard problem and not
efficiently supported by traditional width (32-bit or 64-bit)

Kernel Description

Example Applications

Real Block FIR

Finite Impulse Response filter, block real data

speech processing (e.g. G.728 speech coding)

Complex Block FIR

Finite Impulse Response filter, block complex data

modem channel equalization

Real Single Sample FIR

Finite Impulse Response filter, single sample real data

speech processing, general filtering

LMS Adaptive FIR

Least-mean-square adaptive filter, single sample real data

channel equalization, servo control, linear pred. coding

Real Single Sample ITR

Infinite Impulse Response filter, single sample real data

audio processing, general filtering

Vector Dot Product

Sum of the pointwise multiplications of two vectors

convolution, correlation, matrix multiplication

Vector Add Pointwise addition of two vectors

graphics, mix audio signals or images, vector search

Vector Maximum

Find value and position of maximum element in vector

error control coding, block floating point algorithms

Convolutional Encoder

Convolutional forward error correction on a block of bits

North American digital cellular telephone equipment

Finite State Machine

Series of control and bit manipulation operations

Virtually all DSP applications include control operations

FFT

256-point, In place, Radix-2 fast Fourier transform

Radar, sonar, MPEG audio, spectral analysis

Table 1: BDTi DSP Benchmark Suite [BDTi97]

data paths, so it is fundamentally interesting. In addition,
improvements to software MPEG decoding are not limited
to this algorithm alone. Many other multimedia applications
rely on the same algorithmic building blocks as MPEG. The
H.261 and H.263 teleconferencing standards are both algo-
rithmically similar to MPEG video coding - they are hybrid
coding techniques utilizing a DCT scheme for intra-frame
compression and block based motion compensation to ex-
ploit temporal redundancies for inter-frame compression. Be-
cause they are intended for video teleconferencing applica-
tions, H.261/H.263 are much more computationally symmet-
ric algorithms than MPEG, which is an asymmetric encode
once, decode many application [Arav93]. JPEG compression
is algorithmically identical to the I frame format of MPEG.

Despite MPEG video’s clear importance, it is not the only
multimedia application worth studying. It is important not to
ignore the area of broadband audio coding, as usable movie
playback requires the concurrent decoding of a five channel
sound track (broadband audio is a term used to differentiate
sound signals which contains the full 20 Hz - 20 kHz range of
human hearing from speech specific signals which are limited
to the approximately 3.2 kHz wide band necessary for in-
telligible speech). Other important important industry driv-
ing media types include 3D graphics, and speech recognition
and synthesis. Video games, which rely heavily on real time
3D graphics as well as other media types, drive technological
change in the PC industry.

2.3.2 Intel Media Benchmark

Around the time of Intel’s addition of MMX to their x86
architecture, they released the Intel Media Benchmark. Its
development was spurred because an adequate industry stan-
dard multimedia benchmark did not exist to measure multi-
media performance. Clearly targeted at the x86 based Win-
tel platform (no source code for the benchmark is publicly
distributed), it is of little practical use for comparing Intel’s
MMX to the extensions designed by other vendors. What
is interesting are the applications Intel included, as well as
the weighting each section of their benchmark suite is given
(Table 2). An Intel Media Benchmark score is computed by
calculating the weighted geometric mean of the time of each

of the component benchmarks. According to the white pa-
per distributed on the World Wide Web, the weightings were
based on feedback from leading multimedia software vendors
[Intel].

Name Description Data Set
Video MPEG-1 Video Decode(40%) 320x240 scaled 2x
Audio MPEG-1 Audio Decode (20%) 30 sec, CD quality
Audio Processing (5%) Sample rate conv.
Special effects
Mixing
Imaging | Photoshop type Filtering (5%) Convolution
Box Filter - gaussian blur, emboss Compositing
Image Compositing - blend Chroma Key
Chroma Key - image overlay Color space conv.
3D Render Direct3D Scene (30%) 4 spheres, 2 lights

Table 2: Intel Media Benchmark [Intel]

The Intel Media Benchmark was innovative because large
parts of it consist of real multimedia applications with actual
multimedia data sets. As the benchmark is run, the results
of the component applications are presented. For example, in
the case of audio mixing, the resulting mixed audio is played
through the test PC’s sound card and speakers. This sets it
apart from many benchmarks, in that it is possible to verify
the result computed, rather than just time how long it took
to execute. Distributing the benchmark only as an x86 exe-
cutable is this benchmark’s greatest shortcoming, limiting it
to being used solely for comparisons among X86 instruction
set compatible processors.

Although the Intel Media Benchmark source code is not
publicly available, we did have access to it through an agree-
ment with Intel. After examining the benchmark’s contents,
we chose not to modify or expand it for our work for sev-
eral reasons. First, because the Microsoft Windows operating
system is only available for x86 based machines (and to a
limited extent on DEC Alpha machines), it would require a
large effort to port the existing Windows oriented Intel Media
Benchmark code to the other UNIX-based platforms that we
desired to study. Most importantly, basing our work on the
Intel Media Benchmark would have bound the resulting work-

load with the same closed distribution format as the original
Intel Media Benchmark, precluding independent verification
of our applications and data sets. We determined that a much
better approach would be to utilize existing UNIX multimedia
applications, as this would avoid the porting effort as well as
leaving our product open source. Every hardware platform is
capable of running some flavor of UNIX, but not necessarily
Microsoft Windows, making a UNIX based benchmark much
more attractive.

2.3.3 UCLA MediaBench

UCLA’s MediaBench is a suite of media oriented applications
and corresponding sample data sets designed to represent the
workload of emerging multimedia and communications sys-
tems [Lee97]. The applications included in the UCLA Me-
diaBench suite (Table 3) were selected through intuition and
market driven selection on the part of its authors to represent
what they considered the workload of emerging multimedia
and communications systems. All of the component applica-
tions are publicly available as source code, and the complete
set of applications and data sets are distributed on the World
Wide Web.

The MediaBench workload represents a large portion of the
types of applications that might be run on a desktop worksta-
tion or PC. The already discussed problems with DSP bench-
marks and library kernels were avoided by instead using full
applications and data sets. UCLA MediaBench includes im-
age compression (JPEG, EPIC), video compression (MPEG-
2), speech and audio coding (GSM, G.721, and ADPCM),
speech recognition (Rasta) as well as cryptography (PGP,
Pegwit). It also tests one document presentation application
(ghostscript) and a popular 3D rendering API (Mesa).

What UCLA MediaBench gets right is the concept of giv-
ing application and data set selection equal importance. The
benchmark is freely distributed in source code form on the
world wide web along with the corresponding data sets. This
open source approach facilitates confidence in the benchmark
along with providing a means for critiquing the benchmark’s
contents. Direct cross architecture comparisons are possible
for any platform capable of running UNIX or a similar oper-
ating system, although the benchmark does not specify a sin-
gle numerical metric to make such a comparison. We opted
not to simply use UCLA MediaBench for our study because
several key multimedia applications have emerged since its in-
ception (most notably, MP3 audio). Also, many of the data
sets have aged such that they are unrealistically small com-
pared to contemporary workloads. [Fritt99] addresses the first
issue by extending UCLA MediaBench with a few other ap-
plications (H.263 video teleconferencing and MPEG-4), and
notes the data set size problem. The original MediaBench is
characterized in [Bish99].

3 Berkeley Multimedia Workload

We believe that the approach of MediaBench - full applica-
tions with well specified data sets - is correct. For this reason,

we used UCLA MediaBench as a starting point for construct-
ing our own multimedia workload. Open source software was
used both for its portability (allowing for cross platform com-
parisons) and the fact that we could analyze the source code
directly. The main driving force behind application selection
was to strive for completeness in covering as many types of
media processing as possible. We first surveyed and collected
a broad sample of multimedia applications, which was dis-
tilled into a list of fundamental multimedia tasks: 1) MPEG
video, 2) MPEG audio, 3) video games (including real time
3D graphics and music synthesis), 4) ray tracing (high quality
static 3D rendering), 5) speech recognition and synthesis, 6)
telephony (video and speech compression), and 7) electronic
document viewing and rendering (e.g. PostScript and HTML
documents, digital photographs).

For each task, a small subset of applications were cho-
sen based on several factors including apparent popularity
(based on personal experience and user discussions on the
WWW), code quality (robustness, performance) and level of
code maintenance. In most cases, there was a single appli-
cation that was clearly superior to its competitors based on
these metrics. It is our hope that in making our workload
fully open and available that the process of peer review can
serve to draw attention to any deficiencies in this workload.
It is not our contention that this workload is ideal for every
study of multimedia. The greatest advantage of making the
Berkeley multimedia workload completely open is that any-
one is free to take our workload and modify it to suit their
needs.

The applications which make up the Berkeley multimedia
workload are presented in Table 4, which includes image com-
pression (DjVu, JPEG), 3D graphics (Mesa, POVray), docu-
ment rendering (Ghostscript), music synthesis (Timidity), au-
dio compression (ADPCM, LAME, mpg123), speech synthe-
sis (Rsynth), speech compression (GSM), speech recognition
(Rasta) and video game (Doom) applications. Three MPEG-
2 data sets are included to cover DVD and HDTV (720P,
10801) resolutions. A detailed description of each component
application and data set can be found in Appendix B.

4 Workload Characterization

The characterization of a benchmark involves the measure-
ment of its runtime behavior with our specific goal being
to provide insight into supporting multimedia with hardware
architectures. In order to provide a baseline against which
to compare our characterization of the Berkeley multimedia
workload, a side by side characterization in the same man-
ner will be performed with another widely studied workload,
the SPEC95 benchmark suite. All of our workload measure-
ments were performed on the DEC (now Compaq) Alpha plat-
form using the ATOM instrumentation tool from the Devel-
oper’s Toolkit for Digital Unix (now Compaq Tru64 Unix).
ATOM allows for the construction of customized instrumen-
tation and profiling tools, as well as including a variety of
standard prepackaged tools such as gprof and pixie [DEC].

The component applications for both the multimedia work-

Name Description Data Set
ADPCM IMA reference ADPCM audio compression Speech by U.S. President Clinton, 18 sec., 16-bit, 8,000 Hz
EPIC Experimental wavelet image compression 256x256 greyscale image
G.721 CCITT reference ADPCM speech compression Speech by U.S. President Clinton, 18 sec., 16-bit, 8,000 Hz
Ghostscript Postscript interpreter for rendering postscript files Color postscript drawing of a tiger
GSM European GSM 06.10 full rate speech compression Speech by U.S. President Clinton, 18 sec., 16-bit, 8,000 Hz
JPEG DCT based lossy image compression 227x149 color image
Mesa OpenGL 3D Rendering API Clone Mipmap - texture mapping with mipmaps
Osdemo - standard rendering pipeline
Texgen - texture mapped version of Utah teapot
MPEG MPEG-2 video coding Four frames at SIF (352x240) resolution
PEGWIT SHA1 public key encryption and authentication SpixTools output statistics file
PGP “Pretty Good Privacy” data encryption SpixTools output statistics file
Rasta Speech recognition 2.128 second SPHERE format speech file: “Laurie?...Yeah...Oh.”
Table 3: UCLA MediaBench
Name Description Data Set
ADPCM IMA ADPCM audio compression Excerpt from Shchedrin’s Carmen Suite, 28 sec., Mono, 16-bits, 44 kHz [Pope94]
DVJU AT&T IW44 wavelet image compression 491x726 color digital photographic image [Kodak]
Doom Classic first person shooter video game 25.8 sec. recorded game sequence (774 frames @ 30 fps)

Ghostscript | Postscript document viewing/rendering First page of Rosenblum and Ousterhout’s LFS paper (24.8 kBytes) [Rose92]
GSM European GSM 06.10 speech compression Speech by U.S. Vice President Gore, 24 sec., Mono, 16-bits, 8 kHz [CNN99]
JPEG DCT based lossy image compression 491x726 color digital photographic image [Kodak]

LAME MPEG-1 Layer III (MP3) audio encoder Excerpt from Shchedrin’s Carmen Suite, 28 sec., Stereo, 16-bits, 44 kHz [Pope94]
Mesa OpenGL 3D rendering API clone Animated gears, morph3d, reflect demos - 30 frames each at 1024x768
MPEG-2 MPEG-2 video encoding 16 frames (1 GOP) at DVD, HDTV 720P, HDTV 10801 resolutions
mpgl23 MPEG-1 Layer III (MP3) audio decoder Excerpt from Shchedrin’s Carmen Suite, 28 sec., Stereo, 16-bits, 44 kHz [Pope94]
POVray Persistance of Vision ray tracer 640x480 Ammonite scene by artist Robert A. Mickelsen [Mick95]
Rasta Speech recognition 2.128 sec. SPHERE audio file: “Laurie?...Yeah...Oh.”
Rsynth Klatt speech synthesizer 181 word excerpt of U.S. Declaration of Independence (90 sec., 1,062 bytes)
Timidity MIDI music rendering with GUS instruments | X-files theme song, MIDI file (49 sec., 13,894 bytes), Goemon patch kit [Snow96]

Table 4: Berkeley Multimedia Workload

load and SPEC95 were compiled with Compaq C V6.1-011 or
GCC v2.8.1 on Compaq Tru64 UNIX V5.0 (Rev. 910) with
the compiler flags: -02 -g3 -non_shared. These parameters
turn on only those optimizations which which are not architec-
ture specific - those which eliminate redundancies in the code
at the assembly level (common sub-expression elimination,
constant propagation), rather than more sophisticated opti-
mization methods (loop unrolling, procedure inlining, global
scheduling) which can potentially affect the workload in an
architecture specific way [Fritt99]. All of the component ap-
plication codes were originally distributed with optimization
levels less than or equal to this, making the codes in our study
at least as well optimized as the binaries that are in wide use.
All of the compiled binaries were instrumented with our tools
using ATOM and run on a Compaq model DS20 worksta-
tion with dual 500 MHz Alpha 21264 processors and 1 GB
of RAM. Table 5 overviews the basic characteristics of the
Berkeley multimedia workload.

4.1 Operation Mix

The balance of functional resources utilized by a workload de-
termines the optimal distribution of functional units (adders,
multipliers, load/store units) as well as buffer lengths and
other important architectural parameters. The number of
functional units available determines how instructions are
scheduled, and is limited by available die area as well as lim-
itations due to added wire length and cycle time. Having too
few of the needed functional units lengthens the execution
time of a program due to the limited ability to extract par-
allelism, while on the other extreme, implementing too many
functional units results in under utilized resources which con-
sume additional area, reduce yield and increase wire length
and cycle time [Fritt99]. Table 6 compares the relative mix
of a variety of instruction types for the Berkeley multime-
dia workload, UCLA MediaBench+ [Fritt99] and the SPEC95
benchmark suite as well as the instruction mix for each com-
ponent application both workloads. Note that this data re-
flects standard compilers, and does not include any specialized
multimedia instructions. From this table it would appear that
although there are overall similarities between the workloads,

Name Source Instructions Executable Size (bytes) L oads Stores User Time System Time
Lines Static Dynamic Static Dynamic (sec) | (M cycles) | (sec) | (M cycles)
ADPCM Encode 300 478| 64,020,339 32,768 1,507,328 4,302,782 616,116 0.116 53.0] 0.037 185
ADPCM Decode 300 478| 49,687,192, 32,768 1,507,328 4,302,782, 1,229,491 0.063 315 0.086 43.0)
DJVU Encode 25,419 131,541 394,242,073 1,318,912 42,663,936 68,204,647, 27,458,767 0.696] 348.0 0.020) 10.0
DJVU Decode 25,419 127,475 328,761,829 1,277,952 21,495,808 59,700,283 31,845,270 0.492 246.0 0.030] 15.0)
Doom 57,868 295,086 1,889,897,116 2,359,296| 27,066,368 500,225,773 109,222,846 2134 1,067.0 0.954] 477.0
Ghostscript* 248,363 326,773 970,395,449 4,579,328| 32,964,608 188,116,952, 96,837,718 1.175 587.5 0.129 64.5
GSM Encode 5473 54,228| 375,971,389 385,024 1,048,576 55,009,077 14,010,892 0.468| 234.0 0.003 1.5
GSM Decode 5473 54,228 126,489,950, 385,024 1,048,576 10,711,683 3,812,483 0.186) 93.0 0.000) 0.0)
JPEG Encode 33,714 75,460 177,977,854, 557,056] 11,141,120 41,182,069 14,156,413 0.218 109.0 0.012 6.0)
JPEG Decode 33,714 81,382 80,176,365 598,016] 11,141,120 16,419,065 4,585,079 0.094] 47.0 0.026 13.0
LAME* 19,704 22,078] 7,989,818,554 376,832 7,274,496 1,688,230,256 720,826,607 18.361 9,180.5 0.099 49.5
Mesa Gears* 119,830 462,942 296,287,705 4,210,688| 51,445,760 36,839,087 38,449,257 0.480) 240.0 0.019) 9.5
Mesa Morph3D* 120,401 465,167, 239,456,087, 4,218,880] 51,642,368 28,181,931 42,865,365) 0.548 274.0 0.023 115
Mesa Reflect* 119,883 467,373 2,752,665,912 4,251,648 61,407,232 431,196,702 221,523,544 3.524 1,762.0 0.023 115
MPEG-2 Enc. DVD 7,605 78,549 17,986,999,069 475,136 49,283,072 3,257,725,765| 554,222,287| 17.798 8,899.0 0.309 154.5
MPEG-2 Enc. 720P 7,605 78,549 47,606,551,352 475,136 127,008,768 8,581,717,942 1,563,082,541 48.013 24,006.5 0.550] 275.0)
MPEG-2 Enc. 10801 7,605 78,549| 111,041,463,652 475,136| 284,622,848 20,148,301,625 3,349,482,784| 113.605 56,802.5 0.261, 130.5
MPEG-2 Dec. DVD 9,832 248,779 1,307,000,398| 1,540,096 16,908,288 219,595,775 76,688,056 1.894] 947.0 0.032 16.0
MPEG-2 Dec. 720P 9,832 248,779 3,992,213,571 1,540,096| 42,467,328, 673,343,544 243,881,680 5.749 2,874.5 0.087 43.5)
MPEG-2 Dec. 10801 9,832 248,779 8,038,214,930 1,540,096 93,847,552 1,341,912,185 464,649,094 11.988 5,994.0 0.133 66.5
mpg123* 7,790 87,313 574,034,774 729,088 3,407,872 166,675,525 45,334,678 0.733 366.5 0.003 1.5
POVray3 151,346 227,214 6,017,197,975| 2,179,072 16,384,000 1,562,189,592, 683,690,648 11.105) 5,552.5 0.146 73.0
Rasta® 24,589 114,943 25,120,492 876,544 5,767,168| 5,925,648 1,989,604 0.037 185 0.002 1.0)
Rsynth 7,089 48,121 402,500,964 625,264 3,997,696 102,351,142 39,223,906 0.852, 426.0 0.025] 12.5
Timidity 40,514 81,256 4,588,632,916 892,928 26,279,936 1,340,471,112 594,047,710 2.046 1,023.0] 0.160| 80.0]
Total 1,099,500 4,105,520| 217,315,777,907| 35,932,784| 993,329,152 40,532,832,944| 8,943,732,836| 242.375| 121,182.5| 3.169 1,584.5
Arithmetic Mean 43,980 164,221 8,692,631,116 1,437,311| 39,733,166| 1,621,313,318 357,749,313| 9.695 48473 0.127 63.4

Table 5: Berkeley Multimedia Workload Characteristics - times in seconds (sec) and millions of CPU cycles (cycles).
Compaq DS20 (dual 500 MHz Alpha 21264, Tru64 Unix v5.0 Rev. 910), user time (time spent processing in user space), and
system time (time spent processing in system space on behalf of an application) Compaq DS20 (dual 500 MHz Alpha 21264,
Tru64 Unix v5.0 Rev. 910). All applications compiled with GCC v2.8.1 except (*) compiled with DEC C v5.6-075.

SPEC95 clearly has a greater emphasis on floating point op-
erations. Both multimedia workloads emphasize shift /logical
operations to a greater degree than the SPEC benchmarks.
Individual applications exhibit even more distinctive differ-
ences (see Figure 2 - full instruction mix counts are listed in
Appendix A).

4.2 Data Width

The motivation behind SIMD multimedia extensions for gen-
eral purpose microprocessors is to bridge the mismatch be-
tween wide data paths (32 or 64 bits) and narrow multimedia
data types. In order to examine the effectiveness of the SIMD
approach for multimedia relative to a more traditional work-
load, we measured the data widths of instruction operands and
results for all of the instructions dynamically executed in the
SPEC95 (integer and floating point application suites) and
Berkeley multimedia (audio, speech, document, video and 3D
domains) workloads. Data width was determined by count-
ing the number of leading zeros in the absolute value of an
operand or result value and then subtracting that count from
the operation width. The correct calculation and interpreta-
tion of both of these quantities was inferred from the specific
instruction involved. No attempt was made to distinguish op-
erations on pointers from operations on program data. Only
arithmetic instructions were measured (bitwise logical opera-
tions were excluded).

Figure 3 graphs the cumulative distribution of the data
width metric for all of the dynamic instructions executed in
each workload. The results were categorized according to the

type of application. In the case of SPEC95, these were the
integer and floating point application suites, while the Berke-
ley multimedia workload was divided into audio, speech, doc-
ument, video and 3D graphics application domains. This
data should be taken as a rough approximation due to the
way in which the number of required bits was computed (dis-
cussed above). Even so, the resulting curves are quite telling.
Compared to the SPEC95 workload, the curves for multime-
dia application domains have much more pronounced “knees”,
beyond which the curves flatten out until sufficient bits for
pointer arithmetic (around 32-bits) are reached. Video ap-
plications utilize around 12-bits of precision, speech and au-
dio around 16-bits, while the remaining domains of document
and 3D graphics applications do not demonstrate such clear
boundaries.

4.3 Potential for Extracting ILP

A basic block is a sequence of instructions uninterrupted by a
branch or jump instruction, which must therefore execute se-
quentially. The average basic block size is of interest in deter-
mining the amount of instruction level parallelism available,
with the average size of a basic block defining the maximum
amount of local parallelism which might be extracted through
superscalar techniques such as register renaming and out of
order execution. (As noted below, additional parallelism may
be obtained by speculating on the branch outcome.) Although
typically the amount of instruction level parallelism (ILP) ac-
tually extracted is 25%-35% of this maximum, the larger the
basic block, the greater the gain [Fritt99]. The ATOM pixie

Integer
Load Store CBranch CMove | Add/Sub Mult Logic Shift Cmp Call/Ret Branch
Multimedia 16.51% 2.44% 3.94% 5.16% 37.36% 0.46% 7.03% 15.91% 3.69% 0.39% 0.41%
SPEC95 17.41% | 4.72% 4.18% 0.21% 32.14% 1.01% | 3.87% | 2.18% | 1.19% 0.51% 0.79%
Mediabench+ [Fritt99] 15.54% 6.39% 15.44% 5.85% 25.62% 1.48% 5.85% 10.03% 0.74% 2.36% 0.52%
Floating Point
Load Store CBranch CMove | Add/Sub Mult Div Sqrt Cmp Convert Other
Multimedia 2.36% 0.51% 0.11% 0.00% 1.51% 1.35% | 0.01% 0.00% 0.14% 0.63% 0.07%
SPEC95 13.51% 4.66% 0.13% 0.02% 7.13% 5.70% 0.19% 0.00% 0.23% 0.12% 0.09%
Mediabench+ [Fritt99] 2.75% 1.03% 0.29% 0.29% 0.98% 0.98% | 0.10% 0.00% 0.00% 0.64% 0.98%

Table 6: Overall Dynamic Instruction Mix - Multimedia and SPEC95 data are from the DEC Alpha architecture, while
Mediabench+ [Fritt99] is from the IMPACT compiler.

100%
90% e
80%
70%
60%
50%
40%

& Branch
B FPOp
B FP Store
FP Load
EInt Op
OInt Store

Other

EFPOp
B FP Store
FP Load
Eint Op

30%
20%
10%

Q Q EBQ Q w 9N NAhsaon MO TS >
G858EEE85855885585R80FEEE
Egggogggggiwgm8238sgg§ L=
2RFEF 2063884 gﬁﬁmwﬁoog -
2a © §g§§‘7‘(\-'(\l‘\.“7‘
<< = PRgRR™
fadda
S=ss==

(a) Berkeley Multimedia Workload

M Int Load

OInt Store
W Int Load

124.m88ksim
129.compress
147.vortex
101.tomcatv
102.swim
103.su2cor
104.hydro2d
107.mgrid
125.turb3d
141.apsi
145.fpppp
146.wave5

=
2]
g
=
@]
©
It

Figure 2: Detailed Instruction Mix Comparison

tool reports the average executed basic block size, which for
the Berkeley multimedia workload was measured to be 14
DEC Alpha instructions, while for SPEC CINT95 it was 7
instructions and for SPEC CFP95 it was 80 instructions.

In order to extract instruction level parallelism beyond the
basic block it is necessary to employ speculative execution,
whereby an operation residing on the expected path of con-
trol flow (beyond a branch) executes as soon as its source
operands become available, rather than waiting for the branch
operation to complete. Many modern microprocessors have
very long pipelines in order to achieve high clock speeds (for
example, the AMD Athlon has a 14-stage pipeline). On such
machines, a mispredicted branch can stall the processor for a
considerable number of cycles while the pipeline is drained. It
is for these reasons that branch prediction is extremely crit-
ical to performance. Table 7 compares the average dynamic
branch characteristics of the multimedia and SPEC95 work-
loads to the results presented in [Lee84] and [Perl93] for other
workloads.

For most branches, there are long sequences of either taken

or not taken decisions; it is less common to see alternation
[Lee84]. A sequence of identical branch behavior is termed a
run, so the sequence “NNTTTTNNTTT” consists of the run
lengths 2, 4, 2, 3 where the token “T” indicates a taken branch
and “N” represents a not-taken branch. Figure 4 shows the
distribution of run lengths for conditional branches in both
the SPEC95 and Berkeley multimedia workloads. We can see
that the multimedia workload exhibits somewhat more pre-
dictable branch behavior than SPEC95 in that the proportion
of shorter run lengths is greater for SPEC95. In addition, we
see spikes at the significant lengths of 7 and 15, which corre-
spond well to the loop lengths in video and imaging algorithms
(e.g. 8x8 MPEG subblock, and 16x16 MPEG macroblock).
This would seem to be in disagreement with [Bish99] and
their study of the original UCLA MediaBench workload, for
which branch prediction accuracy was found to be poor due
to unpredictable data dependent branching. Figure 5 graphs
the probability of a given run length for the multimedia and
SPEC95 workloads as well as the results obtained in [Lee84]
for their own workload.

00%+ oy
— Audio
90% 1 Speech
80% - = = Document
] .
@ Video
T 70% ——3D
3
O 60% -
c
i)
B 50%
2
B 40% -
%30%—
€
= 20%
10%
0% 4T
1 6 11 16 21 26 31 36 41 46 51 56 61

Bits to Represent Integer Data

(a) Berkeley Multimedia Workload

| —CINT95

90% - CFP95

80% -

70%

60% -

50% -

40%

30% -

Integer Instruction Coverage

20% +

10% -

0%

1 6 11 16 21 26 31 36 41 46 51 56 61
Bits to Represent Integer Data

(b) SPEC95

Figure 3: Bits to Represent Integer Data - number of bits computed by subtracting the number of leading zeros in the
absolute value of an operand or result from the register width (64-bits) based on dynamic instruction counts

Workload (Arch.) dynamic | cond | cond taken | taken
Multimedia (Alpha) 0.071 0.879 0.727 0.762
SPEC95 (Alpha) 0.070 0.894 0.697 0.744
Comp (MIPS) [Perl93] 0.178 - 0.645 0.728
Text (MIPS) [Perl93] 0.201 - 0.634 0.678
FP (MIPS) [Perl93] 0.102 - 0.595 0.699
Sparc (Sparc) [Perl93] 0.219 - 0.442 0.593
VAX (VAX) [Perl93] 0.272 - 0.611 0.708
68k (68k) [Perl93] 0.231 - 0.566 0.695
CPL (IBM) [Lee84] 0.317 - - 0.640
Bus (IBM) [Lee84] 0.189 - - 0.657
Sci (IBM) [Lee84] 0.105 - - 0.704
Sup (IBM) [Lee8d] 0.376 - - 0.540
PDP11 (DEC) [Lee84] 0.388 - - 0.738
CDC (6400) [Lee84] 0.079 - - 0.778

Table 7: Dynamic Branch Characteristics - dynamic
reports the fraction of total dynamic instructions which were
branch instructions, cond the fraction of branch instructions
which were conditional branches, cond taken the fraction of
dynamic branches which were taken, and taken the fraction
of all dynamic branches (both conditional and uncondititonal)
which were taken. Measurements not reported by the original
study are denoted with a “*.

4.4 Locality

The locality of memory references is an important program
property because it has a fundamental impact on memory hi-
erarchy (e.g. cache) design and system performance [John99].
In order to characterize the memory locality of the Berke-
ley multimedia workload, we briefly examine how miss ratio

100% - 104 100% - 104
90% - D 90% - a0
80% - o g 80% - o %’

(] = (] N c
70% - 0% = 70% 0% =

& g s B

%560%— 0% & geo%— % S

o @O @

= 50% A @ £ 50% o

2 Q 2 Q

g 40% - o g 0% o

Q Q
30% - o3 30% - w0

o jo

«Q «Q
20% - 20% (D 20% 20% (D
10% o 10% 10% o 10%
% . . %

135 7 9111315171921
Run Length

—
135 7 9111315171921
Run Length

(a) Berkeley Multimedia (b) SPEC95

Figure 4: Branch Run Lengths - cumulative branch cover-
age indicates the fraction of dynamic branches

varies with cache capacity. Figure 6 shows how the miss ratio
of a unified cache is affected by cache capacity for the Berkeley
multimedia workload in comparison to several other standard
workloads (this figure has been extracted from our detailed
study of the cache behavior of the Berkeley multimedia work-
load in [Sling00b]). In contrast to other published specula-
tions on the nature of multimedia application cache behavior,
our multimedia workload actually exhibits lower miss ratios
than other widely studied workloads. A comparison of aver-
age miss ratios can be found in the Appendix.

0.8
— Multimedia
0.7 SPEC95
- - Lee84
0.6
0.5+
2
8 04
Q2
[=]
a
0.3 1
0.2
PR
0.1 N -
0.0 T T T T T T /\ T —
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Run Length

Figure 5: Branch Run Length Probability - distribution
of the number of times that a conditional branch has the
same result for the Berkeley multimedia workload, SPEC95
and [Lee84].

0.10
b —e— Berkeley Multimedia
—m— Agarwal Mul3 [Agar88]
P&
008 1 - —a— DTMR [Smit87]
[—— SPEC92 [Gee93]
* —O— SPEC95
_% 0.06 - -+ 470 User [Smit82]
Y --3-- 470 Supervisor [Smit82]
8 - VAX 780 [Clarks3]
= 0.04 A
+ VAX 8800 [Clarkasg]
0.02 +
E ’\!S!ﬂ x
0.00 T T T T T T T T T T T
1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Cache Size (Bytes)

Figure 6: Cache Comparison - for unified cache, 32-byte
line size

4.5 Multimedia Kernels

It is usually neither time nor resource efficient to hand opti-
mize every line of code in an application. Instead, optimiza-
tion should focus on execution hot spots or computational
kernels, thereby limiting the recoding effort to those portions
of the code which have the most potential to improve overall
performance. Every application is able to benefit from this
strategy by differing degrees. For most applications, there
are typically relatively few source lines responsible for a large
portion of execution time. In order to see how this varies
between applications, we measured the amount of CPU time
spent in each line of source code for the Berkeley multimedia
workload. The 100 most expensive lines of each application

were then ranked from highest to lowest in contribution, and
graphed in Figure 7 from bottom to to. Each source line is
represented as a rectangle of a height proportional to its cost
in CPU time - all of the rectangles for a particular applica-
tion are stacked vertically. From this graph it is possible to
see how quickly a large percentage of CPU time is covered - if
relatively few lines need to be accelerated, the application is
a good candidate for optimization. Many small contributions
indicate that the load is distributed more evenly over a large
section of the source code.

100%- é
80%— H ! E
8 1B B
© H = L H B
ES H H H =
&) H H H H
=) H M H H
o eo% H H H =
o HHE H B
< H H H H H
5 H H H H H
= HIlH HH H H
S awdH M H § HHA H
& H M H L H H H H
o Ll H H H H O
3 HHAH H ul u H
O __ | [[
200+ || [: H O H H H L
I | CHARHOHEEAN
B T ‘w‘m‘w‘w‘m‘m‘n‘g‘w‘w‘m‘m‘m‘m‘m‘m‘m‘;‘>
IR EREEEEEEEEE DR EERRRNEE
o o @ o o o @ o ggﬁggggge E§ n:E
s s 2 2 o o o 8
£8zz 8848 =gj:::RREE
< < g 8 9 9 3 8
Figure 7: Source Line CPU Time Coverage Compar-

ison - each column is the stacked contribution to total exe-
cution time of the 100 most expensive (in CPU time) source
lines.

Kernels were established based on dynamic line references,
CPU cycle coverage, and dynamic instruction coverage. Only
cycles are listed in Tables 8, 9, 10, 11 and 12. Appendix
C discusses the nature of the underlying algorithms for each
kernel in detail.

In order to optimize a computational kernel so that it is as
fast as possible, but still correct, it is first necessary to un-
derstand the basis of the algorithm behind it. In Appendix
C we give an overview of the algorithms which dominated
processing time in the Berkeley multimedia workload suite.
The C source code for each kernel, as originally extracted
from the Berkeley multimedia workload applications is listed.
Note that these kernels do not necessarily correspond to a
single procedure within the source application. Instead, we
have listed semantically different tasks as the kernels rather
than source procedures. This is due to the fact that the pro-
grammers of each application divided the algorithmic tasks
into an arbitrary number of procedures or functions. More
experimental applications, not concerned with speed, tend to
be split into very small granularity tasks for ease of under-
standing and debugging. Applications that are more highly
optimized tend to use very large procedures to reduce the
amount, of overhead.

Application Kernel Name Src | Static | % Static % Static CPU | % CPU % CPU
Lines Inst. Inst | Inst (Z) Cycles Cycles Cycles (Z)
ADPCM Enc. ADPCM Coder 47 108 22.6% 22.6% 68,267,663 99.9% 99.9%
ADPCM Dec. ADPCM Decoder 31 88 18.6% 18.6% 58,309,984 99.9% 99.9%
LAME Calc. Quant. Noise 73 598 2.7% 2.7% 1,399,988,405 15.3% 15.3%
Quantize 55 312 1.4% 4.1% | 1,404,207,237 | 15.3% 30.6%
FFT 208 981 4.4% 8.5% 1,328,445,691 14.5% 45.1%
Max Value 8 39 0.2% 8.7% 1,100,539,652 12.0% 57.1%
Count Encoding Bits 27 76 0.3% 9.0% 670,803,428 7.3% 64.4%
Psychoacoustic Model 301 1922 8.7% 17.7% 549,265,950 6.0% 70.4%
mpgl23 Synthesis Filtering 67 348 0.4% 0.4% 224,787,420 39.6% 39.6%
DCT64 105 371 0.4% 0.8% 128,055,600 22.6% 62.2%
Dequantize 517 2040 2.3% 3.1% 91,188,589 16.1% 78.3%
Parse Bitstream 150 633 0.7% 3.8% 52,379,258 9.2% 87.5%
DCT36 41 440 0.5% 4.3% 39,868,400 7.0% 94.5%
Timidity Resample 174 776 1.0% 1.0% 1,067,436,081 58.0% 58.0%
Mix 143 829 1.0% 2.0% 62,7646318 35.7% 93.7%
Convert Sample Format 6 25 0.0% 2.0% 66,395,866 3.6% 97.3%
Table 8: Audio Kernels - all DEC Alpha instructions are 32-bits (4 bytes) wide
Application | Kernel Name Src | Static | % Static % Static CPU | % CPU % CPU
Lines Inst Inst | Inst (Z) Cycles Cycles Cycles (Z)
GSM Enc. Calc. LTP Parameter 61 834 1.5% 1.5% | 196,327,472 51.4% 51.4%
Short Term Analysis Filter 15 79 0.1% 1.6% 77,040,936 20.2% 71.6%
Autocorrelation 42 715 1.3% 2.9% 25,174,153 6.6% 78.2%
Weighting Filter 16 113 0.2% 3.1% 21,071,400 5.5% 83.7%
Sample Preprocessing 27 185 0.3% 3.4% 19,909,272 5.2% 88.9%
GSM Dec. Short Term Synthesis Filter 15 114 0.2% 0.2% | 107,067,072 72.7% 72.7%
Long Term Synthesis Filter 11 134 0.2% 0.4% 15,921,696 10.8% 81.3%
Sample Postprocessing 7 60 0.1% 0.5% 8,206,884 5.6% 86.9%
Rasta FFT 133 743 0.6% 0.6% 3,602,895 13.9% 13.9%
Estimate Noise 196 1348 1.2% 1.8% 2,515,541 9.7% 23.6%
Critical Band Search 28 167 0.1% 1.9% 1,898,095 8.3% 31.9%
Fill Frame 48 274 0.2% 2.1% 855,424 3.3% 35.2%
Rsynth Parwave 61 266 0.6% 0.6% 155,877,707 38.7% 38.7%
Resonator 4 13 0.0% 0.6% 111,920,640 27.8% 66.5%
Natural Source 9 26 0.1% 0.7% 39,171,784 9.7% 76.2%

Table 9: Speech Kernels - all DEC Alpha instructions are 32-bits (4 bytes) wide

5 Conclusions

The Berkeley multimedia workload is a freely avail-
able, open source desktop multimedia workload which
can be used as a framework for studies of multime-
dia applications. Source code and the full results of
our analysis are available on the World Wide Web at
http:/ /www.cs.berkeley.edu/ ~slingn /research/.

Although it incorporates several improvements from its pre-
decessor, the UCLA MediaBench, in the breadth of applica-
tions as well as the size of component data sets, it has aged
even in the time that we have used it for our studies of multi-
media cache behavior ([Sling00b]) and SIMD instruction set
performance ([Sling00d]). Because multimedia workloads are
relatively immature, they are constantly evolving. For this
reason, it is important that multimedia workload analysis

be an ongoing process. As an example, the Mesa 3D appli-
cations contained within the Berkeley multimedia workload
have become increasingly inadequate to represent the mas-
sive textures and intricate 3D models that are common in
contemporary video games and other virtual environments.
New multimedia standards such as MPEG-4 and JPEG 2000
[Hask98] will also need to be reflected in future benchmark-
ing workloads, once these standards are widely adopted (see
[Bove97] and [Chia99] for discussions of where multimedia is
headed). Future studies should extend the Berkeley multime-
dia workload in those directions which actual workloads are
evolving.

References

[Arav93] Rangarajan Aravind, Glenn L. Cash, Donald L. Duttweiler,

10

Application | Kernel Name Src Static | % Static % Static CPU | % CPU %CPU
Lines Inst Inst | Inst (Z) Cycles Cycles Cycles (Z)
DJVU Enc. Encode Buckets 96 629 0.5% 0.5% | 164,440,848 41.0% 41.0%
Forward Filter 38 259 0.2% 0.7% 88,712,217 22.1% 63.1%
Init 55 522 0.4% 1.1% 48,890,524 12.2% 75.3%
Create 30 189 0.1% 1.2% 37,103,223 9.3% 84.6%
Read Liftblock 10 7 0.1% 1.3% 24,486,720 6.1% 90.7%
DJVU Dec. Backward Filter 38 259 0.2% 0.2% 88,705,134 29.1% 29.1%
Decode Buckets 101 573 0.4% 0.6% 57,724,634 18.9% 48.0%
Image 43 256 0.2% 0.8% 32,621,373 10.7% 58.7%
YCC—RGB Color Space 12 40 0.0% 0.8% 14,258,640 4.7% 63.4%
Save PPM 20 190 0.1% 0.9% 10,350,651 3.4% 66.8%
Ghostscript print£() ? 5076 1.6% 1.6% | 622,512,658 | 57.6% 57.6%
memmove() ? 1328 0.4% 2.0% 99,358,404 9.2% 66.8%
PPGM Print Row 35 237 0.1% 2.1% 38,827,800 3.6% 70.4%
JPEG Enc. Huffman Coding 159 523 0.7% 0.7% 120,477,099 63.5% 63.5%
Forward DCT 111 426 0.6% 1.3% 35,254,796 18.6% 82.1%
RGB—YCC Color Space 22 78 0.1% 1.4% 18,557,286 9.8% 91.9%
JPEG Dec. Huffman Decoding 143 678 0.8% 0.8% 27,062,307 30.8% 30.8%
Inverse DCT 119 571 0.7% 1.5% 24,570,128 28.0% 58.8%
YCC—RGB Color Space 25 93 0.1% 1.6% 19,278,930 22.0% 80.8%
Table 10: Document Kernels - all DEC Alpha instructions are 32-bits (4 bytes) wide
Application Kernel Name Src Static | % Static % Static CPU | % CPU % CPU
Lines Inst Inst | Inst (Z) Cycles Cycles Cycles (Z)
MPEG-2 Enc. Block Match 52 294 0.4% 0.4% 10,256,217,376 59.8% 59.8%
(DVD) Forward DCT 14 116 0.1% 0.5% 2,107,425,600 12.3% 72.1%
Read PPM 54 402 0.5% 1.0% 497,865,976 2.9% 75.0%
Horizontal Sub Sample 35 244 0.3% 1.3% 437,053,920 2.6% 77.6%
Vertical Sub Sample 76 478 0.6% 1.9% 365,081,184 2.1% 79.7%
Quantize 15 67 0.1% 2.0% 348,478,200 2.0% 81.7%
Inverse DCT 35 334 0.4% 2.4% 263,395,304 1.5% 83.2%
MPEG-2 Dec. Inverse DCT 75 649 0.3% 0.3% 435,642,224 29.7% 29.7%
(DVD) Add Block 46 191 0.1% 0.4% 200,847,816 13.7% 43.4%
Form Prediction 57 302 0.1% 0.5% 188,829,262 12.9% 56.3%
Dither 88 620 0.2% 0.7% 177,692,384 12.1% 68.4%
Parse Bitstream 30 146 0.1% 0.8% 80,839,586 5.5% 73.9%

[BDTi97]

[Bhar9g|

[Bhas97]

[Bish99]

[Bove97]

Table 11: Video Kernels - all DEC Alpha instructions are 32-bits (4 bytes) wide

Hsueh-Ming Hang, Barry G. Haskell, Atul Puri, "Image and
Video Coding Standards," AT&T Technical Journal, Vol. 72,
No. 1, January/February 1995, pp. 67-88

Garrick Blalock, “The BDTImark: A Measure
of DSP Execution Speed,” 1997 White Paper,
http://www.bdti.com/articles/wtpaper.htm, retrieved April
24, 2000

R. Bhargava, L. K. John, B. L. Evans, R. Radhakrishnan, "Eval-
uating MMX Technology Using DSP and Multimedia Appli-
cations," Proceedings of the IEEE International Symposium
on Microarchitecture, Dallas, Texas, November 30-December 2,
1998, pp. 37-45

Vasudev Bhaskaran, Konstantinos Konstantinides, and Balas
Natarajan, "Multimedia architectures: from desktop systems
to portable appliances," Proc. Multimedia Hardware Architec-
tures, SPIE Vol. 3021, San Jose, California, February 2-14,
1997, pp. 14-25

Benjamin Bishop, Thomas P. Keilliher, Mary Jane Irwin, “A De-
tailed Analysis of MediaBench,” Proceedings of the 1999 IEEE
Workshop on Signal Processing Systems (SiPS 99), Taipei, Tai-
wan, 20-22 Oct. 1999, pp. 448-455

V. Michael Bove, Jr., “The Impact of New Multimedia Represen-
tations on Hardware and Software Systems,” Proc. SPIE Multi-

[CEA]

[Chia99]

[CNN99]

[Cont91]

[Cont97]

[DEC]

11

media Hardware Architectures, Vol. 3021, 1997

Consumer Electronics Association, “CEA DVD Player Sales,”
http://www.thedigitalbits.com/articles/ cemadvdsales.html, re-
trieved September 9, 2000

Leonardo Chiariglione, “MPEG: Achievements and Future
Projects,” Proc. of IEEE Multimedia Systems, July 7-11, 1999,
Florence, Italy, pp. 133-138

Cable News Network, “Wolf Blitzer Interview with
Vice President Al Gore on CNN'’s Late Edi-
tion,” http://www.cnn.com/ALLPOLITICS/stories/

1999/03/09/president.2000/transscript.gore/, retrieved

April 24, 2000

Thomas M. Conte, Wen-mei W. Hwu, “Benchmark Characteriza-
tion,” IEEE Computer, Vol. 24, No. 1, January 1991, pp. 48-56

Thomas M. Conte, Pradeep K. Dubey, Matthew D. Jennings,
Ruby B. Lee, Alex Peleg, Salliah Rathnam, Mike Schlansker,
Peter Song, Andrew Wolfe, "Challenges to Combining General-
Purpose and Multimedia Processors," IEEE Computer, Vol. 30,
No. 12, December 1997, pp. 33-37

Digital Equipment Corporation, "ATOM Refer-
ence Manual," http://www.partner.digital. com /www-
swdev/files/DECOSF1/Docs/Other/ATOM /ref.ps

[Fritt99]

[Hask98]

[Intel]

[John99]

[Kodak]
[Kuro98]

[Lee84]

[Lee95]
[Lee96]

[Lee97]

[Mick95]

[Naka96]

[Nguy99]

[Perl93]

[Pope94]

Application | Kernel Name Src Static | % Static % Static CPU | % CPU % CPU
Lines Inst Inst | Inst (Z) Cycles Cycles Cycles (Z)
Doom Render Column 15 85 0.0% 0.0% 579997996 37.7% 37.7%
Render Span 16 88 0.0% 0.0% 289970312 18.9% 56.6%
Render Segment 80 408 0.1% 0.1% 164834403 10.7% 67.3%
Mesa Rasterize 6 1248 0.3% 0.3% 238578833 74.5% 74.5%
(Gears) memset () 2 288 0.1% 0.4% 61945608 | 19.3% 93.8%
Transform/Normalize 51 354 0.1% 0.5% 2159640 0.7% 94.5%
Project/Clip Test 95 447 0.1% 0.6% 2524089 0.8% 95.3%
Lighting 48 284 0.1% 0.7% 1861654 0.6% 95.9%
POVray3 Synthesize Texture 101 903 0.4% 0.4% 1252061796 19.4% 19.4%
Bounding Box 100 352 0.2% 0.6% 681955646 10.5% 29.9%
Vista Buffer 38 204 0.1% 0.7% 493067923 7.6% 37.5%
Lighting 40 219 0.1% 0.8% 353206790 5.5% 43.0%
memmove() ? 1328 0.6% 1.4% 941081191 14.5% 57.5%

Table 12: 3D Graphics Kernels - all DEC Alpha instructions are 32-bits (4 bytes) wide

Jason Fritts, Wayne Wolf, Bede Liu, “Understanding Multimedia
Application Characteristics for Designing Programmable Media
Processors,” Proceedings of SPIE Photonics West, Media Pro-
cessors '99, SPIE Proceedings, Vol. 3655, San Jose, California,
January 28-29, 1999, pp. 2-13

Barry G. Haskell, Paul G. Howard, Yann A. LeCun, Atul Puri,
Joern Ostermann, M. Reha Civanlar, Lawrence Rabiner, Leon
Bottou, Patrick Haffner, “Image and Video Coding - Emerging
Standards and Beyond,” IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 8, No. 7, November 1998,
pp. 814-837

Intel Corporation, "Intel Media Benchmark: Quantifying Multi-
media, Communications, Visualization, and 3D Geometry Perfor-
mance," http://www.intel.com/procs/perf/icomp/imbwhite/,
retrieved April 24, 2000

Lizy Kurian John, Purnima Vasudevan, Jyotsna Sabarinathan,
“Workload Characterization: Motivation, Goals and Methodol-
ogy,” Workload Characterization: Methodology and Case Stud-
ies, IEEE Computer Society, edited by L. K. John and A. M. G.
Maynard, 1999

“Kodak Digital Image Offering,” http://www.kodak.com/ digi-
tallmages/samples/imagelntro.shtml, retrieved April 24, 2000
Ichiro Kuroda, Takao Nishitani, "Multimedia Processors," Pro-
ceedings of the IEEE, Vol. 86 No. 6, June 1998, pp. 1203-1221
Johnny K. F. Lee, Alan Jay Smith, “Branch Prediction Strategies
and Branch Target Buffer Design,” IEEE Computer, Vol. 17, No.
1, January 1984, pp. 6-22

Ruby B. Lee, "Accelerating Multimedia with Enhanced Micro-
processors," IEEE Micro, Vol. 15, No. 2, April 1995, pp. 22-32
Ruby B. Lee, Michael D. Smith, “Media Processing: A New De-
sign Target,” IEEE Micro, Vol. No., August 1996, pp. 6-9
Chunho Lee, Miodrag Potkonjak, William H. Mangione-Smith,
"Mediabench: A Tool for Evaluating and Synthesizing Multime-
dia and Communications Systems," Proceedings of the 30th An-
nual Symposium on Microarchitecture, Research Triangle Park,
North Carolina, December 1-3, 1997, pp. 330-335

Robert A. Mickelsen, “Dessert Ammonites POVray3 Dataset,”
http://www.povray.org/ people/ram/datasets/ammndata.zip,
POVzine2, March/April 1995, retrieved April 24, 2000

Jill Nakashima, Ken Tallman, "The VIS Advantage: Benchmark
Results Chart VIS Performance," White Paper, October 1996,
http://www.sun.com/microelectronics/vis/, retrieved April 24,
2000

Huy Nguyen, Lizy Kurian John, "Exploiting SIMD Parallelism in
DSP and Multimedia Algorithms Using the AltiVec Technology,"
Proceedings of the 1999 Interational Conference on Supercom-
puting, Rhodes, Greece, June 20-25, 1999, pp. 11-20

Chris Perleberg, Alan Jay Smith, “Branch Target Buffer Design
and Optimization,” IEEE Transactions on Computers, Vol. 42,
1993, pp. 396-412

Pope Music, “Carmen Ballet for Strings and Percussion - First In-
termezzo, by Rodion Konstantinovich Shchedrin (1932-Present),
played by the State Symphony Orchestra 'Young Russia”, con-
ducted by Mark Gorenstein,” PM2002-2, Copyright 1994 by
Pope Music

[Rice96]

[Robe00]

[Rose92|

[Rowe93|

[Sling00b]

[Sling00c]

[Sling00d]

[Snow96]

[Taka00]

[Zivo94]

[Zuck96]

12

Daniel S. Rice, "High-Performance Image Processing Using
Special-Purpose CPU Instructions: The UltraSPARC Visual In-
struction Set," University of California at Berkeley, Master’s Re-
port, March 19, 1996

Bill Roberts, “Digital Cameras,” Electronic Busi-
ness, March 2000, http://www.eb-mag.com/eb-
mag/Issues/2000/200003/indez.asp, retrieved September
9, 2000

M. Rosenblum, J. K. Ousterhout, “The Design and Implemen-
tation of a Log-Structured File System,” ACM Transactions on
Computer Systems, Vol. 10, No. 1, February, 1992, pp. 26-52
L.A. Rowe, K. Patel and B.C. Smith, "Performance of a Software
MPEG Video Decoder," Proceedings of the 1st ACM Interna-
tional Conference on Multimedia, Anaheim, California, August
2-6, 1993, pp. 75-82

Nathan T. Slingerland, Alan Jay Smith, “Cache Performance for
Multimedia Applications,” University of California at Berkeley
Technical Report CSD-00-1123, December 2000

Nathan T. Slingerland, Alan Jay Smith, “Multimedia Instruction
Sets for General Purpose Microprocessors: A Survey,” Univer-
sity of California at Berkeley Technical Report CSD-00-1124,
December 2000

Nathan T. Slingerland, Alan Jay Smith, “Measuring the Perfor-
mance of Multimedia Instruction Sets,” University of California
at Berkeley Technical Report CSD-00-1125, December 2000
Mark Snow, “X-files Theme Song MIDI file,”
hitp://w3.one.net/ ~kklasmei/DamnGood/X files}.mid,
August 29, 1996, retrieved April 24, 2000

Dean Takahashi, “Good Vibrations,” FElectronic
Business, June 2000, hitp://www.eb-mag.com/eb-
mag/Issues/2000/200006/indez.asp, retrieved September
9, 2000

V. H. Schraut, M. Willems, R. Schoe-
GPPs, and Multimedia Applications -
An Evaluation Using DSPstone," Proceedings of (IC-
SPAT ’95), Boston, Massachusetts, October 1995,
hitp://www.ert.rwth-aachen.de/Projekte/Tools/PAPERS
/cad_ Zivognovic95icspatb.ps.gz, retrieved April 24, 2000
Daniel F. Zucker, Michael J. Flynn, and Ruby B. Lee, "A
Comparison of Hardware Prefetching Techniques for Multime-
dia Benchmarks," Proceedings of the 3rd IEEE International
Conference on Multimedia Computing and Systems, Hiroshima,
Japan, June 17-23, 1996, pp. 236-244

Zivojnovic,
nen, "DSPs,

1 Appendix A

1.1 Additional Industry Trends

©
~

8
‘

g 8 g 8

Sales of Entertainment Softwar e (Billions)
0
=

8

1995 1996 1997 1998 1999

Figure 1: Video Game Software

1.2 UCLA MediaBench - Critique

Mesa is a clone of SGI’s OpenGL 3D API which is designed for
rendering 3D images in real-time on the screen. MediaBench’s
Mesa applications are somewhat simplistic compared to how
the Mesa (or OpenGL) libraries are typically used, as they
only generate static images. The Mesa and OpenGL APIs
focus is on computationally lightweight rendering intended
for interactive, animated output, and so find application in
3D visualization and 3D video games where interactivity is
important. Most people interested in rendering static images
would instead use a ray tracing application which would be
capable of generating higher quality images, of course at much
greater computational cost.

The MediaBench MPEG-2 coding application operates on
four frames at SIF (352x240) resolution. DVD is by far the
most important application of MPEG-2 thus far. However,
with the exception of a few low-budget titles, most DVD me-
dia is encoded at 720x480. More importantly, because only
four frames are encoded in MediaBench, the full behavior of
the MPEG-2 encoder and decoder is not characterized. At
least a full group of pictures (typically 8-16 frames) is re-
quired in order to capture the correct ratio of I, B and P
frame types.

EPIC, as noted by its author, is experimental code, with no
real effort made to keep the code efficient or fast. In addition
it is limited to monochrome images with dimensions that are
even powers of two.

JPEG encoding and decoding works with a 227x149 sized
image of a rose (a small image with unusual dimensions).
Higher resolution images are becoming more common due to
digital photography in which cameras typically capture JPEG
images at resolutions of at least 640x480 [Rama98].

Incorporating ADPCM and G.721 in the same benchmark

suite is redundant, as each implements a variation of adap-
tive differential pulse code modulation. The CCITT G.721
reference code is coded in floating point, while the IMA AD-
PCM code uses fixed-point integer arithmetic, although they
are considered to have comparable audio quality.

Including both the PGP and Pegwit data encryption appli-
cations is also redundant. It would make sense to only include
one such application in the suite. PGP would be the logical
application to keep as it has far more widespread application
than the relatively unknown Pegwit. Even given this, it is
not clear how encryption fits the definition of a multimedia
application.

1.3 Multimedia Instruction Mix

40%

OMultimedia
OMediaBench+ [Fritt99]
B SPEC95

35% A

30% -+

25% -

20% A

15% -

10% H

L0 ety
Shift

0% L EEAIE E MT [L' o O J ol [l
gs5ee>20=2052 3R >28c2c50
S2335858:2383%8s83323§F85¢8<
BEsS3E5VEgSsE=22063EEZ0 2885
Mg T3 S58082aas308&5xanm
O c <<= O(_)D_UU-LLLL<(§D- O =

S o o & aall B
o o o oL w o ©

Figure 3: Instruction Mix Comparison

The detailed dynamic instruction mix breakdown for each
component application of the Berkeley multimedia workload
can be found in Tables 1, 2, and 3. The same information for
SPEC95 is presented in Tables 4, 5, and 6.

2 Appendix B - Applications

2.1 ADPCM

Adaptive pulse code modulation (ADPCM) takes advantage
of the continuous nature of audio signals. Neighboring sam-
ples are typically very close in magnitude. Therefore, rather
than encoding each audio sample independently as is done in
pulse code modulation (PCM) or raw digital audio, the pre-
ceding sample is used as a predictor for the current sample,
with only the difference being quantized and subsequently en-
coded. [Pan93] The quantizer adapts to the rate of change of
the audio waveform being compressed. A block diagram of
ADPCM coding is shown in Figure 11.

Many different implementations of the ADPCM algorithm
exist. The Berkeley multimedia workload includes the freely
available Interactive Multimedia Association (IMA) codec.

13

2 g
() ()
2 & 8 2) 2 g
1] (@) 8 3 % 8 3
5 | 3 | 5| S : g -
g 5 5 Z Z 8 £ % Z
= < < [a] o o Q O] Q
L oad Byte 6,778,280 0 0 18,370 1,110,224 1,142 5,648,543 1 1
Load Word 0 0 0 0 0 0 0 0 0
Load Long 228,569,938| 2,455,961| 3,682,713 18,169,163| 13,077,300 123,617,409 62,724,290, 4,843,102 7,634,766
L oad Quad 602,032,274| 1,850,037 623,285| 30,173,547| 40,779,567 285,229,832| 176,650,287| 66,725,719 3,606,089
Store Byte 8,765,064 0 0 19,266 1,110,228 111,806 7,522,543 1,221 1,218
StoreWord 3,784,458 0 0 148 8 71,909 3,711,174 1,219 0
StoreLong 84,841,453 1,229| 1,227,981 11,817,826| 6,488,672 18,447,727 43,409,507 3,448,511 3,421,624
Store Quad 184,517,792 614,622 1,246 12,722,245 13,735,778 71,531,192 75,840,453| 10,072,256 462,900
Cond Branch 274,588,131 6,138,696| 2,457,213 31,923,427| 21,518,650 89,629,454 115,354,014| 7,566,677 6,891,957
Cond Move 87,707,764| 8,588,491| 9,814,016] 10,168,642 7,289,807 21,953,713 20,350,475| 9,542,620| 7,718,788
Add/Sub Long 271,787,383 9,713,090 8,590,946 39,856,714 34,805,838| 132,388,734 41,588,802| 4,843,259 3,242,829
Add/Sub Quad 727,606,475 7,988,694| 7,375,318| 60,129,890| 45,205,778 302,327,509| 206,076,272| 98,503,014 29,479,377
Multiply Long 3,483,045 0 0 3,717 398,786 2,010,261 993,570 76,711 2,437
Multiply Quad 26,112,640 0 0 66 35 1,923,442 3,045,834| 21,143,263| 3,376,297
Logic 580,467,353| 13,760,955| 12,287,159 82,855,123| 55,911,711 186,830,035 159,859,898 68,962,472| 30,378,018
Shift 503,710,372| 7,986,162| 7,983,708| 61,741,563| 42,277,854 240,749,591 68,968,089| 74,003,405/ 39,100,492
Compare 128,484,307 8,588,491| 3,680,256| 23,205,150 14,652,977 36,263,419 31,225,252 10,868,762 11,545,826
FP Cond Branch 369,635 0 0 257 48 277,025 92,303 2 2
FP Cond Move 249 0 0 0 0 0 249 0 0
FP Convert 4,793,117 0 0| 4,277,677 48 415,533 99,857 2 2
FP Misc 9,878 0 0 1 0 0 9,877 0 0
FP Load Single 632,395 0 0 187 1 415,524 216,683 0 0
FP Store Single 45,776 0 0 3 1 0 45,772, 0 0
FP Add/Sub Single 2,145,208 0 0| 2,138,796 0 0 6,412 0 0
FP Multiply Single 3,220,312, 0 0| 3,208,194 0 0 12,118 0 0
FP Divide Single 1,077 0 0 0 0 0 1,077 0 0
FP Sqrt Single 0 0 0 0 0 0 0 0 0
FP Compare Single 0 0 0 0 0 0 0 0 0
FP Load Double 3,742,578 0 0| 3,208,326 67 415,537 118,645 3 3
FP Store Double 7,257,405 0 0| 1,069,410 16 278,463 5,909,516 0 0
FP Add/Sub Double 1,137,857 0 0 1,069,398 0 0 68,459 0 0
FP Multiply Double 258,818 0 0 40 19 138,512 120,246 1 1
FP Divide Double 147,726 0 0 0 0 138,508 9,218 0 0
FP Sgrt Double 0 0 0 0 0 0 0 0 0
FP Compare Double 341,241 0 0 45 29 277,021 64,145 1 1
Call / Return 35,362,106 3,694 3,694 694,314 2,767,115 11,163,007 20,530,276 200,006 130,732
Branch 43,923,076 615,831 615,831 2,365,197| 3,572,166 10,672,945 25,201,200 879,906 248,610
Other 6,179,370 0 0 197,754 492,037 592,001 4,893,800 3,778 2,557
TOTAL 3,832,804,553| 68,305,953| 58,343,366 401,034,456(305,194,760| 1,537,871,251| 1,080,368,856| 381,685,911| 147,244,527

Table 1: Berkeley Multimedia Workload Instruction Mix - Part 1 of 3

14

e & 2

2 S S

5 2 % 8

= [=} ‘G [N [N [N}

u S w o = s @ & &

i it 2 g g g g £ #

) =)] = = = = = =
L oad Byte 0 15 0 159 159 162 122,165 306,034 664,346
Load Word 0 0 0 0 0 0 0 0 0
Load Long 15,456,331| 6,248,862| 459,878,385| 21,420,844 8,880,796| 139,251,544 194,914,155 544,343,003 1,185,685,540
L oad Quad 25,884,799 11,496,870 596,936,807| 44,726,472| 20,256,382| 356,383,122 2,625,563,425| 6,898,662,249| 16,305,754,765
Store Byte 1,634 772 0 213 31 469,362 123,360 307,343 665,390
Store Word 860 742 0 20 20 191 8,657 24,873 66,680
StoreLong 6,319,031| 1,118,200 178,110,997| 18,195,886 27,752,573 69,577,276 76,057,310 218,381,584 454,170,322
Store Quad 8,474,206 3,555,461 246,104,361 18,472,289| 9,686,634 140,438,735 192,284,043 568,493,171 1,155,058,459
Cond Branch 15,106,646| 4,680,797 729,201,213| 24,205,977 30,349,047| 175,610,619 591,653,260| 1,619,341,331 3,633,131,334
Cond Move 3,675,691 111,929 102,951,015 383487 1,417,693 6,932,320] 1,057,999,331] 2,729,061,499| 6,591,019,353
Add/Sub Long 15,260,411| 6,704,149 923,467,907| 26,052,645 31,957,466| 214,777,548 3,372,050,729| 8,761,537,176| 20,987,857,118
Add/Sub Quad 47,610,800 24,481,292 1,919,286,567| 28,672,641 41,197,029| 426,805,595 3,452,872,410| 9,122,615,725 21,383,188,351
Multiply Long 72,511 317,228 34,649,358 173,063 549,197 67,448,117 69,067,294 187,416,894 419,775,140
Multiply Quad 87,041 59 5,433 2,258 2,186 2,047 3,225,646 7,898,780 23,808,528
Logic 17,141,706| 12,291,636 409,973,330| 53,315,410 8,181,138 311,058,130| 1,014,579,305| 2,770,825,984 6,196,522,815
Shift 20,495,821 13,887,427| 195,885,030[50,690,180| 6,870,900| 660,969,527 2,845,393,313| 7,464,996,665 17,696,147,219
Compare 8,592,463| 2,287,275 716,176,409| 19,475,327 1,575,842 91,377,573 601,297,661| 1,628,584,283 3,677,923,284
FP Cond Branch 10 10[146,364,112 523,637| 2,337,432 1,017,957 599 574 582
FP Cond Move 0 0 272,767 0 0 0 64,800 172,800 391,680
FP Convert 10 10 35,295,991 570,896| 3,632,567 19,501,744 124,654,521 332,410,521 751,250,841
FP Misc 0 0 3,200,104 47,418 234,562 136,824 8,338,432 22,234,407 50,396,975
FP Load Single 3 1] 221,027,815 2,529,198| 10,694,972 6,134,444 25,109,096 66,944,891 151,730,177
FP Store Single 0 0| 219,890,932 1,199,333| 4,765,064 14,836,491 55| 55 55
FP Add/Sub Single 0 0| 117,891,963 1,165539] 6,219,499 20,595,157, 0 0 0
FP Multiply Single 0 0 55,158,946 1,536,887| 9,101,388 15,504,440 0 0 0
FP Divide Single 0 0 107 82,767 300,343 6,298,739 0 0 0
FP Sqrt Single 0 0 0 0 0 0 0 0 0
FP Compare Single 0 0 0 0 0 0 0 0 0
FP Load Double 17 15| 666,137,380 316,513 1,410,613 796,176 304,651,610 812,395,578 1,839,703,114;
FP Store Double 3 7| 172,085,563 77,989 246,179 276,695 41,824,510 111,520,480 252,033,775
FP Add/Sub Double 0 0| 211,622,317 420,617 748,692 833,540 238,100,487 634,928,421 1,435,971,645
FP Multiply Double 5 5| 283,179,814 657,442| 1,209,000 1,291,749 193,841,936 516,905,904| 1,168,945,600
FP Divide Double 0 0 6,412,767 39,844 74,780 63,310 43,791 115,791 261,711
FP Sgrt Double 0 0 0 0 0 0 0 0 0
FP Compare Double 5 5| 123,259,938 628,315 2,893,093 1,334,390 8,381,249 22,349,224 50,657,712
Call / Return 1,204,598 118,436| 228,692,817 240,020 781,907 2,894,763 37,412,334 105,899,033 225,832,078
Branch 4,252,300 340,679 119,897,378 614,638 1,147,484 9,952,889 44,581,752 130,471,099 267,119,979
Other 18,291 31,437 0| 3,145,932 4,460,302 3,210,474 71,726 183,629 409,699
TOTAL 189,655,193| 87,673,319| 9,123,017,523| 319,583,856| 238,934,970| 2,765,781,650(17,124,288,962| 45,279,329,001| 105,906,144,267

Table 2: Berkeley Multimedia Workload Instruction Mix - Part 2 of 3

15

Q & 2
2 R S
2 2 2
Q Q
g o o
[a} a) [a}
[9\) N o
& & &] g . < =
i i g Ed 3 7 < E
= = = S a o o =
L oad Byte 35 41 41 19 20,097 40,755 97| [0
Load Word 0 0 0 0 0 0 0 0
Load Long 63,079,368 202,288,004 374,745,728| 13,125,436| 208,667,745 1,238,950 1,854,468 80,330,481,
L oad Quad 179,230,670 571,901,170] 1,094,954,975| 24,035,008| 1,168,422,770| 3,574,014| 36,597,256 190,893,124
Store Byte 15 19 19 677 414 8,386 7,110 0|
StoreWord 11 7 7 1,626 159 20,853 11 0
StoreLong 40,077,380 122,519,230 237,738,683| 10,330,487 49,671,406 449,601 1,585,238 66,351,065
Store Quad 36,027,525| 124,744,760| 222,620,103| 6,269,897| 457,320,333 794,400| 10,596,980 46,014,900
Cond Branch 55,647,468 172,647,314 341,081,043| 24,583,711| 414,865,553 2,128,693| 18,485,990 99,413,559
Cond Move 19,019,746 54,255,467 114,571,768| 1,937,309 8,483,484 274,493 672,444 7,499,293
Add/Sub Long 167,347,931 537,902,984| 1,021,455,786| 23,614,547 73,121,209 1,827,995| 3,497,338| 125,613,355
Add/Sub Quad 269,748,022| 810,825,802| 1,671,789,426| 80,113,829| 993,210,785 4,914,902| 68,975,084| 475,088,661
Multiply Long 1,728,774 8,269,976 9,036,080, 2,140 14,186 28,847 79,398 90,551,054
Multiply Quad 61,801 163,533 368,151 272 9,349 12,930 11,584 464
Logic 257,107,844 726,921,975| 1,558,167,551| 41,523,867 600,640,884 1,664,309 6,558,450| 115,248,825
Shift 304,799,082| 896,164,794| 1,891,265,922| 30,665,422| 217,473,019 822,593 11,030,248 427,123,484
Compare 54,915,683 167,099,953| 335,191,806 2,021,424| 149,077,006 1,223,935| 17,792,131 96,668,577
FP Cond Branch 22 25 25| 4,907,522 73,396,753 36,086 323,668 5,667
FP Cond Move 0 0 0 0 144,920 0 0 0|
FP Convert 24 27 27| 2,505,992 38,627,179 156,160| 5,743,677 2,726,238
FP Misc 0 0 0 237,267 18,090,629 55,508| 9,090,274 95,850
FP Load Single 1 1 1 174,526| 113,434,481| 1,482,896| 59,164,116 28,840,
FP Store Single 0 0 0 0 16,842,015 758,711 24,531,599 28,840
FP Add/Sub Single 0 0 0 0 3,488,004 791,053| 29,327,417 0
FP Multiply Single 0 0 0 0 2,501,900 603,908| 33,642,190 0|
FP Divide Single 0 0 0 1 18 12,893 76,887 0
FP Sqgrt Single 0 0 0 0 0 0 0 0
FP Compare Single 0 0 0 0 0 0 0 0
FP Load Double 34 38 38| 133,283,472| 505,378,130 645,861 8,769,336, 4,545,582,
FP Store Double 126 127 127| 30,350,707| 163,485,923 135,300] 2,503,074 1,469,625
FP Add/Sub Double 0 0 0| 66,730,827 387,030,229 758,369 5,082,577 414,510
FP Multiply Double 11 12 12| 56,501,913| 471,006,459 842,775 6,860,928 3,244,682
FP Divide Double 0 0 0 2,027 16,238,995 9,459 8,974 293,974
FP Sgrt Double 0 0 0 0 0 0 0 0
FP Compare Double 13 15 15| 4,907,970 73,169,225 36,685 323,651 5,667
Call / Return 6,972,866 28,356,792 40,089,593| 3,526,246 82,756,960 203,227| 14,098,018 2,034,885
Branch 9,265,477 39,502,927 52,499,179 4,866,779| 110,117,016 273,435| 14,421,800 3,852,961
Other 1,543 2,841 3,532 8,613 15,581,145 12,676 7,308 0|
TOTAL 1,465,031,472| 4,463,567,834| 8,965,579,638| 566,229,533| 6,432,288,380| 25,840,658| 391,719,321| 1,839,544,163

Table 3: Berkeley Multimedia Workload Instruction Mix - Part 3 of 3

16

g
Q
3 8 E & 8 =
L oad Byte 203,609 4,368 2,828 191,876 158 4,379
Load Word 1,277,742 0 0 1,277,742 0 0
Load Long 20,286,152,750| 6,311,668,533| 10,606,481,834 93,448,183| 2,227,539,341| 1,047,014,859
L oad Quad 39,377,367,969| 3,910,491,909| 5,352,162,900] 352,592,763| 12,119,747,714| 17,642,372,683
Store Byte 140,775 4,875 2,626 128,066 454 4,754
Store Word 76,928 1,284 1,175 71,372 788 2,309
StoreLong 8,802,366,731| 1,834,586,505| 5,419,868,490 31,381,127 797,025,009 719,505,600
Store Quad 16,032,718,297 766,064,611| 2,335,438,878| 157,229,445 3,649,016,338] 9,124,969,025
Cond Branch 27,176,517,027| 3,671,161,958| 9,775,921,461| 201,257,598 4,821,119,923| 8,707,056,087
Cond Move 1,659,393,881 210,976,189 629,773,595 11,262,020 796,889,938 10,492,139
Add/Sub Long 14,182,186,682| 1,570,606,154| 8,184,968,577 57,356,939 3,139,682,863| 1,229,572,149
Add/Sub Quad 42,891,794,268| 8,910,951,772| 13,811,128,016] 243,056,322| 10,743,903,825| 9,182,754,333
Multiply Long 36,269,264 11,378,150 24,282,243 598,978 127 9,766
Multiply Quad 10,701,568 216,590 9,982,386 488,715 420 13,457
Logic 31,091,936,453| 2,639,514,258| 12,955,858,568| 235,079,954| 7,025,496,706| 8,235,986,967
Shift 14,845,120,527 5,397,662 4,785,358,102 95,967,619] 7,961,280,532| 1,997,116,612
Compare 11,934,177,897| 1,488,018,106| 6,825,931,243 67,197,600 2,181,244,044| 1,371,786,904
FP Cond Branch 161,423,661 4 44 191 161,423,393 29
FP Cond Move 0 0 0 0 0 0
FP Convert 14,092,818 4 111 76,163 14,016,511 29
FP Misc 14,000,070 0 59 12 13,999,999 0
FP Load Single 14,041,880 0 173 25,324 14,016,383 0
FP Store Single 10 0 10 0 0 0
FP Add/Sub Single 3 0 3 0 0 0
FP Multiply Single 29 0 29 0 0 0
FP Divide Single 29 0 29 0 0 0
FP Sqrt Single 0 0 0 0 0 0
FP Compare Single 0 0 0 0 0 0
FP Load Double 134,913,182 24 166 124,747 126,032,572 8,755,673
FP Store Double 29,788,745 7,380 2,407 99,162 33,410 29,646,386
FP Add/Sub Double 16,313 0 57| 0 16,256 0
FP Multiply Double 25,462 2 50 25,399 0 11
FP Divide Double 14,041,707 0 0 25,324 14,016,383 0
FP Sgrt Double 0 0 0 0 0 0
FP Compare Double 161,423,561 2 32 116 161,423,393 18
Call / Return 4,655,213,074 362,997,717] 1,184,773,511 27,086,286 1,148,733,180] 1,931,622,380
Branch 6,265,383,589 546,379,574| 1,471,193,979 32,864,807 1,612,155,092| 2,602,790,137
Other 5,924,683 4,890 620,231 5,207,521 698 91,343
TOTAL 239,798,691,184| 32,240,432,521| 83,373,753,813| 1,614,121,371| 58,728,815,450| 63,841,568,029

Table 4: SPEC95 Instruction Mix - Part 1 of 3

17

>

o g 5

g B g : 5 3

& & S 3 8 8

a — 3 — — —
L oad Byte 6,726 21,543,126 4,297,168 157 35 367
Load Word 0 0 0 0 0 0
Load Long 1,565,354,126 1,523,480,913| 9,846,588,005 3,973,533,592 2,569,385,580 5,361,953,769
L oad Quad 5,516,119,963| 6,866,928,594| 11,899,050,852| 3,390,856,209| 2,354,565,240| 2,939,948,803
Store Byte 13,236 22,271,097 4,323,643 8,331 116 1,186
Store Word 9,155 672,623 405,338 921 14 79
StoreLong 830,722,525 663,477,405| 5,577,098,386 1,010,734,940 642,788,573 1,080,380,301
Store Quad 1,397,814,264| 3,396,074,969| 6,210,697,290 124,579,571 1,589,856 398,120,773
Cond Branch 1,770,835,295 3,157,116,200| 9,321,380,743 1,154,389,215 643,857,110 1,292,906,173
Cond Move 48,269,242 102,025,125 210,133,987, 11,356,832 2,106,485 166,804,151
Add/Sub Long 2,554,547,554 699,609,508| 4,689,488,512 1,043,875,007 642,065,146 1,245,749,364
Add/Sub Quad 13,077,449,721| 5,104,099,020| 15,408,800,218| 15,708,814,609] 19,421,858,511| 18,748,637,165
Multiply Long 351,356,557 5,914,301 13,811,033 0 0 3,230
Multiply Quad 11,263,378 3,207,871 15,996,312 6,681 56 4,225,520
Logic 3,580,085,183| 3,569,245,181| 13,778,986,525 154,114,602 8,638,288 699,549,220
Shift 6,503,660,101| 1,456,713,345] 2,816,736,335 1,111,793,336 644,505,894 677,164,377
Compare 1,011,698,625| 1,182,300,248| 1,722,940,998 75,927,103 1,062,711 299,308,720
FP Cond Branch 3,146 23,039,104 146 790 20 61,280,454
FP Cond Move 0 0 0 0 0 0
FP Convert 1,738 19,027,970 146 525,354 2,105,374 346,981,596
FP Misc 768 2 0 0 263,169 145,002,333
FP Load Single 2,560 13,173,538 4,754 587,522,250| 10,204,542,186 361,723,911
FP Store Single 0 0 5,180 0 2,773,276,741 148,353
FP Add/Sub Single 0 0 0 0] 8,702,401,329 75,516
FP Multiply Single 512 0 0 0 4,671,675,403 14,552
FP Divide Single 0 0 0 0 212,864,982 1,250,372
FP Sqrt Single 0 0 0 0 0 0
FP Compare Single 0 0 0 0 0 0
FP Load Double 4,819 129,071,358 5,010 9,005,902,290 11,046,996 6,203,571,211
FP Store Double 18,244 120,552,685 38,592| 5,287,084,381 1,051,681 2,778,566,267
FP Add/Sub Double 768 6,235,284 0 7,048,350,750 8,413,200 4,827,211,367
FP Multiply Double 901 54 52| 4,697,880,622 13,671,469| 5,906,345,931
FP Divide Double 0 0 0 196,366,064 0 100,617,691
FP Sgrt Double 0 0 0 0 0 0
FP Compare Double 2,245 29,977,299 94 391,683,020 15 120,027,522
Call / Return 67,727,733 715,117,073| 1,523,955,054 21,370,628 1,062,698 129,237,936
Branch 206,288,294| 1,107,885,168| 3,019,716,938 28,243,403 1,059,317 216,419,808
Other 3,576,457 46,533,817 99,895,700 1,066,052 284 1,050,112
TOTAL 38,496,833,836| 29,985,292,878| 86,164,357,011| 55,025,986,710| 53,535,858,479| 54,114,278,130|

Table 5: SPEC95 Instruction Mix - Part 2 of 3

18

el

N - R

5 5 2 8 g g §

2 £ g 2 il & =

N~ -

) g g g S S S
L oad Byte 4,157 375 44 96 5,403 27 122
L oad Word 0 0 0 0 0 0 0|
L oad Long 20,422,601,297| 9,909,306,138| 13,164,578,033| 45,265,475,252| 6,687,046,340| 3,737,127,098| 7,668,511,714
L oad Quad 2,664,630,718 1,136,198,272 4,906,543,916| 13,352,891,027| 3,864,996,064 3,674,746,400 2,495,339,094
Store Byte 18,079 37,418 131 1,487 27,294 968 493
Store Word 1,696 6,228 5 233 342 63 43
Store Long 2,926,027,638] 1,445,311,793] 3,466,105,004| 8,934,734,053] 1,720,692,135] 1,229,291,090| 2,709,811,885|
Store Quad 95,931,247 2,859,203 529,542 103,436,885 179,899,739 317,188,548 257,670,399
Cond Branch 2,791,232,435| 1,385,067,908] 2,946,987,277| 5591,261,753| 1,473,449,941| 1,126,558,430| 1,777,687,458]
Cond Move 1,613,621 254,933 3,889 405,054,417 5,516,540 323,989,925 201,255,644
Add/Sub Long 2,964,101,782] 1,452,684,866| 2,869,729,046| 30,357,340,627| 1,688,713,690| 1,894,295474| 3,291,438,064
Add/Sub Quad 68,596,845,654| 50,524,421,726| 55,870,557,277| 53,742,028,986| 18,427,556,740 6,161,852,745| 20,241,131,571
Multiply Long 1,159,373 59,285 1532] 2,717,559,457 14,263,062 90,651,609 117,067,830
Multiply Quad 7,992 6,903,320,675 2,681,788,028 242,148,541 1,094,325,054 1,675,548 520,802,970
Logic 275,065,731 66,488,497 993,037,761 936,627,757 348,448,700 826,584,723 644,719,192
Shift 2,537,885,000 2,087,886 20,009 800,784,891 107,528,539 353,167,670 285,031,678
Compare 48,584,632 890,948 12,633 401,982,952 125,243,370 620,528,093 167,387,451
FP Cond Branch 1,042,929,088 13,107,212 310 107 26,137,590 247,906,994 293,764,111
FP Cond Move 308,442,383 0 0 0 8,922,817 0 0|
FP Convert 64,956 62 475,781 891,798,671 4,886,790 59,813,625 394,961,170
FP Misc 539,389,323 50 201,633,296 3,092,035 120,564,037 86,667,312 83,396,724
FP Load Single 912,496,696 374,480,753 177,052,679 792,784,256 531,861,074 176,463,236 450,039,819
FP Store Single 2 0 0 79,266,816 4 6,305,141 94,303,282,
FP Add/Sub Single 0 0 0 0 4 0 0|
FP Multiply Single 0 0 0 0 2 0 0
FP Divide Single 0 0 0 0 960 0 [0)
FP Sgrt Single 0 0 0 0 0 0 0
FP Compare Single 0 0 0 0 0 0 0
FP Load Double 15,008,138,219| 30,271,519,291| 13,679,188,626] 42,459,228,221| 10,269,709,511| 50,017,915,008| 7,327,169,203
FP Store Double 6,070,114,604 1,430,365,883 5,109,939,722| 24,338,685,332| 5,644,230,496| 10,458,923,396| 4,369,526,602
FP Add/Sub Double 5,073,203,796| 25,430,438,750 6,229,066,291| 12,232,270,251| 5,378,072,693| 25,974,102,873| 4,170,216,429)
FP Multiply Double 5,170,580,502 3,896,536,275| 10,478,388,222| 10,855,230,405| 4,031,382,822| 29,469,179,864| 4,847,783,466
FP Divide Double 954,158,944 50 336,862,508 51,298,633 759,216,186 140,267,492 94,001,945|
FP Sgrt Double 0 0 0 0 0 0 0|
FP Compare Double 1,879,478,848 13,107,306 337 294,999 87,682,406 310,221,661 346,106,823
Call / Return 41,710,561 376,097 46,390 124,721,520 52,040,437 154,115,390 77,083,084
Branch 42,720,219 577,236 43,354 387,460,478 100,711,227 136,261,484 81,671,749
Other 210,488 76,452 1,279 1,770 48,273 1,206 785
TOTAL 140,369,349,681| 134,259,581,568| 123,112,592,922| 255,067,461,908| 62,753,180,282| 137,595,803,093| 63,007,880,800

Table 6: SPEC95 Instruction Mix - Part 3 of 3

19

(a) EPIC (b) (c) MPEG-2

(d) Ghostscript (e) Mesa Mipmap (f) Mesa Osdemo (g) Mesa Texgen

Figure 2: UCLA MediaBench Visual Data Sets

0.18 ¢
r —+- Berkeley Multimedia 0.05
0.16 | -O- SPEC95 TE —&-Berkeley Multimedia
s 0.05 £ -O- SPEC95
0.14 £ F
F 0.04 |
0.12 + F
[0.04
2 :
s 0.10 | © 003 |
A ® £
= 0.08 1 QX 003 L
= F B
0.06 | = 002 f
004 | 0.02 £
0.02 + 001 ¢
F 0.01
0.00 ‘ ‘ ‘ ‘ ‘ : : : ‘ ‘ ‘ b
1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 0.00 +
Cache Size (Bytes) 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Cache Size (Bytes)
(a) Unified Cache

Figure 5: Average Instruction Cache Miss Ratios - 32

. . X . byte lines, 2-way associative
Figure 4: Average Unified Cache Miss Ratios - 32 byte

lines, 2-way associative

20

100%

80%

60%

40%

CPU Cycles Coverage

20%

0%

100%

80%

60%

8
R

¢

CPU Cycles Coverage

20%

0%

100%

80%

o
3
S

,

40%

CPU Cycles Coverage

20%

0%

100%

80%

60%

8
R

CPU Cycles Coverage

N
Q
S

0%

[y

[y

[y

ADPCM Encode

7 ; T T
31 41 51 61
Unique Source Lines

DJVU Encode

10:

=
[N

; T T T
31 41 51 61
Unique Source Lines

Doom

[Ey
[N

31 41 51 61
Unique Source Lines

GSM Encode

10:

31 41 51 61
Unique Source Lines

100%

©
Q
S

o
3
X

40%

CPU Cycles Coverage

20%

0%

100%

o ©
3 Q
X S

CPU Cycles Coverage
8
X

20%

0%

100%

(o2} [os]
g 3

CPU Cycles Coverage
N
3

0%

100%

oy o
S 3
> >

8
R

CPU Cycles Coverage

N
Q
S

[y

|

ADPCM Decode

T T T
11 21 31 41 51 61 71 81 91 10:
Unique Source Lines

DJVU Decode

31 41 51 61 71 81 91 10:
Unique Source Lines

Ghostscript

i
[
N
[

11 21 31 41 51 61 71 81 91 10:
Unique Source Lines

GSM Decode

11 21 31 41 51 61 71 81 91 10:
Unique Source Lines

Figure 7: Per-Kernel Source Line CPU Time Coverage - Part 1 of 4

21

JPEG Encode JPEG Decode

100% - 100% -
80% 80%
@] @]
e] g]
o] o]
3 60% - 3 60% -
o 4 o 4
8] 8]
o 4 [=] 4
3 40% - 3 40% -
o] z]
©] ©]
20% - 20% -
0% T T T T T T T T T 0% 7 T T T T T T T T
1 11 21 31 41 51 61 71 81 91 10: 1 11 21 31 41 51 61 71 81 91 10:
Unique Source Lines Unique Source Lines
Lame Mesa Gears
100% - 100% -
80%] 80% 1 //——"
@] @]
e] g]
5}] 3}]
3 60% - 3 60% -
o 4 o 1
8] 8]
[=] 4 [=] 4
3 40% 1 3 40% 1
o] o]
o] ©]
20% - 20% -
0% L; : : ‘ ‘ : ‘ ‘ : ‘ 0% B : ; ; ; ; : : : :
1 11 21 31 41 51 61 71 81 91 10: 1 11 21 31 41 51 61 71 81 91 10:
Unique Source Lines Unique Source Lines
Mesa Morph3D Mesa Reflect
100% + 100% 4
80% -| 80% -|
D 7 D 7
&] &]
. .
8 60% - 8 60% -
8] 8]
=3 4 =3 4
3 40% 1 3 40% 1
z] z]
O] ©]
20% - 20% -
0% : ‘ : : : : ‘ ‘ ‘ ‘ 0% I — ‘ ‘ : ‘ ‘ ‘ ‘ ‘
1 11 21 31 41 51 61 71 81 91 10: 1 11 21 31 41 51 61 71 81 91 10:
Unique Source Lines Unique Source Lines
MPEG-2 1080l Encode MPEG-2 1080l Decode
100% - 100%
80% 80%
D 7 D
&] &
2] :
8 60% - 8 60%
8] 8
=3 4 (=3
3 40% - 3 40%
z] z
&)] &)
20% - 20%
0% T T T T T 0% ; 7 7 ; T T T T T T
1 11 21 31 41 51 61 71 81 91 10: 1 11 21 31 41 51 61 71 81 91 10:
Unique Source Lines Unique Source Lines

Figure 8: Per-Kernel Source Line CPU Time Coverage - Part 2 of 4

22

100%

80%

60%

g

CPU Cycles Coverage

20%

0%

100%

80%

60%

40%

CPU Cycles Coverage

20%

0%

100%

80%

60%

40%

CPU Cycles Coverage

20%

0%

100%

80%

60%

2

CPU Cycles Coverage

20%

0%

[y

MPEG-2 720P Encode

100%

80%

o
<
>

CPU Cycles Coverage
N
S
>

20%

T T T T T T T 0%
31 41 51 61 71 81 91 10:
Unique Source Lines

MPEG-2 DVD Encode
100%

80%
60%

40%

CPU Cycles Coverage

20%

T T T T T T T T 0%
31 41 51 61 71 81 91 10:
Unique Source Lines

mpgl23
100%

o]
g

60%

40%

CPU Cycles Coverage

20%

7 7 T T T T T T 0%
31 41 51 61 71 81 91 10:
Unique Source Lines

Rasta

100%

80%

60%

CPU Cycles Coverage
g

20%

T T T T T T T T 0%
31 41 51 61 71 81 91 10:
Unique Source Lines

MPEG-2 720P Decode

7 ; ; ; T T T T T T
1 11 21 31 41 51 61 71 81 91 10:
Unique Source Lines

MPEG-2 DVD Decode

; 7 ; T T T
1 11 21 31 41 51 61 71 81 91 10:
Unique Source Lines

POVray3

T T
1 11 21 31 41 51 61 71 81 91 10:
Unique Source Lines

Rsynth

1 11 21 31 41 51 61 71 81 91 10:
Unique Source Lines

Figure 9: Per-Kernel Source Line CPU Time Coverage - Part 3 of 4

23

0.25

—&- Berkeley Multimedia
-O- SPEC95

020 1

Miss Ratio
o
&

o

i

o
|

0.05 +

0.00
1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M
Cache Size (Bytes)

Figure 6: Average Data Cache Miss Ratios - 32 byte
lines, 2-way associative

Timidity
100% -

80% |

CPU Cycles Coverage
[o2]
3 8

20% 1

0% A ‘ ‘ ‘ ; ; ; ; ; ; ;

1 11 21 31 41 51 61 71 81 91 10:
Unique Source Lines

Figure 10: Per-Kernel Source Line CPU Time Cover-
age - Part 4 of 4

‘ Adaptive Clny =
Ll Quantizer l "
_ ADPCM File
Audio Samples Adaptive Xpln] Dalnl [Adaptive
Predictor + Dequantizer

1

(a) Encoder

Daln] X[n]
+
+
Adaptive
Xplr-1] T_ Predictor

(b) Decoder

Adaptive
Dequantizer

&y =
—

ADPCM File

-

Audio Samples

Figure 11: ADPCM Codec Block Diagram

This particular implementation is characterized by low com-
putational overhead (real time decompression of stereo, 44.1
kHz sampling rate audio on a 20 MHz ’386 class PC), and
typically achieves a compression ratio of 4:1. Because AD-
PCM coding is a general purpose, lossy audio compression
method, it has been applied to booth speech and broadband
audio (e.g. music). Microsoft’s WAV audio file format, which
is the de facto standard for audio files on their Windows plat-
form, utilizes a type of ADPCM compression almost identical
to the IMA implementation. The European CCITT consor-
tium has released several ADPCM based speech compression
codes intended for various target bit rates: G.721 (32 Kbps),
G.723 (24 Kbps).

The ADPCM data set is a mono, 28 second excerpt
from Radion Konstantinovich Shchedrin’s Carmen Ballet for
Strings and Percussion, sampled at 44.1 kHz [Pope94]. This
particular section of music was chosen for its large dynamic
variations.

2.2 DjVu

DjVu is a document compression application from AT&T
which works by splitting a raw document image into a back-
ground image, a foreground image and a mask. The mask is a
bi-level image which determines whether a particular encoded
pixel is a part of the background or foreground. Background
and foreground images are then encoded with their IW44 con-
tinuous tone (natural image) wavelet based coding algorithm,
while the mask is coded utilizing their JB2 bi-level image en-
coding method. [Haff98]

DjVu is distributed in such a way that the fore-
ground/background separation algorithm is closed source,
while the IW44 and JB2 algorithms are open source. The
IW44 wavelet image compression utility was used as the
DjVu test application. Our primary motivation in including a
wavelet compression algorithm was to reflect the future algo-
rithmic directions that image compression seems very likely
to take. The JPEG 2000 standard, which is the impending
successor to the JPEG standard (ISO 10918) will be based
around a discrete wavelet transform, rather than the discrete
cosine transform (DCT) of its predecessor. The motivating
reason for this change is the fact that image quality is much
higher at lower bit rates with a wavelet based transform.
Wavelet compression treats an image as a continuous stream
of data, where as DCT based compression standards parti-
tion an image into discrete 8x8 pixel blocks. This introduces
arbitrary block boundaries that violate the continuity of the
image, thus severe block artifacts are visible at low bit rates
(high compression ratios) [Adel87]. A JPEG2000 codec was
not included because the specification was not finalized nor
in widespread use at the time of this work.

The DjVu data set is a 491x726 color digital photographic
image from the Kodak’s sample digital photo archive [Kodak],
and is shown in Figure 12.

24

Figure 12: DjVu Data Set

2.3 Doom

Doom is a popular commercial 3D shoot ’em up video game,
utilizing graphics techniques including texture mapping, non-
orthogonal walls, light diminishing, light sourcing, variable
height walls and ceilings, environment animation and morph-
ing [Doom]. Although many of these features are no longer the
state of the art in 3D gaming (Doom was released on Decem-
ber 10, 1993), our motivation in including Doom was due to
its commercial origins as well as the fact that it’s source code
was released to the public domain; because of this latter fact,
it still has a large user base of loyal game players. The source
code was released to the public domain in December of 1997
by its creators, ID Software (http://www.idsoftware.com).
Gaming applications are extremely important in driving mul-
timedia performance in home computers. Until very recently,
when the Internet and high speed network connections made
streaming audio and video commonplace, gaming was the pri-
mary instance of multimedia: video, audio and 3D graphics
combined within a single application.

The Doom data set consists of a pre-recorded game se-
quence of 774 frames (25.8 seconds at 30 fps), a frame of
which is shown in Figure 13. Each frame has a resolution of
320x200 pixels.

Figure 13: Doom Data Set

2.4 Ghostscript

PostScript was first introduced by Adobe Systems in 1985 as a
page description language for providing a device independent

25

way in which to describe images and documents. A PostScript
page description can be rendered on a printer, display, or
other output device by presenting it to the PostScript inter-
preter controlling that device. As the interpreter executes
commands to paint characters, graphical shapes, and sam-
pled images, it converts the high-level PostScript description
into the low-level raster data format for that particular device.
The capabilities of the PostScript language are embedded in
the framework of a general purpose programming language,
which can be completely described in terms of ASCII char-
acters and white space. This has facilitated the sharing of
PostScript files among a wide variety of machines and oper-
ating systems, as well as creating a de facto standard for the
archival and distribution of printed documents. [Adobe]

Ghostscript is an interpreter for a PostScript program. It
takes as input a PostScript file, which is a script describing a
series of graphics commands to render the encoded graphics
and text. The output is a bitmap which can then be sent to
a display or printer. Thus, it can be instrumental in either
printing a PostScript file to a non-PostScript printer (a printer
without an embedded version of the PostScript language) or
for previewing a document on screen before printing.

Technical papers and other documents are the most com-
mon type of content encoded in PostScript files when used
for archival or distribution, and are generally dominated by
black and white text and figures. The data set for Ghostscript
consists of the first page of Rosenblum and Ousterhout’s “The
Design and Implementation of a Log-Structured File System,”
and is shown in Figure 14 [Rose92].

The Design and Implementation of a L og-Structured File System

Mendel Rosenblum and John K. Ousterhout

Electrical Engineering and Computer Sciences, Computer Science Division
University of California
Berkeley, CA 94720
edu, edu

Abstract

This paper presents a new technique for disk storage
menagement called a log-structured le system. A log-
structured e system writes all modications to disk
sequentially in a log-like structure, thereby speeding up
both le writing and crash recovery. The log is the only
structure on disk; it contains indexing information so that
les can be read back from the log efciently. In order to
maintain large free areas on disk for fast writing, we divide
the log into segments and use a segment Cleaner to
compress the live information from heavily fragmented
segments. We present a series of simulations that demon-
strate the efciency of a simple cleaning policy based on
cost and benet. We have implemented a prototype log-
structured le system called Sprite LFS; it outperforms
current Unix le systems by an order of magnitude for
small-le writes while matching or exceeding Unix perfor-
mance for reads and large writes. Even when the overhead
for cleaning is included, Sprite LFS can use 70% of the
disk bandwicth for writing, whereas Unix le systemstypi-
cally can use only 5-10%.

1. Introduction

Over the last decade CPU speeds have increased
dramatically while disk access times have only improved
Slowly. This trend is likely to continue in the future and it
will cause more and more applications to become disk-
bound. To lessen the impact of this problem, we have dev-
ised a new disk storage management technique called a
log-structured le system, which uses disks an order of

‘The work described here was supported in part by the Na-
tional Science Foundation under grant CCR-8900029, and in part
by the National Aeronautics and Space Administration and the
Defense Advanced Research Projects Agency under contract
NAG2591.

“This paper will appear in the Proceedings of the 13th ACM Sym-

posium on Operating Systems Principles and the February 1992
ACM Transactions on Computer Systems:

July 24,1991

‘magnitude more efciently than current le systems.

Log-structured le_systems are based on the assump-
tion that les - are cached in main memory and that increas-
ing memory sizes will meke the caches more and more
effective a satisfying read requests(1]. As a rest, disk
trafc will become dominated by writes. A log-structured
e system writes al new information to disk in a sequen-
tial structure cailed the log. This approach increases write
performance ramatically by iminating Amost al seeks.
The sequential nature of the log also permits much faster
crash recovery: current Unix le systems typically must
scan the entire disk to restore consistency after a crash, but
a log-structured le system need only examine the most
recent portion of thelog.

‘The notion of logging is not new, and a number of
recent le_systems have incorporated a log as an auxiliary
structure to speed up writes and crash recovery(2, 3]. How-
ever, these other systems use the log only for temporary
storage; the permanent home for information is in a tradi-
tional random-access storage structure on disk. In contrast,
alog-structured le system stores data permanently in the
log: there is no other structure on disk. The log contains
indexing information so thet les can be read back with
efciency comparable to current e systems.

For alog-structured lesystem to operate efciently,
it must ensure that there are always large extents of free
space available for writing new data This is the most
difcult challenge i the design of a log-structured le sys-
tem. In this paper we present a solution based on large
extents called segments, where a sagment cleaner process
continually regenerates empty segments by compressing
the live data from heavily fragmented segments. We used
a simulator to explore different cleaning policies and
discovered a smple but effective algorithm based on cost
and benet: it segregates older, more siowly changing data
from young rapidly-changing data and treats them dif-
ferently during cleaning.

We have constructed a prototype log-structured le
system called Sprite LFS, which is now in production use
as part of the Sprite network operating system[4]. Bench-
mark programs demonstrate that the raw writing speed of
Sprite L FS is more than an order of magnitude greeter than
thet of Unix for small les. ~ Even for other workloads, such

Figure 14: Ghostscript Data Set

2.5 GSM

The Global System for Mobile telecommunication (GSM) pro-
tocol is currently employed in Europe for digital cellular tele-
phony. The GSM 06.10 RPE-LTP part of the standard pro-
vides for full rate speech coding and compression of approxi-
mately 10 minutes of speech into 1 MB. The GSM compressor
achieves such high compression ratios by modeling the hu-
man speech system with two filters and an initial excitation.
In human speech, the glottis produces a vibration at a spe-
cific frequency which is then shaped through reflection and
absorption when it passes through the vocal tract and nasal
cavity. During GSM speech compression, the input speech
samples are grouped into frames of 160 signed 13-bit linear-
PCM values sampled at an 8 kHz sampling rate. The short
term analysis section of the algorithm calculates the short
term residual which will excite the short term synthesis stage
of the decoder. This models the vocal and nasal tract. Long
term filtering, which represents a much smaller portion of
CPU time, models the glottis and deals with pitch. [Dege94]

The data set for GSM consists of an excerpt of 24 seconds
of U.S. Vice President Al Gore recorded in 16-bit precision
mono at an 8 kHz sampling rate: “I've traveled to every part
of this country during the last six years. During my service
in the United States Congress I took the initiative, in creat-
ing the Internet. I took the initiative in moving forward a
whole range of initiatives that have proven to be important
to our country’s economic growth: environmental protection,
improvements in our educational system.” The source of the
sound clip is from an interview with CNN’s Wolf Blitzer on
March 9, 1999 [CNN99].

___________________ Encoder ____ _ __ ..

1 I

‘ I | Ishort Term Analysig Long Term Analysis Residual Pulse | |

! W Filtering > Filtering »|Excitation Encoding| 1

1 I

speech samples | Y B [_l
reflection long term predictive residual
coefficients lag and gain pulse

1 I

' Short Term Long Term Residual Pulse | |

I ___ ~4— SynthesisFiltering SynthesisFiltering Excitation Decoding| !

I

I

speech samples

Figure 15: GSM Speech Compression Algorithm

2.6 JPEG

The Joint Photo Experts Group (JPEG) established the
JPEG image compression standard, which was adopted as
international standard ISO 10918 in 1993. JPEG image com-
pression is a widely used method for reducing the size of nat-
ural (continuous tone) greyscale and color images; it is the de
facto image compression standard both on the World Wide
Web, as well as for digital cameras [Rama98|. In JPEG com-
pression, the source image is partitioned into 8x8 pixel blocks,
and each block is transformed into the frequency domain us-
ing the forward discrete cosine transform (DCT). The lossy
part of JPEG compression stems from its psycho-visual model
which recognizes that in most images the higher frequency
coefficients are small and the eye is less sensitive to them, so

26

most of the spatial frequencies in a typical 8x8 block have
near zero values, and need not be encoded, or can be coded
with fewer bits. This is done through the quantization stage
which reduces the amplitude of the values that contribute lit-
tle to the perceived quality of the image. Run length coding
and Huffman entropy coding are then used to compress the
remaining coefficients. [Wall91]

1 1
u_n 1 1
= I]
) 'y _,l H] I_> Entropy !
o T RGB/YCbCr DCT Quantizer T
Encoder
| l ﬁ 1| Color Space :
1 Conversion 1 X
8x8blocks 1 T JPEGFile
i [qrae | | HTaie |
1 1

Il
u@ ggr(?ggr _’l Degquantizer |—>| DCTL I—ib.@
Ck %
[Hrae | [Qrave | E 848 blocks
1
1

1
1
1
1
JFEGFile | ¥
1
1
1
1
1

1 i

(b) Decoder

Figure 16: JPEG Image Coding Block Diagram

The JPEG data set is identical to that used with DjVu -
a 491x726 color digital photographic image from the Kodak’s
sample digital photo archive [Kodak] - and is shown again in
Figure 17.

Figure 17: JPEG Data Set

2.7 LAME and mpgl23

More than any other organization, the Motion Picture Ex-
perts Group (MPEG) has had the largest hand in shaping
digital multimedia compression formats. The MPEG audio

compression standard (ISO/IEC 11172-3) allows for perceptu-
ally lossless compression. During the design of the standard,
a group of expert listeners were unable to distinguish between
compressed and uncompressed audio clips with statistical sig-
nificance for compression down to 256 Kbps of audio sampled
at 16-bit, stereo, 48 kHz sampling rate. This represents a 6:1
compression ratio for a series of audio clips that were known
to be difficult to compress. [Pan93]

Although the actual coding is lossy, the algorithm exploits
perceptual weaknesses of human hearing which makes it per-
ceived to be lossless. The presence of a strong audio signal
masks a spectral range of neighboring frequencies. In addi-
tion, the ear has varying tonal acuity depending on the fre-
quency range of the signal, thus it is possible to divide up the
auditory spectrum into varying width critical bands, devoting
a given number of bits to each band through quantization.
The complete standard consists of three layers, each of which
models human hearing with increasing sophistication. Based
on the psycho-acoustic model (layer) involved, a given audio
bitstream is encoded to minimize the quantization noise inher-
ent in lossy compression. Layers I and II are used infrequently
as their approach is not as refined as that of Layer III, and
computational complexity is increasingly less of a concern, as
the power of desktop computers has increased dramatically
since the introduction of the MPEG standard. A block di-
agram of Layer III audio coding and decoding is shown in
Figure 18.

The MPEG audio data set for encoding by LAME and de-
coding by mpgl23 is a 28 second excerpt from Shchedrin’s
Carmen Suite, sampled at 44.1 kHz [Pope94]. This particular
section of music was chosen for its large dynamic variations.

Py

ate/Distortion Control Loo

p
m‘—m Scale and|—pscale and—
I antize uanti -
‘ ‘ % sl e 6
Audio Samples + .
Coding MP3File

of Side
Information

(a) Encoder

H Dequantizer [#=] Huffman [4—

- Dynamic
d Synthesis [\windowing [§ - —]|
LG Filter Bank[#— "mipcT [4] & Descaler [$ Decoding [$
Audio Samples [I

4

MP3File

(b) Decoder

Figure 18: MPEG Audio Layer IIT Encoder/Decoder

2.8 DMesa

OpenGL was originally developed by SGI to be a portable 3D
graphics application programmer’s interface (API) for inter-
active applications. This differentiates it from other types of
3D rendering, such as ray tracing, in which the quality of the

rendered image takes precedence over interactivity (a reason-
able number of frames rendered per second). Interactivity is
very important for 3D because the ability to rotate, scale or
otherwise transform or move through a virtual 3D object or
scene is at the heart of applications ranging from video games
to medical imaging.

Mesa is an API level clone of OpenGL, which is compat-
ible with applications written for it. In both OpenGL and
Mesa, graphics primitives such as points, line segments, etc.
are drawn into a frame buffer according to a selectable mode.
OpenGL commands are issued via. procedure calls and accu-
mulated in a display list for processing [Segal94]. 3D graphics
rendering transforms 3D models into 2D images by simulating
the physics of light propagation from lighting sources, through
the objects, and eventually to the eyes. The graphics primi-
tives in a 3D model file are organized as a tree [Chiu97]. Ren-
dering starts with a traversal through this tree of primitives
to extract the appropriate information for display such as the
specific drawing primitive (line or triangle), lighting models,
textures, etc. The geometry stage then transforms 3D co-
ordinates of the model to the 2D coordinates of the screen.
Finally, the rasterization stage converts transformed primi-
tives into pixels values and stores them to the frame buffer
for display. [Yang98] These three steps happen every time a
scene is rendered (30+ times a second for fluid animation).
A typical geometry processing pipeline is shown as part of
Figure 19.

Rendering Pipeline

1

1
1
| Database N~ . :
: Traversd] Geometry L |Rasterizationf__,] Display \
\ Frame Buffer| 1
e e ——————— L ——— L
F======= N —— — — — = = 1
1 I
1| Viewand L Projection L L Mapping | !
: Mode | Lighting | Transform —» Clipping || Division by —»] of :
1 | Transform w Vertices |1
1 I
1 I

Geometry Pipeline

Figure 19: 3D Rendering Pipeline

The rasterization stage is by far the most computationally
intensive stage of 3D rendering. For platforms which need to
support sophisticated interactive 3D applications, accelerator
cards which handle the rasterization stage in hardware are
the norm, with the CPU handling geometry and data base
traversal. Accelerator cards are typically quite inexpensive
(<$100 USD), and are sold as combination 2D /3D accelerator
cards for commodity PCs.

Based on the past adoption of previously new workloads,
we can predict what will happen with 3D rendering. The
traditional progression for supporting a new computationally
intensive workload is:

1. in software on a platform unable to provide satisfactory
performance

2. the addition of special purpose hardware (expansion
cards) for accelerating the application

3. a folding of the special purpose hardware’s functionality

27

into the main CPU when enough silicon becomes avail-
able to support it

In the same way, we expect that eventually 3D workloads will
follow suit, with all stages of 3D rendering handled solely by
the CPU. However, the current trend is moving in the reverse
direction - recent (currently high end) accelerator cards for
PCs have begun incorporating the geometry processing stage
as well. Rather than saturating the CPU with geometry com-
putations, it is attractive to have it be responsible for synthe-
sizing more detailed and realistic motions of on-screen objects
[Kuni99]. This indicates that current 3D rendering capabili-
ties are so far from meeting performance demands that there
is still considerable expansion to be made into to the second
stage of workload adoption (specialized hardware support).
As we will see in our introduction of the POVray3 raytracing
application, real time rendering of highly detailed and realistic
scenes is far from being tractable on current architectures.
For the Berkeley multimedia workload, we focus on three (a) Gears
relatively simple animated demonstration applications. A
frame from each demo is displayed in Figure 20. In the work-
load, each application renders 30 frames at 1024 x 768 resolu-
tion (24-bit color). The Gears demonstration is a simple ren-
dering application in which three colored gears rotate around
their axes. Morph3D is similar to many 3D screen saver ap-
plications in that a geometrical shape is continuously rotated
and morphed into other shapes while moving in a varying tra-
jectory on the screen. The Reflect application utilizes simple
texture mapping, reflection and transparency with a rotating
plane under cone and cylinder shaped objects. (

2.9 MPEG-2 Video

The ISO Motion Pictures Experts Group (MPEG) was formed

in May of 1988, bringing together the technical expertise of (b) Morph 3D
people from all industries interested in digital audio and video
applications. The MPEG-1 standard or ISO/IEC 11172 (in-
troduced in 1990) was the result of this collaboration, specify-
ing a platform independent, digital solution for storing moving
pictures and audio on a CD with video quality comparable to
that of a VHS cassette (1.5 Mbps). MPEG video compression
is a hybrid of algorithms, allowing it to achieve extremely high
compression ratios. I frames or intra-coded frames utilize the
discrete cosine transform (DCT) followed by quantization for
intra-frame compression to remove spatial redundancy within
a single frame. This is almost identical to JPEG image com-
pression. P frames or predicted frames use a reference frame
from a past I or P frame to construct a new frame. B frames
or bidirectionally predicted frames reference both past and fu-
ture I or P frames. These inter-coded frames exploit temporal
redundancy between frames to reduce the number of bits nec-

essary to encode a frame. (c) Reflect
An MPEG video bitstream or sequence consists of a hierar-
chy of structures, as depicted in Figure 21. Each level of the Figure 20: Mesa Data Sets

hierarchy consists of a start code or header which is a unique
32-bit patterns marking the divisions between different sec-
tions of the bitstream.

28

| Sequence Header | GOP | GOP | GOP | \ \ | GOP | GOP |
[GOPHeader | Pictwe | Picwre | Powe | .. | Piawe | Piaue |
[PictureHeader | Slice | Sice | Sice [{ .. | Sice | sice]
| SliceHeader | Macroblock | Macroblock | Macroblock | { ... ™) [Macroblock | Macroblock |

ﬁvlacroblock Header| Y0_Block | Y1 _Block | Y2 Block | Y3 Block | U_Block | v_BlocT|

Figure 21: MPEG Video Stream Hierarchy

The next level of the hierarchy beneath the video bitstream
is the group of pictures or GOP. A GOP must contain at least
one I frame and any number of P and B frames. The total
length of a GOP typically ranges anywhere between 8 and 20
pictures in length. The actual sequence of frame types to use
is not part of the MPEG specification, and must be decided
by the end user or encoding software. To visualize how this
works, consider the example eight frame GOP shown in Figure
22.

Figure 22: Example MPEG Video Group of Pictures

Each GOP is subdivided into slices, which in turn are sub-
divided into macroblocks. A macroblock is a 16 x 16 array
of pixels. Each I frame contains only I macroblocks - mac-
roblocks coded in the intra-frame, DCT based compression
method. A P frame may contain both forward predicted (P)
and I macroblocks, while a B frame may contain bidirection-
ally predicted (B) macroblocks as well. Because MPEG uti-
lizes the Y C,C,. color space and color space sub sampling, ev-
ery macroblock is subdivided into six 8x8 sub-blocks of data,
consisting of four luminance (Y) sub-blocks and two chromi-
nance (one Cjp, one C,) sub-blocks, as shown in Figure 21.

If measured by its influence on the digital coding of video
and audio on desktop computers alone, MPEG-1 would be
considered a great success. However, it was with the advent
of MPEG-2 (November, 1994) that the MPEG group mapped
the future of digital television. MPEG-2 (ISO/IEC 13818) ex-
tended and generalized its predecessor by supporting several
levels of bit rates and encoding features. Both digital versa-
tile disc (DVD) and high definition television (HDTV) employ
the MPEG-2 standard.

2.9.1 Digital Versatile Disc (DVD)

Digital Versatile Disc or DVD is the technological successor to
CDs as an optical storage media. Physically, a DVD resembles

29

a CD in that it is a 12 cm optical disc. However, its capacity
is much greater, as is shown in Table 7 [Kabl96]. And, unlike
a CD, a DVD can be double sided, allowing for a maximum
storage capacity per disc of 17.08 GB.

CD
680 MB

Single Layer DVD
4.70 GB

Dual Layer DVD
8.54 GB

Table 7: Physical DVD Storage Formats

Although designed as a unified medium for storing audio,
video, and data, DVD is best known for its DVD-Video com-
ponent for storing movies using MPEG-2 encoding. Stand
alone DVD-Video players were introduced to in Japan in De-
cember 1996 and March 1997 in the United States [Naka98].
Software players have become a popular solution for inexpen-
sive digital versatile disc (DVD) playback on personal com-
puters, applications which are in large part possible because
of the advent of SIMD multimedia extensions. DVD-Video
was the first DVD based consumer product, so we will refer
to DVD-Video simply as DVD.

In addition to superior video quality in comparison to video
cassettes, DVD offers advances in sound reproduction with
AC3 (Dolby Digital) 5.1 channel audio, as well as allowing
for a degree of interactivity. DVD players can randomly ac-
cess any scene in a movie via a menuing system as well as
provide for ancillary information such as multiple audio track
languages, multiple camera angles and multiple language sub-
titles. Different DVD titles support these features to varying
degrees.

An MPEG system bit stream consists of three sub streams:
audio, video and sub picture (or system). The total peak
bit rate for the MPEG system stream supported by DVD-
Video is 9.8 Mbps. During the design of DVD it was found
that a variable bit rate MPEG-2 stream at a peak bit rate
of 7.5 Mbps (average of 3.5 Mbps) is sufficient to achieve
good picture quality for a wide range of content (animation,
movies, etc.). Because approximately 135 minutes of storage
is required to cover 95% of Hollywood movies, the single sided,
single layer DVD format can be used for typical length movies
[Yama97]. The audio stream bit rate for 5.1 channel Dolby
Digital is 384 Kbps.

2.9.2 High Definition Television (HDTYV)

In the United States, the NTSC analog television standard has
been around since 1941 (extended to color in 1955). Based
on analog technology, terrestrial broadcast NTSC suffers from
"ghosting" and other artifacts due to the electromagnetic in-
terference of other electronic devices and ground structures.
In addition, the resolution and color accuracy of reproduced
images is far from perfect. The purpose of high definition
television (HDTV) is to eliminate these deficiencies.

Like MPEG, the HDTV specification was also spurred by
an international committee. The Advanced Television Sys-
tems Committee (ATSC) is an international organization be-
gun in 1982 to begin developing voluntary technical standards

for the entire spectrum of advanced television systems. In
the United States, the ATSC standard was adopted by the
Federal Communications Commission (FCC) in December of
1996, with the goal of eliminating all terrestrial broadcasts of
NTSC programming by 2006 (to put this in perspective, it
is estimated that there are currently 250,000,000 NTSC tele-
visions in American households [HDTel]). Extremely limited
terrestrial broadcasts of HDTV signals began in late 1998.

MPEG-2 was chosen as the basis of the proposed high def-
inition television format. The ATSC Digital Television Stan-
dard specifies a bit rate of 19.28 Mbps for a 6 MHz terrestrial
channel (radio frequency modulation and transmission) and
38.57 Mbps for a 6 MHz cable television channel [ATSC95al,
[ATSC95b] (see Table 8).

Format Aspect | Horiz | Vert | Bitrate (Mbps)
DVD 4:3/16:9 720 480 9.8
HDTYV 720P 16:9 1280 720 19.28/38.57
HDTYV 10801 16:9 1920 1080 19.28/38.57

Table 8: Proposed HDTV Formats

Both of the bit rates specified are far too demanding for
current DVD designs. There is currently no official specifica-
tion for storing HDTYV resolutions on a DVD type medium,
but it is reasonable to expect that because most HDTV’s will
be designed to handle to the bit rate of 38.57 Mbps, this rate
will be a logical choice for the bit rate stored on high defini-
tion digital video discs (HD-DVDs). A two-hour movie at the
higher quality rate of 38.57 Mbps will potentially consume
over 34.7 gigabytes of space. It is likely that a new storage
medium will need to be introduced to support the higher bit
rate demands of recorded HDTV or HD-DVD. Current devel-
opments in the area of high frequency blue and violet lasers
(allowing for the more compact storage of bits) are a possi-
ble technological solution to extending the DVD format to
greater storage capacity.

2.9.3 Data Set Selection

In order to represent current and future applications, three
data sets were developed for MPEG-2 encoding and decoding.
Each data set consists of 16 frames (one group of pictures or
GOP), a frame from each data set is depicted in Figure 23.

2.10 POVray

Ray tracing (also referred to as ray casting) is a technique for
the photo-realistic rendering from a scene or 3D description
of objects, light sources, textures, etc. For each pixel in the
viewing window, an eye ray is fired from the center of pro-
jection through the pixel’s center into the scene. The pixel’s
color is then set to that of the object at the closest point of in-
tersection. Rays of light are traced from the camera or viewer
to the objects in the scene rather than the reverse direction,
as occurs in reality, for the sake efficiency - only rays visible
to camera need be computed. [Foley] If an eye ray intersects
an object, secondary shadow rays are generated towards each

30

light source to measure the contribution to the object’s illumi-
nation by each light source as well as determining which are in
shadow due to being blocked by other objects. All objects are
associated with material properties, such that if a surface is
reflective, additional reflected rays are generated and followed
in the same way. If a surface is transparent, refracted rays are
generated. The illumination at any point is computed from
the object’s material properties as well as the angles between
rays and the light sources. [Maed94]

The Persistence of Vision raytracer (POVray) element of
the Berkeley multimedia workload is a high quality freely
available ray tracing application widely used by graphics
artists. The data set used is a POVray scene file by artist
Robert A. Mickelsen titled “Desert Ammonites” [Mick95], and
rendered at 640 x 480 resolution in 24-bit color. He gave per-
mission to include this data set in the Berkeley multimedia
workload. The final rendered image is shown in Figure 24.

Figure 24: POVray Data Set

2.11 RASTA

Automatic speech recognition has as its task the decoding of
the linguistic message embedded in a digitized speech signal.
The linguistic message is coded in the movements and shape
of the human vocal tract. The RASTA speech recognition
technique relies on the fact that the rate of change of the
non-linguistic components in speech often lie outside the typ-
ical rate of change in vocal tract shape. By suppressing the
spectral components that change more slowly or quickly than
the typical range of change of speech the performance and
accuracy of speech recognition can be improved. RASTA is
able to compensate for additive noise (noise uncorrelated to
the speech signal) and spectral distortion in the input speech
samples. [Herm94]

For each frame of speech to analyze, the following opera-
tions are performed:

1. compute critical-band power spectrum

2. transform through a compressing static non-linear trans-
formation

3. filter the time trajectory of each component

4. transform through expanding static non-linear transfor-
mation

(a) DVD (b) HDTV 720P

(c) HDTV 1080i

Figure 23: MPEG-2 Video Data Sets

31

5. multiply by the equal loudness curve and raise to power
of 0.33 to simulate the power law of hearing

6. compute an all-pole model of the resulting spectrum

As such, RASTA is not a complete speech recognition applica-
tion - there is no step searching a known dictionary of phrases
or words for a match. Rather, this represents the back end
processing that must occur in order for each utterance to be
recognized. This limitation was deemed acceptable due to the
lack of a full open source speech recognition application at the
time of our study.

The data set for GSM consists of an excerpt of 24 seconds
of U.S. Vice President Al Gore recorded in 16-bit precision
mono at an 8 kHz sampling rate: “I've traveled to every part
of this country during the last six years. During my service
in the United States Congress I took the initiative, in creat-
ing the Internet. I took the initiative in moving forward a
whole range of initiatives that have proven to be important
to our country’s economic growth: environmental protection,
improvements in our educational system.” The source of the
sound clip is from an interview with CNN’s Wolf Blitzer on
March 9, 1999.

2.12 Rsynth

Speech synthesis, like speech recognition, attempts to endow
computers with the ability to communicate with people in the
way most natural to them. Early attempts at speech synthe-
sis concatenated pre-recorded words into sentences, producing
extremely unnatural sounding speech. This is due to the fact
that in continuous speech word durations are typically shorter
than when individual words are spoken, in addition to coartic-
ulation effects in which the articulation of a word is affected
by the preceding phoneme (A phoneme is the smallest unit of
speech that distinguishes one utterance from another in a par-
ticular language. An allophone is the acoustic manifestation
of a phoneme. [Hall95]). A formant speech synthesizer works
by deriving an approximation to a speech waveform through
a set of rules formulated in the acoustic domain. Synthesized
speech is generated by modeling the human speech system as
shown in Figure 25. According to the model, there are three
classes of sound which compose English speech:

1. voicing - quasi-periodic vibration of the vocal folds
(cords)

2. aspiration - generation of turbulence noise by the rapid
flow of air past a narrow constriction at the level of the
vocal folds

3. frication noise - generation of turbulence noise by the
rapid flow of air past a narrow constriction above the
larynx

Voicing is generated within the synthesizer by digital res-
onators, while aspiration and frication noise are created
through a linear congruential random number generator.
These three sources are then combined and pass through

32

a transfer function for either laryngeal or frication sources.
These transfer functions model the effect of the human vocal
tract on the sound sources.

Voicing
Source +

Vocal Tract Transfer
Function for +

Laryngeal Sources | | | |
— Radiation l i i
Aspiration T* Characterisic | ® <+
So
wree Vocal Tract Transfer T + Speech
Function for Samples

Frication Frication Sources

Source
Figure 25: Klatt Cascade/Parallel Formant Speech
Synthesizer

Rsynth is the result of Nick Ing-Simmons’ work to inte-
grate several pieces of public domain code into a text to
speech application. The speech synthesizer portion of Rsynth
is based on the synthesizer from [Klatt80] with a modified
voicing source added by Klatt in 1982. (The original pub-
lished Klattalk source code was in Fortran, but was recoded
to C by Ing-Simmons.) The data set spoken is the first two
paragraphs (181 words) of text from the United States Dec-
laration of Independence, requiring 90 seconds to synthesize.
This particular text was chosen because it is widely available
in ASCII text form.

2.13 Timidity

TiMidity is a MIDI file rendering applications which uses in-
strument sounds encoded in Gravis Ultrasound-compatible
patch files to generate digital audio data from MIDI files. Mu-
sic delivered by MIDI files is the most common use of MIDI
today, and is found in many PC games, web pages, etc. Most
personal computers are capable of playing standard MIDI files
out of the box. The reason for the popularity of MIDI files
is that, unlike sampled digital audio files (.wav, .aiff, etc.) or
even compact discs or cassettes, a MIDI file does not need to
capture and store actual sounds. Instead, the MIDI file is just
a list of events which describe the specific steps that a sound-
card or other playback device must take to reproduce a piece
of music. Each action of a musical performance is assigned
a specific binary code. This way, MIDI files are considerably
smaller than digital audio files, and the events are also ed-
itable, allowing the music to be rearranged, edited, even com-
posed interactively, if desired. [MMA] The MIDI data set is a
rendition of the X-files television show theme song (originally
by Chris Carter) rendered by Mark Snow [Snow96].

3 Appendix C - Kernels

In order to optimize a computational kernel so that it is as
fast as possible, but still correct, it is first necessary to un-
derstand the basis of the algorithm behind it. In this section
we will give an overview of the algorithms which dominated
processing time in the Berkeley multimedia workload suite.
The C source code for each kernel, as originally extracted

from the Berkeley multimedia workload applications, is given
in Appendix C.

Tables 9, 10, 11, 12 and 13 list the dominant, computa-
tionally important kernels for each application. Note that
these kernels do not necessarily correspond to a single pro-
cedure within the source application. Instead, we have listed
semantically different tasks as the kernels rather than source
procedures. This is due to the fact that the programmers of
each application divided the algorithmic tasks into an arbi-
trary number of procedures or functions. More experimental
applications, not concerned with speed, tend to be split into
very small granularity tasks for ease of understanding and de-
bugging. Applications that are more highly optimized tend to
use very large procedures to reduce the amount of overhead.

For each kernel, the Lines column refers to the number of
static source code lines which make up the kernel. The Refs,
Cycles, and Insts columns each indicate the dynamic contri-
bution of that kernel to total line references, CPU cycles and
instructions respectively within the application. This gives
three ways to understand the degree of coverage a particu-
lar kernel is responsible for. Kernels which accounted for less
than 5% of any of these measures are not usually listed in the
tables unless there was some extenuating reason to do so.

3.1 Audio
3.1.1 ADPCM Codec

The ADPCM encoding and decoding applications each con-
sist of a single small kernel. In encoding, the IMA ADPCM
algorithm computes the difference between the current sam-
ples, X[n], and the previous predicted sample, Xp[n], and uses
the difference to compute the quantizer level, D[n] for each
sample. The predictor in this case is not adaptive (does not
change according to the rate of change of the waveform), and
so no side information is needed to encode how to reconstruct
the predictor. The IMA implementation of the ADPCM algo-
rithm simply uses the previous sample value as a predictor for
the next sample, so X,[n] is simply a time delayed version of
X|[n]. Adaptation to the audio signal takes place only within
the quantizer.

bit3=1;

?
sample < 07 sample = —sample

bit2=1;
sample —= step_size

bit1=1;
sample —= step_size/2

bit0=1;
sample —= step_size/4

!
|hit0:0 I_,[Done]

Figure 26: IMA ADPCM Quantizer

33

Quantization for the IMA ADPCM algorithm proceeds ac-
cording to the diagram in Figure 26. The quantizer adapts
the step size based on the current step size and the quantizer
output of the immediately previous input. This adaptation is
performed as two table lookups. The three bits representing
the number of quantizer level serves as an index into the first
table lookup whose output is an index adjustment for the sec-
ond table lookup. This adjustment is added to a stored index
value, and the range limited result is used as the index to
the second table lookup. The summed index value is stored
for use in the next iteration of the step size adaptation. The
output of the second table lookup is the new quantizer step
size.

The ADPCM decoder reconstructs the audio X, [n] sample
by adding the previous decoded audio sample X,[n — 1] to
the result of the signed magnitude code word, C[n] and the
quantizer step size plus an offset of one-half the step size:

Xp[n] = Xp[n — 1] + stepsize[n] - C[n] (1)

The value of stepsize[n] is approximated by the product of
the previous value, stepsize[n — 1], and a function of the code
word, F(C[n — 1]):

(2)

stepsize[n] = stepsize[n — 1] - F(C[n — 1))

3.1.2 Fast Fourier Transform

The most common application of Fourier transforms is the
spectral analysis of discretely sampled data (the value of some
real process is recorded at evenly spaced intervals of time,
At). This is possible because a physical process can either be
described in the time domain, by the values of some quantity
h as a function of time ¢ or in the frequency domain where the
process is described as an amplitude H (generally a complex
number indicating magnitude as well as phase) as a function
of frequency f. The Fourier transform allows us to go back
and forth between h(t) and H(f), which can be thought of as
two different representations of the same function. [Pres92]

The discrete Fourier transform (DFT) has the same prop-
erties as the continuous transform. An N point DFT is given
by:

N—
H, =
k=0

[uy

hkeQWikn/N

(3)

Direct computation of the DFT is computationally expen-
sive because it is O(N?). Fortunately, there is a method
for computing the DFT in O(NlogaN) time, called the fast
Fourier transform (FFT), which was introduced by Cooley
and Tukey in 1965 [Cool65]. This algorithm works by recur-
sively splitting an N-point DFT into two N/2 point DFTs,
continuing until only 2-point DFTs remain [Dobb95]. The
output of the FFT is shuffled, but it is in a structured way.
If the bits of the index into the array on which the FFT was
performed are reversed, the correction index of the desired
value is generated. This is known as bit reversed addressing.

Audio
Application Kernel Name Lines| Refs Cycles Insts
ADPCM Encode ADPCM Coder 45| 100.0% 98.3%| 99.9%
ADPCM Decode ADPCM Decoder 30| 100.0% 98.3%| 99.9%
LAME FFT 176 18.6% 18.4%| 13.8%
Max Val ue 8| 15.7% 15.7%| 12.0%
Quanti ze 55| 11.6% 11.6%| 15.3%
Cal ¢ Quanti zation Noi se 71 10.7% 10.6%| 15.3%
Count Encoding Bits 26 9.5% 9.3% 7.3%
Psychoacousti c Mdel 262 5.3% 5.2% 6.0%
mpgl123 Synthesis Filtering 67| 45.7% 45.2%| 39.6%
DCT64 105 20.3% 20.2%| 22.6%
Dequanti ze 305 14.8% 15.1%| 16.1%
Parse Bitstream 100 9.3% 9.3% 9.2%
DCT36 41 6.0% 6.1% 7.0%
Timidity M x 152 49.0% 48.5%| 35.5%
Resanpl e 167 41.4% 42.1%| 58.0%
Convert Sanpl e For nmat 6 6.2% 5.8% 3.6%

Table 9: Audio Kernels

Because the FFT is central to many digital signal process-
ing applications, many DSP chips actually have bit reversed
addressing modes implemented in hardware.

Section 1 Section 2

Section 0

where a butterfly operation,

A C

is defined:

C=A+B

D =Wy(A - B)

Wi = cos (%’m) +1-sin (%’m)

Figure 27: Decimation in Frequency Flow Diagram

The literature contains a plethora of algorithmic variations
on the FFT as originally proposed by Cooley-Tukey. The
original algorithm is classified decimation in time (DIT) and
can be recognized by its bit reversed reordering of the input

data. A different category of FFT, originally presented by
Sande-Tukey, is termed decimation in frequency (DIF) as it
rearranges the output data in bit reversed order. The moti-
vation for moving where bit-reversed addressing is performed
is to avoid the bit reversed reordering step through the ap-
propriate combination of DIT and DIF forward and inverse
Fourier transforms if operations are to be performed on the
data in the frequency domain, with the result being converted
back to the time domain. In reality there is little difference
computationally between the approaches as bit reversal rep-
resents only a small portion of an FFT’s operation count.
[Pres92] Other variations attempt to recursively split an N-
point DFT into different or multiple radii besides the origi-
nal radix-2 of the Cooley-Tukey algorithm. The idea behind
other radix transforms is to take advantage of special symme-
tries for a given radix, splitting an N-point DFT into multiple
transforms of whatever radix highly optimized transforms are
available. The standard way to describe an FFT algorithm is
through a flow diagram, which is given for the 8-point DIF
FFT in Figure 27.

Spectral analysis is perhaps the most widespread applica-
tion of the FFT, and is what we are interested in for our
multimedia applications. Both the LAME MPEG-1 layer III
audio encoding and Rasta speech recognition applications uti-
lize the fast Fourier transform method for computing the dis-
crete Fourier transform. Because most applications of the
FFT (LAME and Rasta included) exclusively involve real in-
put sequences, there are several techniques for computing the
FFT in these cases beside the trivial and inefficient method
of zeroing the imaginary part of the input data to a complex
FFT.

1. mass production - also called a double sequence FFT.
Computes two N-length real FFTs simultaneously by

34

placing one set of input data in the real portion of the
complex array to transform, and the other in the imag-
inary part. The resulting array can than be split into
two complex results based on a set of symmetries. This
method works well if the condition of having two real
sequences to transform at the same time can be met.

2. trigonometric recombination - uses a complex FFT of
length N /2 to compute the DFT of a real input sequence
of length N. Before the complex FFT is performed, the
real input sequence is split into a real part consisting of
the even indexed input elements, and an imaginary part
from the odd indexed input elements. The correct output
can then derived from a set of recombination computa-
tions. [Embr]

3. real value FFT (RVFFT) - RVFFT algorithms are
specifically optimized for computing the FFT on real
data. They take advantage of symmetries due to the
real-valued nature of the input data that can be used at
every stage of the FFT algorithm to remove redundant
operations. [Sore87]

FFT algorithms are almost exclusively written in floating
point because the accuracy of the FFT degrades quickly with
fixed point calculations. In order to have perfect accuracy for
an N point FFT for a k-bit input signal, it is necessary to
have k+log2(N) bits of precision during intermediate calcu-
lations. So in the case of the 4,096 point transform used in
the LAME application, 28 bits of accuracy are required for a
numerically correct FFT implemented in fixed point. Single
precision floating point numbers have only 24-bits of actual
precision, but floating point (as opposed to fixed point) tends
to hide the problem so that it is less noticeable due to its
larger dynamic range.

3.1.3 Maximum Value in Array

The maximum value kernel found in the Lame MPEG layer
IIT audio encoding application searches an array of 576 32-bit
signed integers for the largest absolute value and returns that
value.

3.1.4 Modified Discrete Cosine Transform (MDCT)

Traditional signal processing transforms (e.g. the unmodi-
fied DCT or FFT) suffer from blocking artifacts due to the
processing of discrete length blocks of input data. Lapped
transforms have a 50% overlap between successive blocks,
which greatly reduces these artifacts [Cheng99]. The modified
discrete cosine transform (MDCT) is a linear lapped trans-
form based on the idea of time domain aliasing cancellation
(TDAC). The MDCT is critically sampled, meaning that it
is 50% overlapped such that a single block of inverse MDCT
data does not directly correspond to the original block on
which the forward MDCT was performed. This overlapping
characteristic makes the MDCT very useful for quantization
as it effectively removes the otherwise easily detectable block-
ing artifacts between transform blocks. [Linc98]

35

The forward MDCT (FMDCT) is defined:
X(m) =S4 Zg flk) - 2(k) - cos(£(2k + 1+ 2)(2m + 1)
form=0...5 -1
(4)

and inverse MDCT (IMDCT):

S EO X (m) - cos(&(2p+ 1+ 2)(2m + 1))

forp=0...n-1
(5)

where for either the FMDCT or IMDCT, f(z) is a window
with certain properties. The sine window:

f(z) = sin <71’%)

satisfies these properties.

In MPEG audio encoding (only layer III), the size, of the
MDCT is n = 36 (the 36 input samples from the synthesis
filtering bank).

(6)

3.1.5 Mixing and Conversion

Audio mixing consists of multiplying a vector of k input
signals (S1,S52,...5;) by a vector of mixing coefficients
C1,Cs,...C and summing the result. In Timidity, fixed
point integer computations are used to mix the various signed
16-bit instrument sounds into a 32-bit output buffer. After
all of the required instrument sounds have been mixed in and
the buffer is full, it is then rounded and scaled to produce
16-Dbit signed integer results and written out to the output file
(this is the conversion step). In this way, the 32 bit result
of multiplying the 16-bit sound sample of an instrument by a
16-bit mixing coefficient is accumulated in 32-bits.

3.1.6 Quantization

Quantization is a process by which a real value is converted to
a discrete integer representation. The quantize kernel is taken
from the LAME MPEG audio layer IIT encoding application.
In it, an array of real double precision floating point values,
zr[], is converted to an array of 32-bit integers, zi[], according
to the function:

izfi] = \/\/:Er[i]* + 0.4054

This is extremely time consuming to compute due to the
square root operations, so the quantize kernel employs a look
up table for certain precomputed ranges of floating point in-
put values.

3.1.7 Resampling

In the digital signal processing of sampled audio and speech
signals it is often necessary to change the sampling rate of a
piece of sampled data. Resampling or sample rate converting
a waveform sampled at a frequency Fjqmpe causes the out-
put sample data to have the same spectral components when

played back at a the new sample rate, Fpjaypack. For exam-
ple, if speech is sampled at 8 kHz, but is to be played back on
a CD, which has a fixed playback rate of 44,100 (44.1 kHz)
samples per second, the speech must be resampled to sound
the same at the higher playback rate.

Increasing the sample rate is termed interpolation or up-
sampling, while conversion in the opposite direction is deci-
mation or downsampling. Decimation reduces the number of
samples per second required to represent a signal. The input
signal z(n) is characterized by a sampling rate F,, = 1/T, and
the output signal y(m) is characterized by the sampling rate
F, =1/T,, where T, and T, are the corresponding sampling
intervals. Let us define the ratio:

where U and D are integers. Decimation can be accom-
plished by retaining every Dth sample and discarding the in-
tervening D — 1 samples. Unless the signal F), is band limited
to below the Nyquist frequency of the new sampling rate, IV,
aliasing will occur for all of the original spectral components
above N,. Recall that the Nyquist frequency is the mini-
mum frequency at which a signal must be sampled so as to be
able to perfectly recreate the original signal from the samples.
The Nyquist frequency is twice the highest frequency present
in the signal. In order to prevent aliasing the original signal
must first be low pass filtered to remove spectral components
which are not representable at the new sampling rate.

An increase in sampling rate by a factor U can be accom-
plished by interpolating U — 1 new samples between succes-
sive values of the original signal, F,. Classical linear (first
order) or polynomial (higher order) interpolation can be used
to generate these new samples, but the input signal must be
restricted to a very narrow band so that the output will not
have a large amount of aliasing. It is due to this concern
that bandlimited interpolation is usually favored over simple
polynomial interpolation. Bandlimited interpolation consists
of the following steps: [Embr]

1. Expand output sequence F, to be U times longer than
the input sequence F, by inserting U — 1 zeros between
every input sample (this is termed zero packing). This
replicates the original spectrum U times within the out-
put spectrum at the new sampling rate.

2. Low pass filter the expanded signal to remove the unde-
sired U —1 spectra above the original input spectrum (the
passband should be from 0...N, and have a gain of U
to compensate for the inserted zeros so that the original
signal amplitude is preserved).

For sample rate conversion by a factor U/D, the third step is
simply to decimate a signal which has first been interpolated
by the factor U.

Timidity utilizes linear (not bandwidth limited) interpola-
tion in fixed point (32-bit signed integers) arithmetic.

36

3.1.8 Synthesis Filtering

All three layers of MPEG audio coding/decoding utilize a set
of 512-tap finite impulse response (FIR) filters during encod-
ing (analysis) and decoding (synthesis). The purpose of the
filter bank is to divide the original audio signal into 32 equal-
width frequency subbands. During the analysis phase, the
audio signal is shifted into a 512 sample buffer, 32 samples at
a time. The contents of the buffer are multiplied by a win-
dowing function, and divided into eight 64-element vectors
which are summed to form the input to the modified discrete
cosine transform (MDCT). The output of the MDCT yields
the final 32 subband values. Decoding (or synthesis) mirrors
the analysis phase. The steps of synthesis filtering in MPEG
audio are shown in Figure 28. [Shli94] For the synthesis filter,
the input and intermediate computations are done in floating
point, but the output values are quantized to 16-bit signed
integer samples.

Input Subband Samples
s[k], k=0..31

L]

Shift Down vector V
VIl = 0;
for(i=1023; i>64,
Vil = V[i-64]
Y

Inverse MDCT (Matrixing)
Vil = ?Ni,k]s[k], i=0..31

Y

i--)

Build U Vector
for(i=0; i<7;, i++)
for(j=0; j<31; j++) {
U j+64*i]=V[j+128*i];
U j+64*i +32] =V[| +128*i +96] ;

v

Generate Filter Elements
for(me0; nx511; mt+)
Wni=Un*Oni;
Y

Calculate 32 Samples
for(j=0; j<31; j++)
S[j] = ?Wj+32*i], i=0..

Y

Output PCM Samples
x[i], i=0..31

}

15

Figure 28: MPEG Audio Synthesis Filtering

Speech
Application Kernel Name Lines| Refs Cycles Insts
GSM Encode Short Term Analysis Filter 15| 38.0% 35.8%| 20.2%
Cal c LTP Paranet er 61| 30.9% 32.4%| 51.4%
Weighting Filter 16 10.2% 10.2% 5.5%
Sanpl e Preprocessing 27 6.4% 6.2% 5.2%
Aut ocorrel ation 40 6.2% 6.0% 6.6%
GSM Decode Short Term Synthesis Filter 15| 77.4% 77.0%| 72.7%
Sanpl e Post processi ng 7 7.2% 6.9% 5.6%
Long Term Synt hesis Filter 11 6.1% 6.3%| 10.8%
Rasta FFT 168 31.0% 29.3%| 17.0%
Estinate Noi se 162 14.6% 13.7% 9.7%
Critical Band Search 26| 12.9% 12.1% 7.3%
Fill Frane 26 5.0% 4.7% 3.3%
Rsynth Par wave 431 49.1% 49.0%| 38.7%
Resonat or 4 22.7% 22.3%| 27.8%
Nat ural Source 8] 12.1% 11.8% 9.7%
Table 10: Speech Kernels
3.2 Speech

3.2.1 Short Term Filtering

An analysis filter bank is a collection of filters Hy(z),0 <
k < M — 1 which splits a signal z(n) into M subband sig-
nals zx(n), 0 < k < M — 1. A synthesis filter bank is a set
of filters Fj(2),0 < k < M — 1, which combines M signals
v(n),0 < k < M — 1 into one signal z'(n), typically termed
the reconstructed signal. [Vaid8§]

Both the short term analysis and short term synthesis filter-
ing kernels are taken from GSM speech compression. A filter’s
output can depend on more than just a single input value; it
can also retain state. The linear predictive short term filter
(the first stage of GSM compression and last stage of decom-
pression) models the vocal and nasal tract. It is excited by
the output of a long-term predictive filter that converts its in-
put (the residual pulse excitation or RPE) into the mixture of
glottal wave and voiceless noise that makes up human speech.

The short term analysis filter is implemented according to
the structure depicted in Figure 29 where:

1
ul(k) = ’U,ifl(k — 1) + ’f‘;» - dlfl(k)
d(k) = ds(k)

Likewise, the short term synthesis filter of the decoder is
implemented according to the structure shown in Figure 30
where:

37

input
s(k)

Figure 29: GSM Encode Short Term Analysis Filter

o0y (F) = . (K)
Sr(i)(k) = Sr(i—1) (k) — Ty (9—4) ~vg—i(k—1)
vo_i(k) =vs_i(k = 1) + 7 (9—1i)-5,.3)(k)
sp (k) = sr(s) (k)
vo(k) = 5,(8) (k)

i=1...8
1=1...8

output
sr(k)

Figure 30: GSM Decode Short Term Synthesis Filter

3.2.2 Calculation of the LTP Parameters

The long term predictor analysis of GSM encoding selects a
sequence of 40 reconstructed short-term residual values that

resemble the current values. The prediction has two parame-
ters: the LTP lag, which describes the source of the copy in
time, and the LTP gain, which is the scaling factor. To com-
pute the LTP lag, the algorithm looks for the segment of the
past that most resembles the present, regardless of scaling.
This resemblance is computed by the correlation between two
sequences, z[| and y[], which is just the sum of the products
z[n] * y[n — lag] for all n. The correlation is a function of the
lag and of the time between every two samples that are mul-
tiplied. The LTP gain is the maximum correlation divided by
the energy of the reconstructed short term residual signal (the
energy of a discrete signal is the sum of its squared values).
[Dege94]

Thus, the Calculation_of_the_LTP_parameters() pro-
cedure in the GSM encoder computes the LTP gain and the
LTP lag for the long term analysis filter. This is done by cal-
culating a maximum of the cross-correlation function between
the current sub-segment short term residual signal (output of
the short term analysis filter) and the previous reconstructed
short term residual signal. In this GSM implementation, a
dynamic scaling must be performed to avoid overflow.

3.2.3 Parwave

The parwave() function of the rsynth text to speech syn-
thesizer calls all of the functions necessary for converting a
frame of parameter data into sound samples. Besides calling
other functions as needed, it is also responsible for the linear
congruential random number generator used in the frication
source. Strictly speaking, parwave () is not kernel - it does
not perform much in the way of computation, but it is called
once for each millisecond of speech synthesized, and so its
contribution to CPU time due to loop overhead and function
calls is significant. This is mainly a result of the way in which
the rsynth speech synthesizer is designed - as an experimental
tool, designed for ease of understanding and tweaking, instead
of a finalized product.

3.2.4 Resonator

The basic building block of the rsynth synthesizer is a digital
resonator having the properties depicted in Figure 31. The
characteristics of a given resonator are specified by the reso-
nant (formant) frequency, F', and the resonance bandwidth,
BW [Klatt80]. Samples of the output of a digital resonator,
y(nT), are computed from the input sequence, z(n1'), by the
equation:

y(nT) = Ax(nT) + By(nT —T) + Cy(nT — 2T) (9)

where y(nt—T) and y(nT —2T') are the previous two sample
values of the output sequence y(nT'). T is the reciprocal of
the sampling rate of the discrete signal being synthesized. The

constants A, B, and C are related to the resonant frequency
and bandwidth by:

C = —exp(—2n - BW -T)
B=2-exp(—m-BW -T)-cos(2n - F-T)
A=1-B-C

(10)

38

/C\‘ y(nT-2T)
Unit
Input \ ’_» Delay Output
Sequence Sequence
x(nT) > + > y(nT)

Figure 31: Digital Resonator

3.3 Document and Image
3.3.1 Forward/Backward Filter

The forward_filter() and backward_filter () functions,
from the DjVu encoder and decoder respectively, implement
the elementary wavelet transforms of the TW44 algorithm.
These are based on a fast five stage lifting decomposition using
Deslauriers-Dubuc interpolating wavelets with four analyzing
moments and four vanishing moments [Haff98]. Although be-
yond the scope of this discussion, some of the details of these
wavelet algorithms are presented in [Adel87] and [Swel96].

3.3.2 Encode/Decode Buckets

The DjVu wavelet coefficients resulting from the forward fil-
ter kernel are progressively encoded using a type of arithmetic
coding termed ZP-coding. The ZP coder is a binary adaptive
arithmetic algorithm optimized for speed. It is based on a
generalization of the Golomb run-length coder, which code
the length of contiguous strings of identical symbols as a bi-
nary number. A Golomb coder is defined by the parameter
M, which is the number of bits in that binary number. Large
values of M are preferable when long strings of repeating sym-
bols are likely, while small values of M are preferable when
long strings are unlikely. The ZP coding algorithm general-
izes this technique by automatically adapting M to its optimal
value. [Bott98§]

3.3.3 Color Space Conversion

A color space is a model for representing color numerically in
terms of three or more coordinates. Most people are familiar
with the RGB color space from computer monitors, where the
color and intensity of each pixel of an image is represented
by the combination of three values of the colors: red (R),
green (G) blue (B). The number of bits per color component
is usually equally divided in RGB color spaces, so that, for
example, a 24 bit per pixel display will devote 8-bits to the
red component, 8-bits to the green component, and 8-bits to
the blue component of each pixel.

YUYV, another color space standard, has a luminance com-
ponent (Y), which is a greyscale version of the image and two
chrominance components (U and V) which provide color infor-
mation. The exact RGB to YUV color space transformation
is defined:

Document
Application Kernel Name Lines| Refs Cycles Insts
DJVU Encode Encode Buckets 95 49.0% 48.4%| 41.0%
Forward Filter 371 21.0% 22.4%| 22.1%
Create 28 8.7% 8.0% 9.3%
I nit 47 7.8% 7.2%| 12.2%
Read Liftbl ock 10 4.9% 4.7% 6.1%
DJVU Decode Backward Filter 37| 29.8% 28.8%| 29.1%
Decode Buckets 101 21.5% 22.5%| 18.9%
| mage 39 11.9% 10.5%| 10.7%
YCC- >RGB Col or Space Cnvt 12 7.2% 6.1% 4.7%
Save PPM 12 4.9% 5.1% 3.4%
Ghostscript printf() 56.9% 56.9%| 76.7%
menmove() 13.3% 12.6% 9.2%
PPGM Print Row 26 8.0% 7.7% 3.6%
JPEG Encode Huf f man Codi ng 236] 54.4% 54.0%| 65.0%
Fowar d DCT 111 28.7% 28.9%| 18.6%
RGB- >YCC Col or Space Cnvt 22 10.3% 10.4% 9.8%
JPEG Decode Huf f man Decodi ng 132 21.9% 22.3%| 29.9%
| DCT 119 35.9% 35.7%| 28.0%
YCC- >RGB Col or Space Cnvt 25| 21.7% 21.0%| 22.0%

Table 11: Document Kernels

Y = +0.299R + 0.587G + 0.114B
U =0.5643(B—Y)
V =0.7132(R - Y)

(11)

The color space standard used by MPEG is international
standard ITU-R 601 (also known as CCIR 601) is similar to
YUV format except the U and V components are scaled and
offset to produce Cy and C, respectively. International stan-
dard CCIR-601-1 specifies 8-bit digital coding for component
video with black at luma code 16 and white at luma code 235,
along with chroma in 8-bit two’s complement form (centered
on 128 with a peak at code 224). This coding has a slightly
smaller range for luma than for chroma; luma has 219 possible
values compared to 224 for Cy and C, [Poyn]|. The relation
between Y CpC, and YUV color space is the following:

Yeor = (219/256)Y + 16.5
C,,Gm (224/256)U + 128.5
= (224/256)V + 128.5

(12)
7'(:301

The YUV (or YC,C,) color space is natural for image
and video compression applications, as the eye is more sensi-
tive to luminance (brightness) than chrominance (color). By
sub-sampling chrominance information, the size of an image
can be reduced by encoding less color information per pixel
than luminance information with little or no perceptual ef-
fect. JPEG typically use 4:2:0 sub-sampling (four luminance
samples for every two chrominance samples). Raw image data
is frequently stored in files in RGB color space, but compres-
sion algorithms such as JPEG and MPEG utilize Y C,C). color
space.

3.3.4 Discrete Cosine Transform (DCT)

The discrete cosine transform (DCT) is the algorithmic cen-
terpiece to many lossy image compression methods. It is sim-
ilar to the discrete Fourier transform (DFT) in that it maps
values from the spatial domain to the frequency domain, pro-
ducing an array of coefficients representing spatial frequencies,
from an array of source data. The first coefficient (the DC co-
efficient) is simply the average value of the input block. Later
coefficients (AC coefficients) represent successively higher spa-
tial frequencies [Kien99]. A 1D DCT is given by:

N— .
~ _ ali) wi(2z + 1)
where the function a(x) is defined as:
% z=0
a(z) = (14)
0 otherwise

Because images are two dimensional, it is necessary to use a
2D DCT. A straightforward evaluation of a 2D DCT is quite
compute intensive. Fortunately, it is possible to evaluate the
2D DCT by computing the 1D DCT of each column of pixels,
followed by the 1D DCT of each row. This separability is
a crucial step in developing a fast 2D DCT algorithm. A
separable N point 2D DCT is defined:

(i) =° J’Zy o cos (oKD

. [a(z) SN sy, x)cos (%)} (15)

39

where C(j, 1) are the output DCT coefficients from the NxN
element input array s(y, x).

JPEG and MPEG encoding apply the DCT by partition-
ing a source image into 8x8 blocks, and computing the DCT
for each block. The DCT and its mathematical inverse, the
inverse discrete cosine transform (IDCT) are not lossy. Lossy
compression occurs when the resulting DCT coefficients are
multiplied by fixed weights based on their spatial frequencies.
Higher frequency components to which the eye is much less
sensitive are typically masked with smaller weightings, result-
ing in primarily zero values for visually unimportant features.
Standard compression techniques such as run-length followed
by Huffman entropy coding are then used to pack the remain-
ing coefficients into a small number of bits.

Like the FFT, the DCT is very compute intensive, and so
many different algorithms are available to evaluate it. Gener-
ally, choosing the algorithm comes down to finding one which
is tuned to the architecture of interest. Although there are
numerous algorithms available in the literature, one of the
most commonly implemented is LLM [Loef89]. DCT algo-
rithms are traditionally compared by counting the number of
required additions and multiplications rather than in metrics
more familiar to computer architects. For example, the 1D
8-point LLM DCT requires 11 multiplications and 29 addi-
tions. Flow diagrams are the standard way in which papers
on the DCT present their algorithms (an 8-point example is
shown in Figure 32). Shaded circles represent addition, while
arrows symbolize negation. A rotation operation is depicted
by a box.

Stage 1

780NN
N
X7_L’AJE__I

where a rotation operation,

A | krRn_C
B | | D
is defined:
C = Akcos () + Bksin (g—]’\r,)

D= —Aksm(”) + Bkcos (QN)

Figure 32: LLM DCT Flow Diagram

In order to recover the original 2D 8x8 block it is necessary
to apply the inverse discrete cosine transform (IDCT). The
equation for the 2D IDCT is given by:

ald) 7rJ(2y+1)

sy, m) = Y05 %
<ﬁ1(2w+1)):|

SN i 1o

40

The IDCT can be computed using the same LLM algorithm
shown in Figure 32, except that the process is done in reverse
(from right to left). In this way, the DCT and IDCT are al-
gorithmically identical. For many applications computational
accuracy in the IDCT is not as important is in the forward
DCT as no precision is permanently lost. This is because
JPEG and especially MPEG follow the concept of “1 encoder
to N decoders,” making for non-symmetric systems with a
relatively complex, high-quality encoder on one end and fast,
low-complexity, low-cost decoders at the other.

3.3.5 Huffman Coding

Huffman coding is one of several compression techniques in
which the way in which data in coded is based on its proba-
bility of occurance. By translating values with higher prob-
ability of occurrence into codes of shorter length, the overall
size of the data is reduced. The data structure used to cre-
ate Huffman codes is a weighted binary tree of Huffman tree.
Huffman trees have the following properties:

1. must be a binary tree.

2. weighted - elements which occur frequently are near the
top of the tree

3. each left branch is assigned a value of zero, and each right
branch is assigned a value of one (or vice versa)

In order to construct a Huffman tree, two passes must be
made through the data. On the first pass, a list of unique
data elements and their frequencies is constructed. This is
sorted in ascending order, thereby putting the most frequently
occurring data elements at the end of the list. Next, the actual
Huffman tree is constructed. The tree is built by taking the
two elements with the lowest frequencies and making them
the leaves of a tree. The parent of the two leaves is the sum
of the leaves’ frequencies. The tree is then inserted into the
list (the parent nodes value is used to determine where to
insert the tree), and the two leaves used to make the tree are
removed from the list. This process continues until there is
only one element left in the list, which is the parent node of
the final Huffman tree.

Once the tree is constructed, the next step is to pass
through the original data again and output each data ele-
ment’s associated Huffman code. Since the Huffman code
representation for most data elements is smaller than the data
element itself, data compression is achieved. Finally, the Huff-
man tree structure or a data structure allowing it to be recre-
ated must also be stored in the output file in order to enable
decompression. In the JPEG algorithm, four different Huff-
man trees are used, each of which is specified in the header of
the JPEG file as a list of lists. [Fokk95]

The JPEG specification allows for Huffman coding in base-
line mode, and arithmetic coding as an optional extension.
Because the form of arithmetic coding specified by the JPEG
standard (Q-form) is subject to patents held by IBM, AT&T
and Mitsubishi, few JPEG implementations actually use it.
The compression is only marginally better than Huffman cod-
ing (5%-10%) and requires the appropriate licensing.

3.3.6 System and Formatted I/0

The Ghostscript PostScript rendering applications spends
more than 50% of its “computation” time doing formatted
input and output with the build in stdio C library. These
include the functions int fprintf (FILE *fp, const char
xcntrl string, ...); which writes formatted text into the
file associated with fp, and int ferror (FILE *fp);, which
returns a nonzero value if the error indicator has been set for
the file associated with fp.

Another 13% of the application is spent copying mem-
ory with the built in memmove() function from the C
string library. The memmove() function has a declara-
tion: void *memmove(void *dest, void *source, size_t
n) ; It copies a block of n bytes pointed to by source to the
block of memory pointed to by dest. The value of the pointer
to is returned. If the blocks of memory overlap, each byte in
the block pointed to by source is accessed before a new value
is written in that byte.

3.4 Video

Video applications share many of the kernels utilized by image
and documents. Additional kernels are dedicated to encoding
motion between successive images.

3.4.1 Block Match

Motion estimation is used to extract the motion from a video
sequence. For a P or B macroblock in MPEG video coding,
one or two motion vectors are calculated respectively. This
vector indicates the spatial offset from the position in the
reference frame to the resulting block in the predicted frame.
The coding process for P and B macroblocks finds the block
that best matches the macroblock of the current frame in the
reference frame within a search window, as shown in Figure
33.

Current Frame

Reference Frame

Figure 33: MPEG Block Search

In order to compare how well two macroblocks match, a
distance criterion, d, is defined:

7 = min(dx7dy)35 Z(w’y)gw ||Li(w,y)—

17
Lin(e —de,y —dy)|n > 1 (17)

where W is the measurement window to compare within
the search area, S. L; is the pixel intensity (luminance) at
location (z,y) in frame i. The region displacement vector for
the interval n = (i +n) — 1) is given by dz,dy. The matching

41

function, ||z||, is typically just absolute value, but can be other
functions, such as the quadratic norm (z3).

3.4.2 Add Block

During the block reconstruction phase of motion compensa-
tion in the decoder, a block of pixels is reconstituted by av-
eraging between the pixels in different macro blocks. The
function of the add block kernel is to move or add an (8x8)
sub block to a backwards reference frame or copy a recon-
structed sub block to the current frame, combining motion
predictions. The add block function requires 9-bits of inter-
mediate precision.

3.5 3D Rendering
3.5.1 Geometry

The computation in the geometric transformation stage of
3D rendering is mostly floating point intensive, involving vec-
tor space operations such as matrix multiplication and inner
products, and is also easily parallelizable. The rasterization
stage, on the other hand, consists mostly integer arithmetic,
involving simple additions and comparisons, but requires co-
ordinated access to shared data structures during visibility
computation, and is therefore more difficult to parallelize.
[Chiu97] As depicted in Figure 19, the geometry computa-
tion stage consists of the following sub-stages: [Yang98]

1. view and modeling transform - Graphics primitives are
transformed to the viewer’s frame of reference through
matrix multiplications of 1x4, 4x4, 1x3 or 3x3 vector and
matrix sizes. A global coordinate system is used where
3D models (objects) are constructed and manipulated
(translated, rotated, scaled).

lighting - The light position, color and material properties
are used to calculate the object color.

projection - 3D objects are mapped to 2D space through
matrix multiplication of 1x4 vectors and 4x4 matrices

clipping - objects are clipped to the viewable area to avoid
unnecessary rendering

division by w - the {z,y,z} components of each vertex
are divided by their w component (geometry process-
ing usually works in the homogeneous coordinate system,
where all vertices are represented by {z,y,z, w}).

In our set of kernels, projection and clipping tests are com-
bined into a single function (this mirrors the original Mesa im-
plementation). Transform and normalize represents the view
and modeling transform step of the geometry pipeline.

3.5.2 Rasterization

Rasterization is the process of converting primitives like lines
and triangles (already converted into window coordinates by
the transformation stage) into updates to pixel values in the
window’s drawable frame buffer region. Mesa’s rasterization

Video

Application Kernel Name Lines| Refs Cycles Insts
MPEG2 DVD Encode Bl ock Match 157 71.5% 70.4%| 63.4%
FDCT 14 9.2% 9.2%| 12.3%
Hori zontal Sub Sanple 17 2.4% 2.5% 2.6%
Read PPM 46 2.2% 2.1% 2.9%
| DCT 69 2.1% 2.3% 2.5%
Quanti ze 15 1.8% 2.0% 2.0%
Vertical Sub Sanple 25 1.8% 1.8% 2.1%
MPEG2 DVD Decode | DCT 75| 33.3% 33.9%| 29.7%
Parse Bitstream 222 331% 32.7%| 29.7%
Form Predi ction 124 29.3% 28.9%| 26.2%
Add Bl ock 34 9.6% 9.4%| 13.7%
Di t her 72 7.8% 7.7%| 12.1%
MPEG2 720P Encode Bl ock Match 157| 69.6% 68.4%| 61.5%
FDCT 14 9.3% 9.3%| 12.4%
| DCT 75 2.5% 2.7% 2.7%
Hori zontal Sub Sanple 17 2.4% 2.5% 2.6%
Read PPM 46 2.2% 2.1% 2.9%
Quanti ze 15 1.8% 1.9% 2.0%
Vertical Sub Sanple 25 1.8% 1.8% 2.2%
MPEG2 720P Decode Parse Bitstream 240 37.1% 36.9%| 35.1%
| DCT 75| 31.6% 32.0%| 27.3%
Form Predi ction 124 30.4% 30.0%| 27.5%
Add Bl ock 34 8.2% 8.1%| 12.0%
Di t her 72 6.7% 6.6%| 10.6%
MPEG2 1080l Encode |Bl ock Match 157 72.1% 71.1%| 64.0%
FDCT 14 8.9% 8.9%| 12.0%
| DCT 35 1.5% 1.7% 1.5%
Hori zontal Sub Sanpl e 17 2.3% 2.4% 2.5%
Read PPM 46 2.1% 2.0% 2.8%
Quanti ze 15 1.7% 1.8% 1.9%
Vertical Sub Sanple 25 1.7% 1.8% 2.1%
MPEGZ2 1080l Decode | DCT 75 32.7% 33.0%| 29.3%
Parse Bitstream 240 31.7% 31.5%| 28.4%
Form Predi ction 67 17.2% 17.1%| 15.6%
Add Bl ock 34 9.5% 9.3%| 13.5%
Di t her 72 7.7% 7.6%| 12.0%

Table 12: Video Kernels

42

3D Graphics

Application Kernel Name Lines| Refs Cycles Insts
Doom Render Col um 15[30.6% 30.4%| 37.7%
Render Span 16 22.7% 21.4%| 18.9%
Render Segnent 80| 15.9% 15.8%| 10.7%
Mesa Gears Resteri ze 126 77.1% 76.2%| 75.0%
nmenset () 5.3% 5.8%| 19.3%
Transform Normal i ze 41 4.4% 4.1% 1.0%
Project/diptest 41 3.5% 3.3% 1.1%
Li ghti ng 77 2.7% 2.5% 0.8%
Mesa M orph3D Frame Buffer 19| 64.7% 60.4%| 40.0%
Li ghti ng 134 13.3% 13.8%| 10.7%
Rasteri ze 43 7.1% 8.7%| 25.9%
Transform Normal i ze 18 2.6% 3.1% 1.9%
Project/diptest 29 2.6% 2.7% 2.2%
nenset () 0.7% 0.9% 8.7%
M esa Reflect Tr anspar ency 171 285% 28.4%| 17.0%
St enci | 55| 15.5% 15.4%| 11.7%
Frame Buffer 35| 13.4% 12.9%| 15.3%
Rasteri ze 7 1.7% 2.5%| 25.2%
nmenset () 0.3% 0.4% 1.5%
Li ghting 80 0.5% 0.5% 0.4%
Transform Normal i ze 18 0.2% 0.2% 0.1%
Project/diptest 29 0.2% 0.2% 0.1%
POVray3 Synt hesi ze Texture 118 23.6% 22.0%| 20.4%
Boundi ng Box 89 14.9% 14.7%| 10.5%
Vista Buffer 38 8.7% 8.2% 7.6%
Li ghting 179 11.7% 11.5% 9.3%
nenmmove() 5.8% 6.0%| 14.5%

Table 13: 3D Kernels

43

09/president.2000/transscript.gore/, retrieved April 24, 2000

44

stage can be divided into four sub-stages: primitive decompo- 00 .W. Cooley, J.W. Tukey, "An Algorithm for the Machine Cal-
t be divided into f b-st tive d Cool65] J.W. Cooley, J.W. Tukey, "An Algorithm for the Machine Cal
" . . . i) i ies," 1 -
sition, texturing, fog, and per-fragment operations: [Kilg95] EEI?;;OHV?; qgmﬂ;g’g 1;01:”‘2?7_5385;"5’ Mathematics of Compu
e ege utta egener, igital peec. Jompression, . obb’s
Dege94 J D "Digital S h C i " D Dobb’
1. primitive decomposition - Transforms geometric primi- Journal, Vol. 19, No. 15, December 1994, pp. 30-89 (5)
tives like points, lines, and polygons as well as image [Dobb95] J. G. G. Dobbe, "Faster FFTs," Dr. Dobb’s Journal, Vol. 20,
e . . . - . No. 2, F 1 . 125-151
primitives like pixel rectangles and bitmaps into window o 2, February 1995, pp. 125-151(6)
. [Doom] “The Official Doom FAQ),” http://www.gamers.org/docs/FAQ/doom|
coordinates and determines which pixel locations are oc- retrieved April 24, 2000
Cupied by each primitive. For each OCCupied pixel lo- [Embr] Paul M. Embree, Bruce Kimble, C' Language Algorithms for
. . . . Digi 1 P i 1991, P ice-Hall, Inc.
cation, a fragment is generated. A fragment is a pixel igital Signal Processing, 1991, Prentice-Hall, Inc
. . . [Fokk95] Jeroen Fokker, “Functional Specification of JPEG Decompres-
location accompanled by an aSSIgned CO]OI“, depth, and sion, and an Implementation for Free,” Proceedings of the 5th
texture coordinates as required. The per-fragment oper- Eurographics Workshop, Programming Paradigms in Graph-
. ics, Maastricht, the Netherlands, September 2-3, 1995, pp. 102-
ations that follow primitive decomposition use the frag- 120
ment’s associated data to update the pixel corresponding [Foley] James D. Foley, Andires van Dam, Steven K. Feiner, John F.
Hughes, Richard L. Phillips, Introduction to Computer Graph-
to the fragment' ics, 1994, Addison-Wesley Publishing Company
. [Haff98] Patrick Haffner, Leon Bottou, Paul G. Howard, Patrice Simard,
. texturing - Tea:turmg maps a portion of a SpeCIﬁed mage Yoshua Bengio, Yann Le Cun, “Browsing through High Quality
(called a texture) onto each primitive for which texturing Document Images with DjVu,” Proceedings of the 1998 IEEE
. y . Advances in Digital Libraries Conference, April 22-24, 1998,
is enabled. Based on the fragment’s texture coordinates, Santa Barbara, California, pp. 309-318
the associated texture sample (or tezel value) within the [Hall95] William I. Hallahan, “DECtalk Software: Text-to-Speech Tech-
texture is combined with the fragment’s color based on E‘:}loiy f;;;‘;‘ppleg?f;ta“"“’ Digital Technical Journal, Vol. 7,
the texture function. [HDTel] "HDTV Questions & Answers," hitp://www.cemacity.org
/mall/product/video/files/qahdtv.htm, retrieved April 24, 2000
. fog - Fog blends the fragment’s post-texturing color with [Herm94] Hynek Hermansky, “RASTA Processing of Speech,” I[EEE
the current fog color based on the eye-coordinate distance gzzzzzst{;gi ‘;:; SSP;;’CS”S;M Audio Processing, Vol. 2, No. 4,
and ng mode. The pOSt_ng fra“gment is then used to IDSA Interactive Digital Software Association, “1999 State
g
update the fragment’s associated frame buffer pixel. of the Industry Report,” http://www.idsa.com/
IDSA_SOTI_REPORT.pdf, retrieved September 9, 2000
. per fragment operations - The frame buffer contains [Kabl96] J. G. F. Kablau, "The DVD Physical Format," Digest of Tech-
. . nical Papers IEEE International Conference on Consumer
more than color values. Logically, there are also ancil- Electronics, 1996, pp. 348-349
lary (or helper) buffers that hold per-pixel information [Kien99] Tim Kientzle, "Implementing Fast DCTs," Dr. Dobb’s Journal,
in the depth, stencil, accumulation, alpha, and auxiliary Vol. 24, No. 3, March 1999, pp. 115-119
buff And h . he displ di d [Kilg95] Mark J. Kilgard, “Hardware for Accelerating
uffers. And as the section on the display stage discussed, OpenGL, v1.9” The X Journal, September/October
there may be multiple color buffers for double buffering }225, a1 C{Ltltp/-'é/toolbloz-sgi-com/ TajtZOfIl?T/documents
. tCol6 /hwaccel.htm, retrieve pril 24, 2000
left, right) an r fron k). pentr /gt ’ ’
(ett, rig t) and stereo (ont, bac) [Klatt80] Dennis H. Klatt, “Software for a cascade/parallel formant syn-
thesizer,” Journal of the Accoustical Society of America, Vol.
67, No. 3, March 1980, pp. 971-995
References [Kodak] “Kodak Digital Image Offering,”
http://www.kodak.com/digitallmages/samples /imageln-
[Adel87] Edward H. Adelson, Eero Simoncelli, “Orthogonal Pyramid) tro.shiml, retrieved April 24, 2000 _
Transforms for Image Coding,” Proceedings of the SPIE, Vol. ~[Kuni99] — A. Kunimatsu, N. Ide, T. Sato, Y. Endo, H. Murakami, T.
845, Visual Communications and Image Processing II, Octo- Kamel,.M. Hirano, M. Oka, A. Oh‘pa, T. Yutakaf, T. Okada,. M.
ber 1987, pp. 50-58 Suzuoki, “5.5 GFLOPS Vector Units for ’TEmotion Synthesis’,”
[Adobe] Adobe Systems Incorporated, PostScript Language Reference, f;oigi)%mgs 0;11:180; Chips 11, Palo Alto, California, August 15-
Third Edition, (C)1999 Addison-Wesley Publishing Company, . ’ > PP- .)] o
http://www.adobe.com /print/postscript /pdfs/PLRM.pdf, re- [Linc98] Bosse Lincoln, An Experimental High Fidelity Per-
trieved April 24, 2000 ceptual Audio C(ider,” March 8, 1998, _http://ccrmq—
[ATSC95a] Advanced Television Systems Committee, "ATSC Digital Tele- ;Zuwzbsggnford.edu/ bosse/proj/proj.ps, retrieved April
vision Standard," http://www.atsc.org/Standards/A53, re- ’
trieved April 24, 2000 [Loef89] ?hrist(.)ph Loeffler, Adriaan Ligtenberg, George S.]\-/[OS(-‘.hyth;
[ATSC95b] Advanced Television Systems Committee, "Guide to PPract;c.al Fast 1_hD]?CT Alg.orltl;mcs’ with 11 Multl;;{llcatlo.ns,l
the Uso of the ATSC Digital Television Standard,” Procecdings of the Iniernational Conference on Acoustica
;L(t)lgi)://www.atsc.org/Standards/A54, retrieved April 24, Glasgow, Scotland, 1989, pp. 988-991
[Bott98] L. Bottou, P. G. Howard, Y. Bengio, “The Z-coder adaptive [Maed94] Romagl ? MA;eder, “Ray Tracing and Gra[l)hics 1]\?"*'911'
binary coder,” Proceedings of the DCC ’98 Data Compression sions, he. ath'ematzca Journal, 1994, Vol. 4, No. 3,
Conference, Snowbird, UT, USA, March 30-April 1 1998, pp.13- pp- 1-16, ft[_).//ftp.znf.ethz.ch/doc/papers/tz/scs/ray.ps.gz, re-
22) trieved April 24, 2000
[Cheng99] Mike Cheng, “The Modified Discrete Cosine Trans- [Mick95] Robert A. Mickelsen, “Dessert Ammonites POVray3 Dataset,”
form (MDCT) and MPEG Audio Encoding,” http://www.povray.org./people/ Ta'm/datase.ts/ammndata.zzp,
hittp://for.uq.net.au/ ~zzmcheng/mdct/mdct.ps, June 28, POVzine2, March/April 1995, retrieved April 24, 2000
1999, retrieved April 24, 2000 [MMA] Midi Manufactures Association, "What Is MIDI?,"
[Chiu97] Tzi-cker Chiueh, Wei-jen Lin, "Characterization of Static 3D hitp://www.midi.org/abtmidi.htm, retrieved April 24, 2000
Graphics Workloads," Proceedings of the 12th ACM SIG- [Naka98] Kazuhiro Nakamura, Minoru Ohta, Toshinori Odaka, Mikhail
GRAPH /Eurographics Graphics Hardware Workshop, Los An- Tsinberg, "An MPEG-2 Encoder/Authoring System for DVD
geles, California, August 3-4, 1997, pp. 17-24 Title Production," Proceedings of the 1998 17th Conference
[CNN99] Cable News Network, “Wolf Blitzer Interview with on Consumer Electronics, Los Angeles, California, 1998, pp.
Vice President Al Gore on CNN’s Late Edition,” 100-101
hitp://www.cnn.com/ALLPOLITICS /stories/1999/03/ [Pan93] Davis Yen Pan, “Digital Audio Compression,” Digital Technical

Journal, Vol. 5, No. 2, Spring 1993, pp. 28-40

[Pope94]

[Poyn]

[Pres92]

[Rama9s]

[Rose92]

[Segal94]

[Shli94]

[Snow96]

[Sore87]

[Swel96]

[Vaidss)

[Wall91]

[Yama97]

[Yang98]

Pope Music, “Carmen Ballet for Strings and Percussion -
First Intermezzo, by Rodion Konstantinovich Shchedrin (1932-
Present), played by the State Symphony Orchestra *Young Rus-
sia”, conducted by Mark Gorenstein,” PM2002-2, Copyright
1994 by Pope Music

Charles Poynton "Color FAQ," http://www.inforamp.net/
“poynton/ColorFAQ.html, retrieved April 24, 2000

William H. Press, Saul A. Teukolsky, William T. Vetterling,
Brian P. Flannery, Numerical Recipes in C - The Art of
Scientific Computing, Second Edition, 1992, Cambridge Uni-
versity Press, http://www.ulib.org/webRoot/Books /Numeri-
cal _Recipes/bookc.html, retrieved April 24, 2000

Rajeev Raman, "Image Processing Data Flow in Digital Cam-
eras," Proceedings of the SPIE, Vol. 3302, Digital Solid State
Cameras: Designs and Applications, San Jose, California, Jan-
uary 24-30, 1998, pp. 83-89

M. Rosenblum, J. K. Ousterhout, “The Design and Implemen-
tation of a Log-Structured File System,” ACM Transactions on
Computer Systems, Vol. 10, No. 1, February, 1992, pp. 26-52

Mark Segal, Kurt Akeley, “The Design of the
OpenGL Graphics Interface,” White Paper, 1994,
hitp://trant.sgi.com/opengl/docs /white_ papers/design.ps,
retrieved April 24, 2000

Seymour Shlien, "Guide to MPEG-1 Audio Standard," IEEE
Transactions on Broadcasting, Vol. 40, No. 4, December 1994,
pp- 206-218

Mark Snow, “X-files Theme Song MIDI file,”
http://w3.one.net/ “kklasmei/DamnGood/X files4.mid,
August 29, 1996, retrieved April 24, 2000

Henrik V. Sorensen, Douglas L. Jones, Michael T. Heideman,
C. Sidney Burrus, "Real-Valued Fast Fourier Transform Algo-
rithms," IEEE Transactions on Acoustics, Speech, and Signal
Processing, Vol. ASSP-35, No. 6, June 1987, pp. 849-863

W. Sweldens, “The lifting scheme: A custom-design construction
of biorthogonal wavelets,” Applied and Computational Har-
monic Analysis, Vol. 3, No. 2, April 1996. pp. 186-200

P. P. Vaidyanathan, “A tutorial on multirate digital filter
banks,” Proceeding of the 1988 IEEE International Sympo-
stum on Circuits and Systems, Espoo, Finland, June 7-9 1988,
pp- 2241-2248 (Vol. 3)

Gregory K. Wallace, “The JPEG Still Picture Compression Stan-
dard,” Communications of the ACM, Vol. 34, No. 4, April 1991,
pp- 30-44

Hisashi Yamada, "DVD Overview," Digest of Technical Pa-
pers IEEE International Conference on Consumer Electron-
ics, 1996, pp. 346-347

Chia-Lin Yang, Barton Sano, Alvin R. Lebeck, "Instruction
Level Parallelism in Geometry Processing for Three Dimen-
sional Graphics Applications," Proceedings of the 31st Annual
IEEE/ACM International Symposium on Microarchitecture,
November 30 - December 2, 1998, Dallas, Texas, USA, pp. 14-
24

45

