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Abstract

Shared bus computer systems permit the relatively
simple and efficient implementation of cache consistency
algorithms, but the shared bus is a bottleneck which limits
performance. False sharing can be an important source of
unnecessary traffic for invalidation-based protocols, elim-
ination of which can provide significant performance im-
provements. For many multiprocessor workloads, how-
ever, most misses are true sharing and cold start misses.
Regardless of the cause of cache misses, the largest frac-
tion of bus traffic are words transferred between caches
without being accessed, which we refer to asdead shar-
ing.

We establish here new methods for characterizing
cache block reference patterns, and we measure how these
patterns change with variation in workload and block size.
Our results show that 42 percent of 64-byte cache blocks
are invalidated before more than one word has been read
from the block and that 58 percent of blocks that have
been modified only have a single word modified before
an invalidation to the block occurs. Approximately 50
percent of blocks written and subsequently read by other
caches shown no use of the newly written information be-
fore the block is again invalidated.

In addition to our general analysis of reference pat-
terns, we also present a detailed analysis of false sharing
and dead sharing in each shared memory multiprocessor
program studied. We find that the worst 10 blocks from
each our traces contribute almost 50 percent of the false
sharing misses and almost 20 percent of the true sharing
misses (on average). A relatively simple restructuring of
four of our workloads based on analysis of these 10 worst
blocks leads to a 21 percent reduction in overall misses
and a 15 percent reduction in execution time. Permit-
ting the block size to vary (as could be accomplished with
a sector cache) shows that bus traffic can be reduced by

yThe work presented here has been supported in part by the State of
California under the MICRO program, Sun Microsystems, Toshiba Cor-
poration, Fujitsu Microelectronics, Cirrus Corporation, Microsoft Cor-
poration, Quantum Corporation, and Sony USA Research Laboratories.

88 percent (for 64-byte blocks) while also decreasing the
miss ratio by 35 percent.

1 Introduction

Shared memory multiprocessor systems are becoming
increasingly popular. The limit to the number of proces-
sors that can be placed on the same memory bus is due to
the bus traffic demands of the processors. Here we present
a new examination of the interference patterns of refer-
ences to words within shared blocks, with the purpose of
aiding both software developers in data layout and hard-
ware designers in the development of new protocols that
perform coherence (cache consistency) on a subblock ba-
sis. Our purpose is to examine the causes of bad behavior
in parallel programs, aiming to reduce bus traffic and miss
ratios. This study uses relatively large traces of twelve
parallel workloads to provide our results. We measure the
sharing behavior of words within shared blocks to deter-
mine the extent that false sharing occurs. We also look at
the related phenomenon ofdead sharing, which is deter-
mined by measuring the words within a block that are not
utilized while in the cache; as will be shown, these words
consume the largest proportion of bus traffic.

The remainder of this paper is organized as follows:
the next section describes our motivation for undertak-
ing this study. Section 2 provides an overview of related
work in the area of characterization of sharing patterns of
parallel programs. Section 3 discusses our methodology
for creating and evaluating the parallel memory traces and
describes some of the metrics we use to measure the un-
derlying behavior that causes shared memory traffic prob-
lems. In Section 4 we present our results and discuss our
observations. Section 5 summarizes our conclusions.

1.1 Definitions

Table 1 provides the definitions of the terms we use
throughout this paper.
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Definitions Used in This Paper
Shared Memory The portion of the memory space that is visible to all processors.

A group of sequential memory locations that are fetched and evicted from caches together, aligned so thatBlock
the address of first byte of the block haslog2(Block Size) zeros as the lowest order bits.
A shared block generally is a block from shared memory; more specifically, a block that is referenced byShared Block
more than one processor during the execution of a program.

Private Block A block that is accessed only by one processor for the duration of the simulation.
A memory reference to a block that at some point during the simulation is considered to be a shared

Shared Access block. Note: an access that is classified as shared in one simulation may not be shared in a simulation
with a smaller block size.

Actively
Shared Memory

The set of blocks that are accessed by multiple processors for a given set of simulation parameters.

Global Unshared
Access

Access to a portion of memory that is declared to be shared, but is used exclusively by a single processor.

Private Access A memory reference to a private block.
False sharing occurs when two or more data items that are unrelated happen to be placed in the same
block, causing an unnecessary increase in bus traffic to maintain coherence. In this paper we define false
sharing as a reference to a word in a block, finding it to be in a different state in a particular block underFalse Sharing
block coherence and transfer size than under word granularity coherence/transfer size. Thus it can have a
good side-effects (such as in the prefetching effect of large blocks), or bad side-effects, such as extra
misses and coherency operations.

Dead Sharing The portions of the block that are not referenced while in the cache, resulting in wasted bus traffic.
Local Read Read by the processor that has most recently written the block.
Local Write Write by the processor that has most recently written the block.

Read by any processor except the one that has most recently written the block.Remote Read
This also includes reads by processors with their own copies of the block.

Invalidation
Interval

The string of references to a block by all processors between coherence induced invalidations.

Span Distance between the furthest apart words in a block that are referenced during an invalidation interval.
Processor-spatialThe footprint of accesses by a processor during an invalidation interval.

The data requested is found in the cache and the processor can proceed without causing aCache Hit
coherence operation.

Fetch Miss A reference to the cache which does not find the requested data, requiring a fetch from main memory.
(fmiss) or another processor’s cache.

Invalidation A write reference to a block (or word) held in the cache in thesharedstate, requiring the processor
Miss(imiss) to stall while invalidating copies of the data in other caches (under sequential consistency).

Miss Both fetch and invalidation misses.
reference run the stream of uninterrupted references by one processor to a block.

read run a reference run consisting purely of reads
read/write run a reference run consisting of reads and writes

write run the stream of writes in the read/write run

Table 1: Definitions used in this paper.
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1.2 Motivation

In the process of determining what sort of memory
accesses caused the most traffic in our workloads, we ex-
amined the source code to identify which data structures
were responsible for the most unfortunate sharing patterns
(detailed in Section 4.4 and Appendix B). Some of the
programmer specific details that have come out of this
research are described in more detail in Section 4. Dur-
ing our analysis we found several recurring types of data
structures which seem to lead to bad data access patterns.

When the programmer is not sufficiently careful in his
or her data layout, it is necessary for some combination
of the compiler and hardware to try to minimize coher-
ence induced traffic. This paper investigates the sources
of traffic caused by inadvertently poor data organization
and provides suggestions for solving these problems.

Our goal in this research is to uncover the effects of
poor programming style and to provide information about
how these problems can be corrected. Additionally, we
want to show how all types of sharing impact the perfor-
mance of these workloads, and to demonstrate the degree
to which block size affects spatial locality.

2 Background

Previous research on multiprocessor reference pat-
terns has primarily focused on evaluating various cache
coherence protocols for suitability, primarily contrasting
invalidation- and update-based algorithms. The initial
papers in this area ignored block size altogether, exclu-
sively using 4-byte blocks to examine primarily the pat-
terns of writing references [EK88, AG88]. The reference
patterns were categorized by the length of thereference
run. A reference run can be further refined intoread runs,
read/write runs, and thewrite run (Table 1). The write-
run lengths varied widely between applications, leading to
inconclusive results whether update- or invalidate-based
protocols give superior performance.

Research concerningreference runsfor different
block sizes found that for scalar (non-vector) workloads,
the lengths of the various reference runs did not increase
with block size, although vector workloads showed im-
proved processor locality with larger block sizes [GS94].
The poor locality in scalar workloads was attributed to
fine-grain sharing of data among the processors. A study
of the effect of block size on data structures concluded
that the excessive invalidations are caused by a mismatch
between data objects and block size [GW92].

3 Methodology

Our work is based on trace-driven simulation (TDS).
Initially we used execution-driven simulation for our re-
search, but we changed to TDS for two reasons: (1) the lo-
cations of data objects varied as parameters such as block
size changed, making detailed analysis very complicated;
and (2) our EDS tools are dependent on generally obso-
lete DEC 5000 machines; using traces allows for much
more rapid generation of results on faster PCs and work-
stations. We used our EDS tool Cerberus [RS99b] to gen-
erate traces for the simulation system. The trace genera-
tion system simulates synchronization objects (locks and
barriers) at runtime, which aids in reducing trace length
(by eliminating spin-waiting loops in the trace file) and
allows more accurate synchronization behavior while pro-
ducing traces.

3.1 Simulation

Our simulations use infinite size fully-associative
caches to eliminate capacity and conflict misses, to fo-
cus on the effect of coherency induced misses and traf-
fic. The remaining misses fall into three categories:
cold start/private, cold start/shared, and coherency caused
misses. A reference to a private block causes a single cold
start miss, which is the only miss for the rest of the sim-
ulation; shared blocks can have up to 16 cold start misses
(with 16 processors reading them in for the first time),
subsequent shared misses are either caused by true or false
sharing. The cache simulators tested parallel workloads
with 16 processors and block sizes ranging from 4 to 512
bytes.

3.2 Workload Characterization

Twelve parallel programs were examined to provide
the results for this paper. Ten of the programs come from
the SPLASH suites from Stanford University, which have
been available to the research community as a de facto
benchmark for comparing parallel program execution.
These programs have all been used in a number of stud-
ies analyzing parallel code performance and are character-
ized and described in more detail in [SWG92, WOT+95].
The other two programs used in this study (topopt and
pverify ) were created by the CAD group at U.C. Berkeley
and have been used for measurements at Berkeley and the
University of Washington [EK89a, EK89b, EJ91, AB95].
Detailed descriptions of the workloads can be found in
Appendix A. All workloads were traced on a MIPS
R3000 based workstation using theCerberus multipro-
cessor simulator [RS99b]. Each workload is traced from
beginning to end to capture the entire behavior of the pro-
gram.
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Program Characteristics
References Shared Private Shared Private

Programs (Millions) Data Data Fraction of Data References
Inst Data (KBytes) Reads Writes Locks Reads Writes

barnes 114.23 42.31 33.02 34.64 0.159 0.005 0.002 0.456 0.379
cholesky 90.67 34.32 970.02 783.38 0.496 0.075 0.013 0.287 0.130

fmm 288.30 166.82 380.41 460.14 0.136 0.006 0.000 0.347 0.511
locus 805.62 164.45 1405.70 1151.79 0.563 0.020 0.001 0.255 0.162
mp3d 174.88 60.82 701.91 181.53 0.318 0.223 0.001 0.302 0.157
ocean 234.12 92.38 140.16 984.45 0.264 0.031 0.014 0.560 0.132
pthor 275.87 97.77 1233.09 1026.75 0.384 0.047 0.049 0.350 0.176

pverify 181.29 55.24 23.08 149.67 0.473 0.015 0.008 0.320 0.186
raytrace 471.13 196.96 667.30 2144.09 0.318 0.003 0.002 0.429 0.248
topopt 655.75 141.60 19.22 38.76 0.812 0.087 0.000 0.085 0.016
volrend 351.62 79.92 395.61 2340.98 0.477 0.007 0.003 0.287 0.226
water 366.23 127.67 44.51 102.37 0.179 0.016 0.002 0.577 0.227

Total Average
Overall 4009.7 1260.3 6014 9399 0.381 0.044 0.008 0.354 0.213

Table 2: Reference characteristics of workloads for 16-processor simulation, using 4-byte blocks.

Table 2 shows the reference characteristics for a 16
processor 4-byte block simulation of the various work-
loads on our SMP simulator, which runs on uniprocessor
workstations. The number of shared references in Table 2
were measured using 4-byte blocks, which captures the
number of truly shared words. Global unshared references
and private references (Table 1) are lumped together un-
der theprivate heading. The fraction of shared accesses
has quite a large variation; it ranges from 0.16 inbarnes
to 0.90 intopopt, with an average of 0.43 for all work-
loads. However, as the block size increases, memory lo-
cations and references which are classified private in Ta-
ble 2 can become shared, so it is necessary to trace all
references which are to shared memory. We also tracked
all references to private memory to understand its con-
tribution to total memory traffic. As the cache simula-
tors were designed to make the common transactions very
quick through the use of hashing, tracking the references
to private memory is generally not a major contributor to
simulator execution time.

3.3 Metrics

The traditional reference stream interval used for
measuring sharing behavior is thereference run[EK88,
AG88, GS94]. Along with related measures such as the
read run, read/write run, and thewrite run (Table 1), it
can provide some idea of the residency time of a block in
one processor’s cache (processor locality) and the appro-
priateness of coherence protocol (invalidate vs. update).

A major problem with the reference run as a metric
is the lack of information concerning how the processors
share data within blocks. It is possible to get a crude idea

of contention by examining the length of these different
types of reference runs, but they provide no indication
about the type or granularity of sharing within a block.
We establish a new reference stream interval called anin-
validation interval, which is the string of references to a
block by all processors between coherence induced inval-
idations (Figure 1). This allows a longer term and much
more detailed study of dynamic sharing behavior within a
block.

The metrics we describe here are all concerned with
the processor-spatialproperties of multiprocessor pro-
grams. By this term we mean the number of unique words
within a block that are accessed while it is valid in a cache.
This concept also encompasses measuring the fraction of
the block which contains these words, which we refer to
as thespan. By using these types of metrics, it is possible
to get an idea of the typical range of block sizes that make
sense to use with multiprocessor caches.

The results presented later in this paper demonstrate
that a variable block size (or use of subblocks) can signif-
icantly outperform any fixed block size for all the work-
loads examined, reducing traffic by 88 percent while de-
creasing the miss ratio by 35 percent (on average) for 64-
byte blocks.

We can think of an invalidation interval as having two
phases: (1) a write phase and (2) a read phase. The write
phase consists of local reads and writes, which cause no
bus activity after the first write (assuming write-allocate).
The read phase (if there is one) begins with the first re-
mote read, and consists of local and remote reads. We
use the statistics of the references to individual words dur-
ing invalidation interval to evaluate processor-spatial lo-
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Block Q

Access Timeline

CPU x Writes (begins interval)

CPU y Reads

CPU x Reads

CPU z Reads CPU x Reads

CPU x Writes

CPU y Reads

CPU z Writes (new interval)

CPU x Reads

CPU x Reads

Local Processor ActionRemote Actions
CPU y Reads

Invalidation Signal

Invalidation Signal

Write Phase

Read Phase

Figure 1: An invalidation interval is a string of references to a block, lasting from the first invalidation to a block until
the next invalidation. During the interval other processors may read the block, but not write it.

cality, which we will show is generally rather poor, i.e.,
large block transfers for shared data are demonstrated to
be wasteful.

Our goal is to provide the tools to aid in improving
spatial locality in shared memory systems, or at least pro-
vide insight into the lack of spatial locality. It has been
demonstrated that shared data in multiprocessor work-
loads have worse locality of reference than unshared data
[EK89b], but increasing the block and cache sizes have
not always provided a solution. It is necessary to under-
stand what kind of misses are causing poor performance
and examine the data structures/objects that produce such
problems.

Implicitly our study assumes a write-invalidate pro-
tocol as backdrop against which our analysis is done.
Invalidation-based protocols logically offer a better solu-
tion to bus-based systems, due to the necessity of reducing
traffic over the shared bus to memory. A pure update pro-
tocol (update on each write to a shared block) uses an es-
timated 2-25 times the traffic of write-invalidate protocols
for coherence related operations [Lil93], and the amount
of network traffic increases with cache size. This is caused
by the requirement to update on each write to shared cache
blocks, regardless of the age (staleness) of the block in
the cache; this problem worsens as the number of blocks
in the cache increases, generating the most bus traffic
for infinite caches. There are some adaptive protocols
that allow switching between update and invalidate for
each block depending on the access pattern for the block;
but of the non-adaptive coherence protocols, invalidation-
based protocols typically outperform update-based proto-
cols [GS96]. Additionally, write-invalidate protocols are

the most popular class of protocols that are actually im-
plemented in real systems [Ste90, HP96], which makes
them a more attractive target for performance improve-
ment. When a program is properly (re)structured to re-
duce the movement of blocks between processors, write-
invalidate based protocols provide better overall perfor-
mance.

4 Results

This study examines SMP (symmetric multiproces-
sor) memory access behavior on three levels, which suc-
cessively refine the granularity of the inspection to smaller
features. The first and coarsest level of analysis looks at
the aggregate behavior of all of the memory references.
Misses are broken down into true and false sharing fetch
and invalidation misses, and the bus traffic due to dead
sharing is shown.

The second level of memory reference observation
looks at the spatial reference pattern to shared blocks.
This consists of examining the unique (distinct) words
within a block that are referenced from the time it is read
into the cache until the time it is invalidated. In addition,
we look at the footprint of those words within the block,
which we refer to as thespan. The span provides a means
of determining the spatial locality of a set of block refer-
ences.

To develop a hardware protocol or software restructur-
ing method to reduce bus traffic from coherency overhead,
it is necessary to understand the patterns of sharing that
occur and the competition of processors for words within
shared blocks. At our finest grain level of examination,
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the words from the 10 worst (judged by misses) 64-byte
blocks from each workload are characterized by the ref-
erence pattern for each individual word. This provides
insight into the types of data objects which cause much of
the traffic problems when they are placed in close prox-
imity and provides hints into hardware and software solu-
tions that can be used to eliminate or ameliorate much of
the traffic/miss problem.

4.1 Gross Characterization of Misses

Most cache coherence protocols associate a set of
states with each block in each cache, which are a subset
of the MOESI family of protocols [SS86]. Each state con-
sists of binary values for each of three attributes: validity
(contains the most recent cached value of a block), exclu-
sivity (only copy of a block), and ownership (the block
in the cache possibly is inconsistent with main memory,
but is the “correct” copy). The MOESI states consist of
M (exclusive and owned),O (shared and owned),E (ex-
clusive and unowned),S (shared and unowned), andI (in-
valid). A shared block is one which can be present in mul-
tiple caches; an owned block is inconsistent with memory,
requiring a write-back by the “owner” processor at some
point. All but theI state have the validity attribute associ-
ated with them. Almost any protocol (update, invalidate,
or hybrid protocols) can be defined by a (sub)set of these
states, plus the local and remote operations to the blocks
that cause transitions between the various states.

Using a MESI (noO state) write-invalidation-based
protocol with an infinite cache, we simulated a number
of parallel programs maintaining two levels of granular-
ity of coherence for blocks: for individual words and for
the whole block, tracked in parallel during program exe-
cution. Once a block has been referenced, a valid copy of
it exists in at least one cache for the rest of the simulation.

4.1.1 Types of Sharing Misses

False sharing has been studied by a number of
researchers to measure the impact [TLH94, DSR+93,
BS93], as a concern for protocol developers [KB95,
Lil93, Dah95], and as a target for data restructuring
[EJ91, TLH90, JE95, HL90]. As measured in [TLH94],
false sharing misses generally have a smaller impact on
the miss ratio and bus traffic than true sharing misses.
Our results show that false sharing misses become the
largest source of misses for our workloads (on average)
with blocks as small as 16 bytes.

False sharing occurs when two or more processors
share a cache block, but access disjoint words or portions
of the block. A classic example consists of two proces-
sors writing to their own distinct words within a block
(Figure 2). The words are not shared, but since coherency

Proc 1

Cache 1

Proc 2

Cache 2

P1 P2

System Bus

Shared Block

Non−Shared Subblocks

Figure 2: Simple schematic of false sharing. Two pro-
cessors access disjoint words within a block, causing
it to transfer back-and-forth between the caches (ping-
ponging).

is enforced with block size granularity, the whole block is
transferred back and forth between the processors’ caches
(in a process referred to asping-ponging). In this situa-
tion, false sharing results in unnecessary data and coher-
ence traffic to maintain cache consistency; it is not im-
portant that the data has become inconsistent, since none
of the data is actually shared, just the block that contains
them. The data does not need to be updated in the cache of
the other processor (since it is never used); only the main
memory needs to be properly updated when the block is
written back on eviction of the block from the cache. Note
that if the blocks, but not the words, have become incon-
sistent, when a modified block is copied back to main
memory, only the modified words should be updated in
main memory; otherwise main memory will not be prop-
erly updated.

Misses due to false sharing are easy to determine in a
block with a reference behavior such as in Figure 2 when
each processor accesses its own disjoint set of distinct
words in a block. In that situation all misses except the ini-
tial compulsory misses are false sharing misses. In most
cases, a determination of the type of sharing that is occur-
ring requires reference by reference analysis of block and
word states, as the access patterns of each processor to a
block vary over time.

To measure false sharing in less obvious situations,
it is necessary to examine the how the state of a word
is affected by it being included with other words into
a block granularity coherence unit. In our simulations,
we perform this task by maintaining coherence state for
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each block and simultaneously for each word in the block.
Each time a memory location is referenced, the values of
the word and block states are compared. The result of an
access to a memory location can have one of three out-
comes: hit, fmiss, or imiss (see Table 1 for definitions);
these outcomes can be at variance when tracking coher-
ence with word and block granularity. When these out-
comes are different, we record that false sharing has oc-
curred.

When word granularity coherence is used, only true
sharing and compulsory misses can occur because actions
on other words have no impact. This section focuses on
comparing word and block states for each shared memory
reference to determine the number of misses caused by
false sharing.

Although in these simulations the memory transac-
tions occur instantaneously, in the real world there are
different penalties depending on the type of coherence op-
eration/miss processing that must occur. Note that when
necessary, we present the results of simulations incorpo-
rating realistic timings (e.g., Table 5). For example, the
data may not be in the cache at all (requiring a fetch),
or may be present but in the wrong state (requiring a co-
herence operation but no data transfer). To differentiate
between the various memory system operations, we dis-
tinguish between two types of miss occurrences: fetch
misses which require loading a word/block into the cache,
possibly causing an invalidation of other copies of the
block (fmiss); and an invalidation miss (imiss) caused by
a write to a word/block in the shared state, requiring an
invalidation operation. A cache reference can have one of
three outcomes (hit , fmiss, imiss). If coherence is tracked
at independently for words and blocks, an access to the
cache can have one of the three outcomes at each coher-
ence granularity, leading to32 or 9 different outcomes.
For example, a write reference might be a hit if tracked at
word granularity, but be a miss for block level coherence,
which we would refer to as a false sharing miss, because
a preceding reference to another word in the block caused
a miss to occur at the by changing the coherence state at
block level, which would not have occurred with word co-
herence granularity. Appendix C shows examples of how
each of the different cases can occur.

By our definition, a true sharing fmiss or imiss is one
which occurs for both granularities of coherency. False
sharing misses are those which occur when the state of
the word using block coherency results in a coherency
operation that would not have happened with word gran-
ularity. Three types of false sharing reference down-
grades are possible:hit ) imiss, hit ) fmiss,
and imiss ) fmiss, where the first outcome is word
granularity coherence and the second result from whole
block coherence. Three corresponding upgrades (use-
ful prefetches/state changes) in misses are also possible,

resulting from the prefetching effect of block transfers,
of which one type still requires a coherency operation
(fmiss ) imiss). The other three possible outcomes
are those in which the type of miss or hit is identical for
both word and block coherence, which are classified as
true sharing hits or misses.

Table 3 provides a breakdown of the six types of shar-
ing misses plus private/cold start misses on average for
our workloads, distinguishing the cause of the misses and
the comparison of the state of word granularity coherence
vs. block granularity (e.g., hit to fmiss). It shows that false
sharing fmisses begin to dominate true sharing fmisses for
our workloads (on average) once blocks are bigger than
16 bytes, which would seem to disagree with the results
of [TLH94]. However, most of our workloads (Table 6,
and Figure 16 in Appendix D) individually agree with the
results of [TLH94].

The extent to which the prefetching effect of larger
blocks aids in turning misses into hits (which could be
considered false sharing hits) can be observed by the de-
crease in miss ratio from the 1.0 normalized value as the
block size increases. The two workloads with the heavi-
est fraction of false sharing misses (pverify andtopopt)
contain blocks exhibiting the classic example of false
sharing, which is caused by arrays which have elements
exclusively accessed using the processor ID as the in-
dex. These references would be unshared except they are
grouped together into blocks, which results in the clas-
sical false sharing ping-ponging pattern. The workloads
with the largest concentration of false sharing fetch misses
(hit ) fmiss) also show a large component of false
sharing invalidation misses (hit to imiss). Conversions
(upgrades) of misses to imisses occur so infrequently that
they are not visible on this scale. However, significant
downgrades of imisses to fmisses can be seen inmp3d,
pthor , andtopopt (Table 6 in Appendix D).

Data cache fetch miss ratios for the multiprocessor
workloads fall far more slowly with an increase in the
block size than the data cache miss ratios for uniprocessor
workloads. Figure 3 shows a comparison of the infinite
data cache fetch miss ratios for all workloads, the geomet-
ric average of these fetch miss ratios, and the DTMRs (de-
sign target miss ratios) for a 32 Kbyte data cache [Smi87]
over a range of block sizes. As the block size increases,
the rate of decrease of the miss ratios slows down, basi-
cally staying flat with 128- to 512-byte blocks.

Even in the region where false sharing is not a domi-
nant effect (4 to 16-byte blocks), we can see that the work-
loads show less improvement with increasing block size
than for uniprocessor DTMRs. Beyond 16 bytes the im-
provement in fetch miss ratio shows rapidly diminishing
returns. In some cases, increasing the block size matches
the prefetching effect of larger blocks with counteract-
ing increases in false sharing fetch misses, keeping the
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Breakdown of Misses, Normalized to 4–Byte Blocks
True Sharing False Sharing

Workload
Block Total

Fetch Inv. Cold Start hit–> hit–> imiss–> fmiss–>Size Misses
MissesMisses Misses

Total
fmiss imiss fmiss imiss

Total

4 1.000 0.423 0.256 0.321 1.000 0.0000.000 0.000 0.000 0.000
8 0.874 0.300 0.162 0.180 0.642 0.1320.095 0.003 0.002 0.232
16 0.854 0.228 0.108 0.104 0.440 0.2560.150 0.004 0.004 0.414
32 0.916 0.186 0.082 0.062 0.330 0.4010.176 0.006 0.004 0.587Average
64 0.992 0.161 0.069 0.038 0.268 0.5260.187 0.007 0.005 0.725
128 1.028 0.144 0.062 0.024 0.230 0.6020.183 0.008 0.005 0.798
256 1.114 0.119 0.058 0.014 0.191 0.7100.199 0.009 0.005 0.923
512 1.193 0.098 0.055 0.008 0.161 0.7880.229 0.010 0.005 1.032

Table 3: Breakdown of workload misses into various types of false sharing and true sharing misses for 16 processors,
normalized (ratio of miss ratios) to total (fetch, invalidation, cold start) misses for 4-byte blocks, arithmetic average
over all workloads. The notations under the false-sharing heading, such ashit->fmiss, indicate the fraction references
that are hits with 4-byte block coherence that become fetch misses with larger block sizes.

Workload Miss Ratios
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Figure 3: Data cache fetch miss ratios compared with 32
Kbyte data cache design target miss ratios from [Smi87].
The averagevalue is computed using a geometric aver-
age.

overall number of misses fairly steady (ocean, pthor ).
Some of the workloads show a U-shaped curve, with
misses hitting a minimum near 64 bytes (barnes, wa-
ter, mp3d). Two workloads have the minimum number
of misses with 4-byte blocks and explode with false shar-
ing misses (pverify , topopt). Some workloads have little
problem with false sharing and show continuing improve-
ment with larger blocks (cholesky, raytrace, volrend).

In most SMP workloads, compulsory misses and true

sharing are the cause of most of the misses and thus most
of the bus traffic. However, as will be demonstrated,
most of the words within a block are not accessed be-
tween invalidations to that block. This results in a large
amount of unnecessary traffic from moving the unused
words around, which we refer to asdead sharing. The
next section (Section 4.1.2) examines the variation in the
make-up of bus traffic as the block size increases. Even
if the misses decline with block size, the traffic increases
because the words within the larger block are not properly
exploited, even for uniprocessor caches [RS99c]. Our re-
sults in Section 4.3 examines data utilization in a block
(spatial-processor locality) while it resides in a cache.

4.1.2 Dead Sharing

In an attempt to measure the impact of large block
sizes on bus utilization in an implementation independent
manner, we use the bus traffic metric. Each transaction
transmits a 4-byte address across the bus plus (when ap-
propriate) some number of data bytes. The bus traffic con-
sists of fetches (address + fmisses� block size) and inval-
idations (consisting only of the fixed overhead to transfer
an address over the bus, since no data transferred is re-
quired). This is a reasonable estimate for bus utilization
for split-transaction busses. Figure 4 shows average bus
traffic for infinite caches with 4- to 64-byte blocks (rel-
ative to 4-byte block traffic), broken down into 5 main
types of traffic: private traffic, global unshared traffic, in-
validation signals (address transfer only), active shared
traffic (truly utilized) and dead shared traffic.

The dead shared traffic is determined by analyzing
which words in a shared block have not been accessed
at the time the block is invalidated. The active shared por-
tion of the shared traffic consists of the words that were
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Figure 4: Breakdown of workload average bus traffic, normalized to 4-byte block traffic.

actually referenced before the block was invalidated. The
breakdown shows that traffic from private blocks is rela-
tively insignificant (from 1.17 percent for 4-byte blocks
to 0.10 percent for 64-byte blocks on average) and traf-
fic from global unshared blocks starts at 9.3 percent and
declines to 0.5 percent for 64-byte blocks. Dead shar-
ing traffic causes about 41.0 percent of the traffic with
16-byte blocks and grows very rapidly with larger block
sizes. The traffic approximately doubles for each increase
in block size beyond 64-byte blocks, reaching 54.3 times
4-byte block traffic when 512-byte blocks are used. The
active shared traffic increases much more slowly than
dead shared traffic. Increases in the active shared traffic
are due to the incorporation of global unshared data into
shared blocks as the block size increases, so that global
unshared references are turned into active shared refer-
ences, causing more active shared traffic. Dead sharing
traffic hits 79.3 percent of total traffic with 64-byte blocks
and reaches 95.1 percent with 512-byte blocks. This indi-
cates that there is much room for enhancing the operation
of shared memory systems.

Dead sharing traffic results from both false and true
sharing that causes a block to be invalidated before all the
words within the block can be utilized. The next section
looks at the access patterns of distinct words within the
blocks to understand the cause of this dead sharing.

Note that when trying to establish statistics like bus
performance for a realistic system, there would be a num-

ber of parameters to consider. For example, bus utilization
is a better metric than bus traffic for measuring how close
to saturation the bus is. In such a case, implementation
dependent issues must be considered, such as bus width,
actual transaction overheads, bus pipelining, memory la-
tency, split vs. non-split transaction, etc. Bus utilization
and saturation issues are beyond the scope of this paper
but are considered in [RS99a]. Assuming a one cycle
address transfer time and a split-transaction bus, the bus
traffic information in Figure 4 shows a reasonably good
approximation of relative bus utilization between various
block sizes. In a memory system that does not support
split-transactions, the bus would be unusable during the
memory latency period as well, which would cause a dra-
matic change in the relative bus utilization from what is
displayed here.

4.2 Granularity of Sharing

When the set of words being written to a block by one
processor shows little correspondence to the words read
by other processors, there is a strong indication that false
and dead sharing are a problem. For example, if gener-
ally one word in a block is the target for all writes to the
block, but many of the other words are read-only after ini-
tialization (as occurs in theGlobalMemory (or similarly
named) data structure used for global shared variables in
many of our workloads), most of the data in that block is
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Figure 5: Read-write sharing during invalidation inter-
vals, average of all workloads.

needlessly invalidated almost every time a write occurs.
Figure 5 shows a histogram of the number of reads that

overlap preceding written words from the same invalida-
tion interval for 64-byte (16-word) blocks, averaged over
all workloads. Roughly 50 percent of invalidated cache
blocks have no overlap of the words read in the second
phase of an invalidation interval with the series of writes
that began the invalidation interval, meaning that none
of the updated information was accessed before another
cache miss occurs for the processors reading the block.
Approximately 20 percent of blocks have a read-write
overlap of only a single word. The number of updated
words read before an invalidation rapidly falls off, but
with significant components for 8 and 16 words. These
statistics demonstrate that half of the invalidations are
caused by updates to words which are not subsequently
read by other processors before the blocks are again in-
validated, fully wasting the information transfer. A large
fraction of those blocks which do read updated words only
read a single word before invalidation. Increasing the
block size affects the degree of overlap by increasing the
likelihood that writes by different processors prematurely
invalidate information in the block, which causes the av-
erage overlap to peak at 2.7 words for 128-byte blocks
and drop with larger block sizes (Table 7 in Appendix E),
indicating a massive waste of bus traffic.

Another method to examine how words within blocks
are shared between processors is to measure whether
writes by different processors to the same block happen to
occur to the same set of words (write-write sharing gran-
ularity). Figure 6 shows a breakdown of the average case
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Figure 6: Write-write sharing between invalidation inter-
vals, average of all workloads.

for 64-byte blocks, calculated by logically ANDing the
vector of words written during successive invalidation in-
tervals when the writers have different processor IDs. Al-
most 50 percent of the succeeding intervals which have
different processors writing show no overlap in the set of
words written. Of the remaining blocks which have at
least one written word in common, the next largest value
shows an overlap of only a single word. The histogram
indicates a bifurcation of access patterns to blocks: either
succeeding processors accessing a block have very little
write sharing, or share a large fraction of the block (the 16
word component is somewhat prominent). Figures 5 and
6 indicate that a coherency protocol that could adaptively
choose large or small granularity for enforcing coherence
could be very successful in reducing coherency traffic.

4.3 Spatial Locality

A typical way to measure spatial locality for unipro-
cessors is to examine the change in the miss ratio as the
block size varies. A more insightful metric for multipro-
cessors is our characterization of the read and write refer-
ences to blocks between invalidations. A type of spatial
locality (which we refer to asprocessor-spatial locality)
can be determined by measuring the span and number of
distinct words (defined in Table 1) referenced in a block
while the block is valid in the cache, regardless of the in-
terleaving read accesses by other processors. For each in-
validated block, the words within the block are examined
to see how well they were utilized. If too many of the
fetched words are not used, bandwidth is wasted in the
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Figure 7: Distinct words read before invalidation, average
of all workloads.

form of dead sharing. Likewise, if too many words in the
invalidated block are not subsequently updated, valid data
was needlessly canceled and likely will have to be re-read,
also a waste of bus bandwidth. An increase in block size
increases the likelihood that a remote write to unrelated
data can unnecessarily invalidate a block from the cache,
causing dead sharing.

To provide a more detailed view of spatial locality,
Figures 7 and 8 show the number of distinct words read
within a block and the number of words written to a block
while the block is in the cache, respectively, for 64-byte
blocks, averaged over all workloads. This shows that
the plurality (42 percent) of the blocks are invalidated
by another processor before more than one distinct word
is read, and only a single word is written 58 percent of
the time during an invalidation interval. Except for sin-
gle word blocks that have 100 percent usage (due to de-
mand fetching), the percentage of blocks with only a sin-
gle word read or written before a block is invalidated holds
in a narrow range over block size, ranging on average be-
tween 37.6 and 45.8 percent for reads, and between 48.5
and 64.0 percent for writes (Figure 19 in Appendix E).
The data shows that not much of the information in a
block is used in any manner before another processor in-
terferes, either by causing an invalidation of the data (in
the case of a remote write), or by reading the block (plac-
ing it in thesharedstate), forcing the next write to cause
an invalidation miss.

These figures indicate that it is not often that a whole
block need be invalidated, since frequently only a single
word is written before another invalidation occurs, which
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Figure 8: Distinct words written during an invalidation
interval, average of all workloads.

could be caused by a remote write, or a remote read fol-
lowed by a local write. For many of the workloads, the
histograms of the number of distinct words read/written
(Figures 7 and 8) are very similar in composition to the
span of the words read/written (Figures 17 and 18 in Ap-
pendix E), indicating a great deal of spatial locality to the
portions of the block that are used. To understand the un-
derlying cause of the poor block usage, we next examine
the memory reference patterns that cause dead and false
sharing to occur.

4.4 Examination of Problem Blocks

Many of the dead and false sharing problems revealed
in the previous sections can be directly linked to poor pro-
gramming style or ignoring the role of the cache in shared
memory systems. Although caches are designed to be in-
visible to the programmer, poor data placement can have
a large effect in reducing system performance.

Table 4 shows statistics about the 10 worst behaving
blocks (based on the number of fetch misses) for each
of our 12 workloads. For each workload, we specify the
fraction of actively shared memory these blocks occupy,
the fraction of total shared references to these blocks, the
fraction of false and true sharing fetch and invalidation
misses for which these blocks are responsible, and a clas-
sification of the reference patterns of the words within
the blocks. The categorization of the words within the
blocks are partially based on reference patterns classified
in [GW92, CBZ95]. The 10 worst blocks are (on average)
responsible for a good deal of the false sharing misses as
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Categorization of Words Within the 10 Worst Blocks
10 Worst Blocks Reference Types (percent of words)

Program % Shared % Fmisses % Imisses Private Shared
mem refs False True False True un pl pro prw hl ll ro rm mi br rw

barnes 1.62 4.7 22.7 18.7 11.1 26.7 14.4 0 0 0 0.6 31.9 0 1.9 1.2 48.1 1.9
cholesky 0.06 11.4 75.2 6.1 37.3 0.5 6.2 0 0 3.1 0 88.1 0.6 0.6 0 1.2 0

fmm 0.12 0.1 8.4 4.8 0.2 2.4 0.6 0.6 0 0 1.2 17.5 0 0 0 0 80.0
locus 0.03 8.2 53.0 1.9 20.3 5.9 30.0 6.2 1.2 20.6 1.2 8.8 2.5 0 10.0 14.4 5.0
mp3d 0.08 2.6 9.1 5.3 2.9 4.7 11.9 0 1.2 2.5 0.6 1.2 3.8 0.6 0 10.6 67.5
ocean 0.14 4.7 20.9 35.2 3.8 25.9 10.0 0 0 32.5 2.5 0 36.2 3.8 0 15.0 0
pthor 0.03 30.5 63.4 49.4 36.1 38.4 16.9 0 15.6 1.2 1.2 12.5 6.2 0 0 31.2 15.0

pverify 0.52 7.4 29.5 5.7 29.9 0.2 10.0 0 1.2 61.2 0 10.0 6.2 0 0 10.6 0.6
raytrace 0.05 1.0 56.4 52.2 67.6 83.8 46.2 0 8.8 0.6 1.2 10.6 7.5 0 0.6 15.0 9.4
topopt 1.27 18.0 65.2 8.0 92.3 7.6 10.0 0 0 2.5 0 0 0 0 45.6 33.1 8.8
volrend 0.06 9.8 50.5 5.6 0.1 18.3 70.0 0 0 0 1.2 10.6 1.2 3.1 0 8.1 5.6
water 1.04 0.9 100.0 26.6 0 0.7 7.5 0 0 0 1.2 91.2 0 0 0 0 0

Average 0.4 8.3 46.2 18.3 25.1 17.9 19.5 0.6 2.3 10.3 0.9 23.5 5.4 0.8 4.8 15.6 16.2

Table 4: Categorization of the word reference patterns of the worst behaving 64-byte blocks for each workload. The
categories for classifying each word in the worst blocks consist of:un- unused,pl - private locks,pro - private
read-only,prw - private read-write,hl - high contention locks (> 3 seeking access),ll - low contention locks (3 or
fewer processors seeking the lock on average),ro - shared read-only,rm - shared read-mostly (at least 75 percent of
references are reads),mi - migratory (more than 6 uninterrupted references on average by each processor accessing
it), br - broadcast (one processor writing, many processors reading), andrw - read-write (words that do not fall into
the other categories).

well as many of the true sharing misses. The number of
misses are far out of proportion to the number of mem-
ory references and the fraction of shared memory space
these blocks occupy. The basic problem is that variables
are placed (perhaps inadvertently during dynamic mem-
ory allocation) into the same blocks as variables or data
structures with incompatible reference patterns (for exam-
ple, arrays of private read-write variables that are accessed
by processor ID, read-only variables next to frequently
written variables, etc). Almost one-fourth of the words in
these blocks are locks with low contention (i.e., not much
competition for them), that in isolation would cause little
problem, but interact poorly together because locks have
poor processor-spatial locality of reference. Other prob-
lem words arebroadcastwords that cause false sharing
misses when placed together (but are still likely to have a
fair number of true sharing misses in isolation), and read-
write variables that interact together poorly.

In Appendix B we provide a more detailed analysis
of each of the workloads to determine the kind of data
structures that are causing most of the problems. Here
we present a summary of our attempts to restructure 4 of
the workloads ourselves, and some programming hints to
prevent such problems in the future.

4.4.1 Improvements

Four workloads (barnes, pthor , topopt, water) were
chosen to be restructured in an attempt to improve pro-
gram performance. We modified the workloads to repair
problems observed in the worst ten (64-byte) blocks of
each. The details of the changes made to the workloads,
and the data structures associated with the 10 problem
blocks for each of the workloads can be found in Ap-
pendix B.

When modifying the data structures involved with the
worst 10 blocks, some of these changes carry over to
other blocks not in the top 10. However, improvements to
the worst 10 blocks could also worsen behavior in other
blocks. For example, isolating pieces of data structures by
placing them in their own blocks (by adding unused arrays
of integers to pad-out the members), can cause misses to
increase for many well performing blocks with the same
data layout, causing lackluster improvement in the num-
ber of misses.

For most of the restructured programs, the number of
instructions increases slightly. This is generally due to
the extra pointer dereferencing required by isolating per-
processor data in separate data structures. On average,
the number of instructions increases by less than 1.5 per-
cent, while reducing the number of misses by more than
20 percent (Table 5). Although it depends on how much
of a problem the data miss ratio is to begin with, this ap-
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Data Restructuring to Reduce Coherence Misses(64-byte Blocks)
Infinite Cache, Single Cycle Memory Realistic System

Program Overall False Sharing Instruction Execution Time
Miss Reduction Miss Reduction Increase 16K cache 64K cache

barnes 12.0% 21.1% 0.0% -1.4% -6.7%
pthor 21.4% 53.3% 0.3% -7.2% -9.5%
topopt 31.9% 30.1% 3.9% -42.3% -46.0%
water 20.0% 99.9% 0.2% -9.0% -6.0%

Average 21.3% 51.1% 1.1% -15.0% -15.4%

Table 5: Results of rearranging data structures to reduce coherence misses, 64-byte blocks.

pears to be a reasonable trade-off. Using a multiproces-
sor timing simulator with 24 processor cycle memory la-
tency supporting split transactions, 4-byte memory path (4
processor cycles per word), 4-byte memory addresses for
each memory transaction, and 4 processor-cycle bus arbi-
tration, we present (Table 5) the effects of the optimiza-
tions for two cache sizes (16K and 64K bytes per proces-
sor for 16 processors). Since the effects on the miss ra-
tios reported in Table 5 are for infinite caches with single
cycle memory accesses, effects such as capacity misses
are not included. (The timing simulations, in the last two
columns, are based on finite cache sizes.) When using
small caches, the capacity misses can overwhelm the co-
herence misses, possibly worsening behavior if spatial lo-
cality is disturbed too much. The end result of the op-
timizations reduced execution time by approximately 15
percent. In the case oftopopt, which spends most of
its time waiting for memory, the spatial locality was in-
creased at the same time that false sharing was reduced,
leading to a tremendous increase in performance. In the
next section, we present some programming hints; how-
ever, these optimizations must also be reconciled with the
impact they have on spatial locality and capacity misses.

4.4.2 Programming Hints

Based on the detailed examination of the problem ar-
eas of our workloads, we provide here a distillation of the
poor programming choices that lead to so many false shar-
ing misses: high contention locks should be isolated from
each other and from all other data; in many programs they
are kept in arrays. Low contention locks should be placed
with the data they protect. Some arrays (regardless of data
type) are accessed using the ID of the processor as the in-
dex into the array; in some cases this results in a group of
essentially private read-write variables being assigned to
the same block, causing a large quantity of false sharing
misses and dead sharing traffic.

Sometimes variables that appear to have true sharing
misses can be restructured to eliminate almost all misses.
For example, inpthor each processor accesses a particu-
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Figure 9: Heuristic algorithm: neighboring blocks are
combined into a larger block when it reduces traffic, oth-
erwise the blocks are left at their current size.

lar shared variable only to increment the value. The value
is actually only used in extremely rare cases (none that we
observed during program execution), but the incrementa-
tion by each processor causes many true sharing misses.
This variable can be restructured to isolate private copies
for each processor, to be summed up when the value is
actually needed. By examining program behavior more
carefully using tracing and by programming with cache
coherence in mind, significantly higher performance can
be obtained.

4.5 Proper Block Sizing

To demonstrate the performance improvement that
can be obtained by reducing false and dead sharing, we
use data collected from trace driven simulations of each
program to find the best block size for each individual
word in the memory space. Each program was simulated
with block sizes from 4 to 512 bytes. For each shared
word, we kept track of the address tag, the number of
imisses and fmisses, and various other statistics. Using a
simple greedy algorithm designed to minimize bus traffic,
we demonstrate that a cache that supports multiple block
sizes significantly outperforms all fixed-block systems.

The heuristic algorithm that is used to select the block
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sizes is designed to minimize bus traffic through the use
of variable (static) size blocks; i.e., the block size choice
varies over the memory space of the program, but any
given word is assigned to a specific fixed block size for
the entire program execution. Included as part of the bus
traffic is a 32-bit (4-byte) address for each bus transaction
(both imisses and fmisses) and the data transferred over
the bus (fmisses only). Figure 9 shows the process by
which blocks are evaluated for the best size. Starting with
each word in the memory space that is used, neighboring
blocks are combined if when combined they produce less
bus traffic than when left as single blocks. When neigh-
boring words have similar access patterns and it is use-
ful to prefetch one while demand fetching the other, the
traffic is reduced when the words (or blocks) are grouped
into a single unit due to fewer address transmissions over
the bus. When excessive traffic is generated due to false
or dead sharing, the problem blocks are isolated by not
combining them into larger units. The combining pro-
cess continues until the maximum block size of 64 bytes
is reached.

Figure 10 shows the fixed (uniform) block size simu-
lation performance, normalized to the performance of our
heuristic (the line across the lower two graphs at value
1.0; note the log scale on the vertical axis). The heuristic
uses less traffic than any fixed block size for all work-
loads, sometimes as much as 47 times better in the most
extreme case (pverify ). On average it has 87.8 percent
less traffic than a 64-byte fixed size block. At the same
time, the number of misses is reduced by an average of
35.2 percent. In the worst case it is still within a factor of
two of misses for fixed 64-byte blocks (volrend). Com-
pared with 4-byte fixed size blocks, the heuristic has 70.4
percent fewer misses and 23.8 percent less traffic. Note
that other heuristics are possible; for example, one could
try to minimize the miss ratio rather than the bus traffic.
Timing simulations would be required to determine which
heuristic performs the best, but we believe that reducing
traffic (while not increasing misses) on a shared bus sys-
tem is a reasonable simple target, given that bus utilization
is typically the bottleneck, and that bus traffic correlates
with cache misses, and therefore CPU idle.

The block sizes chosen using our heuristic (the di-
agram second from the top of Figure 10) are most fre-
quently 4-bytes and 64-bytes, with 8-byte blocks slightly
less popular. That these two extremes are most popular
is not surprising, based on the results from previous sec-
tions. Large blocks are best for shared regions with high
processor locality; small blocks work best for regions in
which there is a high probability that adjacent words are in
use by different processors. Note, however, that in general
there is a large variation between the optimal block sizes
between the different workloads. We can also see that
when the number of blocks of each size is multiplied by

the size of the blocks, most words are still included in the
bigger blocks (top of Figure 10). From the results shown
here, we conclude that: (1) the use of variable block sizes
permits the system to compensate for a mixture of false
sharing and high processor-spatial locality; (2) alternately,
it should be possible for the programmer to rewrite his or
her code to avoid many false sharing situations (Table 4).
Note that the method we have used for this analysis would
generally be of very little use in a real computer system,
since applying it would require that programs be traced
and analyzed, and that each block of the program address
space be tagged (or otherwise identified) with a block size.
It might be possible to have the compiler do some static
analysis, and associate block sizes with regions, but the ef-
fectiveness of that approach has not been considered here.
The purpose of our analysis, rather, has been to identify a
promising direction for improvement.

In a follow-on paper [RS99a], we use the results of
this research to develop an invalidation-based cache co-
herence protocol that uses dynamically-sized subblocks
for fetching and invalidation. By tracking the pattern of
writes to a block between remote events to the block, the
smallest subblock with a power-of-two number of words
that contains the modified words is used as the subblock
size. The subblock size is reevaluated occasionally, and
adjusted to the most commonly measured value. Using
variable subblock sizes, we find that our protocol outper-
forms a regular full block coherence protocol for all work-
loads, reducing the execution time by 35 percent (on av-
erage), as well as outperforming fixed size subblock pro-
tocols.

5 Conclusions

In this paper we have analyzed shared memory misses
and bus traffic at three levels: in aggregate, statistically as
words within blocks during the invalidation interval, and
by examining special/bad cases in fine detail. The bulk
analysis of misses shows that false sharing is generally not
the largest fraction of the total misses for most workloads,
being fewer than cold start and true shared misses. When
analyzing the traffic caused by cache coherence, we do
find that a significant problem is the fraction of bus traffic
that is transferred between caches without being accessed,
which we refer to asdead sharing.

Our analysis of invalidated blocks shows that typically
only a small fraction of a block is referenced before it is
invalidated. Generally there is little or no overlap between
the regions of cache blocks updated by writing processors
and read by other processors between invalidations to the
blocks. Processors writing to the same block show very
little overlap in most situations, but a great deal of overlap
in a significant number of occasions. From this analysis
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Figure 10: Normalized traffic and misses for fixed sized blocks normalized with respect to the variable block size
heuristic and the choice of block sizes the heuristic uses. Note the log scale on the y-axis on the lower two graphs.
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we believe a good case can be made for adaptively de-
tecting the granularity of sharing within individual blocks
and appropriately adjusting the portion of the block that is
invalidated.

False sharing (and to some degree true sharing) shows
a tremendous degree of concentration. The ten blocks
with the highest number of misses from each workload
contain close to half of all false sharing misses on aver-
age and a large number of true sharing misses and inval-
idations. These blocks generally take up a tiny fraction
of the shared memory space and a small fraction of total
data references. By looking at the reference patterns of
each of the individual words within the offending blocks
we found a large problem with arrays of locks and arrays
of otherwise private words that exhibit classical false shar-
ing. Another significant problem was frequently accessed
read-only variables placed in proximity to write-shared
variables. The concentrated nature of bad behavior in-
dicates that a little attention to detail by the programmer
would go a long way towards reducing misses and sig-
nificantly improving performance; our efforts led to a 21
percent decrease in total misses, resulting in a 15 percent
decrease in simulated execution time.

We examined a simple greedy algorithm heuristic
which determined the best size block with which each
word in main memory should be associated. Based on
the results of this heuristic, we find that by using a vari-
ety of block sizes, bus traffic can be reduced a significant
amount over 64-byte fixed size blocks while generally re-
ducing miss ratios. Many of the best choices of block
sizes for improving performance using our heuristic were
4- and 8-byte blocks (due to false and dead sharing), yet
most of the data should be placed in larger blocks. This
indicates that a cache that supports variable granularity
fetching and invalidation (i.e., judicious use of subblocks)
should greatly enhance program performance.
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A Workload Descriptions

The fundamental properties of the SPLASH work-
loads we use have been throughly described in [SWG92,
WOT+95]; here we provide a synopsis of the sharing be-
havior of all of our workloads based on descriptions in
previously published works:

A.1 Barnes

Barnes[BH86, SHG92] measures the evolution of an
N-body system under the influence of gravity using the
O(n log n) Barnes-Hut algorithm. The original three di-
mensional space is recursively broken up into eight equal
sized pieces any time a space has more than one body in
it. An octree is used as the data structure to represent this
division process. At each time step and for each body, the
force-calculation algorithm descends the octree, treating
groupings of bodies as a single body if the grouping is far
enough away, otherwise pair-wise interactions are exam-
ined for each leaf.

Before each new time step, the octree must be rebuilt
from the new distribution of bodies resulting from the pre-
vious step. Writes occur during the body partitioning task
and when the body positions are updated. During the
force computations the sharing is read-only; these com-
putations use the greatest proportion of execution time.
In an attempt to balance the computation load among the
processors, the tasks are roughly divided up between the
processors in a manner that does not take locality in the
data space into account.

A.2 Cholesky

Cholesky [RG90] performs a Cholesky factorization
(find L : LLT = Input Matrix) of a sparse matrix, us-
ing the supernodal fan-out method. The input matrix is
not a standard sparse matrix, but one that has been al-
ready reordered to reduce the amount of fill in the result-
ing lower triangular matrix L. Supernodes (set of columns
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with nearly identical non-zero entries) are used for effi-
ciency purposes (including data distribution efficiency).
The task size assigned to a processor is a supernode plus
the set of all modification tasks the supernode performs
on other supernodes. When the number of modifications
required by a supernode becomes zero, the node is put on
a shared task queue where it can start performing modifi-
cations to other supernodes. Sharing can occur when sev-
eral processors performing operations on behalf of their
own supernode tasks affect the values of the same supern-
ode. Once a supernode has no remaining modifications to
be performed on it, it is processed by a single processor,
which may in turn affect other shared supernodes. Once
a supernode has been completely processed, no further
memory references occur to it.

A.3 FMM

FMM [SHHG93] is another N-body system studied
over time (likebarnes), but it uses the adaptive fast mul-
tipole method to simulate two-dimensional interactions.
The data structures are similar to those inbarnes, but the
algorithm makes a single pass up and down the tree struc-
ture, rather than a pass through the tree for each body.
Data is not distributed with any attempt to increase local-
ity, so the data access patterns can be haphazard.

A.4 LocusRoute

LocusRoute [Ros88] is a VLSI standard cell router
which attempts to minimize the cost of routing wires be-
tween cells. The tasks consist of wires, grouped into dif-
ferent geographical regions, which are assigning to avail-
able processors to route. When a processor finishes its
tasks, it can look for wires to route in another proces-
sor’s region. Wires are routed using a shared cost array
of routing cells (eight bytes per cell) which keep track of
the number of horizontal and vertical wires in each cell.
These cells are not locked, which can occasionally lead
to stale information. The cost array is the main area in
which sharing occurs, but the degree of sharing is kept
low by geographically assigning the routing. The other
potentially shared data structures are the task queues and
the data describing the wires’ routes and pin positions, but
these are not accessed as frequently as the cost array.

A.5 MP3D

MP3D [CGHM93] simulates hypersonic rarefied fluid
flow through a rectangular shaped aperture. Molecules
flow through a three dimensional space, mostly in a pos-
itive x direction. Occasionally the molecules collide with
each other or with the boundary tunnel.

MP3D statically assigns molecules to processors, but
there is no guarantee that molecules associated with a par-
ticular processor have any kind of locality within the 3-D
space. On each time step, molecules are moved according
to their motion vectors between unit-sized space cells. A
collision takes place when two (or more) molecules oc-
cupy the same cell. The data sharing inMP3D occurs
when the molecules of two different processors occupy
the same cell. Any access to the array of space cells can
also result in sharing.

A.6 Ocean

Ocean [SH91b, SH92] measures the effects of wind
stress, planetary rotation, and friction on large-scale ocean
movements. The body of water is confined within a
cuboidal basin, and the role of eddy and boundary cur-
rents are examined. The simulation is run until the eddies
and mean ocean flow reach a mutual equilibrium. On each
time step, a set of spatial partial differential equations are
solved, using an iterative red-black Gauss-Seidel multi-
grid solver.

Data consisting of numerous 2-D arrays are allocated
among the processors in such a way as to minimize com-
munications between them. This data is permanently as-
signed to each processor and only that processor writes to
it. Read sharing may occur, but typically the data read by
other processors was written during the previous iteration
and is not modified during the current time step.

A.7 Pthor

Pthor is a parallel circuit simulator based on a vari-
ant of the Chandy-Misra algorithm [CM81]. Unlike many
circuit simulators that keep all circuits synchronized to
global time, pthor allows elements to advance at their
own rates, based on input events. When input events oc-
cur, an element is placed on a task queue to be processed.
Deadlock is possible using this algorithm and is detected
and adjusted to allow further progress.

The circuits consists of wires (nodes) and logic ele-
ments. These form the primary data structures along with
the distributed per-processor task queues, which are all
potentially shared among the processors. Associated with
each wire is an event list. Each element is assigned a pre-
ferred queue (associated with a processor), assigned when
the circuit is read in, where it gets placed each time it is
activated. The goal of data distribution is load balanc-
ing; there is no attempt to increase locality by assigning
associated elements or wires to the same processor. Pro-
cessors can steal tasks from other processors when their
task queues are empty.
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A.8 Pverify

Pverify [MDWS89] verifies the Boolean equivalence
of two combinational logic circuits. The method for veri-
fication involves tracing backwards from a primary output
to find the set of cubes that cause the output to be 1 (the
ON set) or 0 (the OFF set). A cube is a subset of inputs
with a certain value that determines the value of the out-
put, regardless of the values of the inputs outside of the
subset. Whenever a primary input is chosen for exami-
nation, two tasks are generated for the output value (one
each for 0 and 1), which is put on a task queue. Once the
ON and OFF sets have been found, they can be applied to
the circuits under test to verify that they are equivalent.

The main data structure consists of information spec-
ifying all the inputs, wires, nodes, and gates leading to
each primary output, which is referred to as acone cir-
cuit. The data is organized in such a way that the cone
circuits can be evaluated and simulated in parallel, since
any of the wires and portions of the cone circuits can si-
multaneously be under test by different processors. The
data structures use arrays indexed by processor ID to al-
low simultaneous evaluation. True data sharing mainly
takes place in writing to the table of cubes and in main-
taining the task queues, but the data organization causes
major amounts of false sharing.

A.9 Raytrace

Raytrace [SGL94] is a three dimensional image ren-
derer that uses ray tracing. The work space is split up
using a hierarchical grid similar to octrees. A ray is traced
backwards from a pixel in an image plane and generates a
ray tree from reflections caused by contacts with objects.
The problem is broken up into distributed task queues,
consisting of contiguous pixels. The important data struc-
tures consist of the hierarchical grid, task queues, rays and
ray trees, and the scene description. Data access patterns
are not regular due to the unpredictable ray reflections.

A.10 Topopt

Topopt [DN87] (a.k.a. GENIE II) is a gate matrix
layout package for automated layout synthesis of static
CMOS, static NMOS, and DOMINO design styles. It
uses simulated annealing to attempt to minimize the lay-
out cost under the constraint of terminal locations and
non-uniform transistor sizes.

At the beginning of the program, each processor is as-
signed a set of gates and signals in the array (referred to as
a window). Each processor independently tests different
arrangements within its window. Through the use of dy-
namic windowing, gates can occasionally be exchanged
between windows. This allows the multiprocessor algo-

rithm to generate high-quality solutions, similar in quality
to uniprocessor solutions.

The main data structures consist of cells (gates) and
the wire nets that connect the cells together. The cells
are split among the processors, but all of the nets may
be examined by each processor. To keep processors from
interfering with each other (with respect to the nets) dur-
ing window evaluation, each net has four arrays indexed
by processor ID. This leads to massive amounts of false
sharing during program execution.

A.11 Volrend

Volrend [SGL94] creates a series of two dimensional
projections of a three dimensional object (the supplied in-
put files contain a head) from different perspectives. It
uses ray casting to render the object. Neighboring pix-
els from the image plane are assigned to each processor.
The main data structures are voxels used to represent the
three dimensional image, octrees to aid in aid in tracing
the rays through the object, and image plane pixels. The
data accesses are input dependent and unpredictable.

A.12 Water

Water [LC86, SH91a] is an N-body simulation of the
forces and potential between water molecules. A box,
which is large enough to hold the molecules, is the bound-
ary for the system. To avoid calculating theO(n2) inter-
actions between the molecules on each time step, a cut-off
radius equal to half the length of the box is utilized.

The molecules are represented as an array of struc-
tures, one structure for each molecule. The structures
contain a 3-D array describing the molecular layout, plus
a smaller array representing center of mass information.
Molecules, which are not necessarily adjacent in the sim-
ulated space, are statically assigned to processors. Data
sharing can occur when the forces on pairs of molecules
are calculated, but no more than half the processors in-
volved in the problem will touch a particular molecule.

B Analysis of Problem Blocks

In Section 4.4 we noted that the worst 10 blocks (in
terms of the number of fetch misses) contain many of
the false sharing misses over the various workloads. In
this appendix, we look at the actual data structures in-
volved and describe what is causing the conflicts to occur.
For four of the programs, we modified the source code
to make improvements to improve software performance,
the results of which are presented in Section 4.4.1. These
programs werebarnes, pthor , topopt, andwater. For
each of these select workloads, the modifications are also
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explained in this section. 64-byte blocks are used in all
examples in this section.

B.1 Barnes

There are two main problems inbarnes: (1) it uses ar-
rays of locks; and (2) thecell structure, which is 78 bytes
long, is spread over several blocks, in such a manner that
the next data structure starts on the same block on which
the previous one ended, resulting in 4 of the worst blocks.
Although most of the locks are low contention (less than
three processors competing for the lock on average), ar-
rays of such locks cause massive false sharing. TheCell-
Lock array has 2000 entries, of which the first 50 entries
result in four of the top ten worst blocks. The other two
of the worst blocks are caused by the layout of theGlob-
alMemory data structure, by placing locks and by occa-
sionally written variables in proximity to frequently read
data.

To improve the program, theGlobalMemory struc-
ture was reorganized to group locks with the data they
protect, and lock arrays were changed to isolate each lock
in its own 64-byte block. Further attempts to make im-
provements by padding out thecell structure to fill an in-
teger number of blocks slightly reduced the false sharing
misses, but actually increased capacity misses and execu-
tion time for the 16K and 64K byte caches tested, due to
the increased space required to store the data structures,
so this optimization was eliminated.

B.2 Cholesky

Nine of the worst ten blocks consist of portions of an
array of locks calledcolLock. The tenth block consists of
three overlapping data structures:work tree (an array of
integers), theGlobalMemory structure, and theTaskQ
structure. Two of these structures have locks, although
only the lock associated withTaskQ is used.

B.3 FMM

Two of the bad blocks consist of a number of neigh-
boring locks. The other 8 of the blocks have portions of an
array (local expansionin data structurebox) which are of
type complex, which has two double precision members
and represent a complex number.

B.4 LocusRoute

Three of the worst blocks are the first three blocks of
the GlobalMemory structure, which have problems be-
cause some of the frequently read members (which are
generally read-only) are near members which are written

often. In addition, there are several locks in close proxim-
ity to each other. Two other bad blocks consist of an array
of typeTaskQueueLockRecord, which has a lock and a
short integer as members. Two blocks consist of an array
of pointers which are frequently modified by various pro-
cessors. The last 3 of the bad blocks are contiguous and
hold an array of typeSegmentHeadSyncRecord, which
can all be manipulated simultaneously by different pro-
cessors, leading to false sharing.

B.5 MP3D

Two of the bad blocks come from theGlobalMemory
data structure, which consists of frequently read members
mixed with frequently written data and various locks. The
rest of the bad blocks consist of portions of theCell data
structure. Cell is smaller than a block and in the worst
cases, portions of 3 data structures are placed in the same
block, causing false sharing.

B.6 Ocean

The 10 worst blocks consist mostly of portions of the 4
dimensional arrayq multi . The array layout is a function
of the number of processors and the size of the problem
being run. Because of the way it is created, each dimen-
sion of the (ragged) array requires pointers to be stored
rather than calculated. In an apparent attempt to increase
locality of reference, the order of allocation mixes dimen-
sional pointers (exclusively read after initialization) with
the read/write data in theq multi array, causing a large
amount of false sharing. One bad block consists of locks
which neighbor each other.

B.7 Pthor

Six of the bad blocks inpthor consist of portions
of the globmem structure, which consists of frequently
read data mixed with read/write data and locks. We also
discovered an interesting sharing issue: there are sev-
eral variables (at least 5) which appear to be truly shared,
but a closer analysis shows that in fact that the variables
are mostly incremented, but very rarely (if at all) read to
be used for other purposes, only for aprintf statement.
Clearly such a class of variables should be turned into
an array accessed by processor, but in such a way as to
minimize false sharing. Then, when the value is actually
required, a loop could be used to accumulate the values
from each processor.

The other 4 problem blocks are contiguous and consist
of portions of an array. The array is of a data structure of
typeActList which contains 3 pointers and a lock. There
appears to be no locality to access between the various
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elements of the array, causing large amounts of false shar-
ing.

To reduce the false sharing inpthor , the data struc-
tureActList was padded out to 64 bytes to prevent inter-
ference between the locks in neighboring array members.
A memory allocator was added to make sure that these
data structures are aligned on 64 byte boundaries. Data
structureglobmem was slight rearranged to isolate two
locks from each other and from other members. Addi-
tionally, a frequently read membern was separated from
a frequently written memberDeadCount.

B.8 Pverify

Among all the workloads,Pverify seems to be the ex-
ample of how not to arrange data layout. One problem
block contains an array of locks. Another one contains
a two-dimensional array indexed by processor ID in the
inappropriate dimension, in such a manner as to cause
false sharing. TheWIRE structure contains several ar-
rays accessed by processor ID, resulting in 6 bad blocks.
The other 2 problem blocks are caused by the manner in
which data is allocated in shared memory: there are alter-
natingNODE andWIRE structures, which do not work
well when placed together.

B.9 Raytrace

Thegmemstructure is responsible for 2 of the worst
blocks, arranging read-only, read/write and lock variables
near each other. The other 8 of the ten worst blocks
is caused by alternating shared memory allocations of
NODE and WPJOB data structures. Because of the
nature of this program, huge amounts of data are read
compared to the amount written, and the written data is
mostly isolated by processor, so there are few false shar-
ing misses.

B.10 Topopt

Four of the bad blocks consist of the arrayp rows,
whose elements are generally migratory values (i.e., un-
interrupted accesses by one processor for a while, then
passed to another processor). The other bad blocks
mostly consist of arrays (right , nmax height, cell num1,
cell num2, net->nminp, net->nmaxp), in which each
element is written by only one processor (different pro-
cessor for each array element), but read by several pro-
cessors (broadcast reference pattern). Some of the blocks
also contain portions of two arrays, such that the begin-
ning of one array and the end of another array fall on the
same block. False sharing misses dominate other sources
of misses for all of the 10 worst blocks in this workload.

To attempt to fix the false sharing problems intopopt
required creation of new data structures to aggregate in-
formation by processor, not by type or function. This re-
quired a fair amount of coding to restructure. For exam-
ple, arrays calledright andleft were changed so that they
became scalars members of a new data structure. This iso-
lated data by processor and eliminated a good deal of false
sharing. In fact, it increased spatial locality by grouping
together data with good affinity, and showed tremendous
effect in improving execution time for the real systems
simulation, enhancing performance by reducing misses
beyond the false sharing misses eliminated.

B.11 Volrend

Two of the bad blocks are caused by overlaps between
three data structures and the reference patterns to them.
Two of these data structures,invjacobian and invinvja-
cobian, are initialized by a number of processors writing
to the same words at the same time, which appears to be a
mistake in the program. Two other bad blocks are caused
by mixtures of synchronization variables (both locks and
barriers). The other blocks have portions of a large two
dimensional array of integers. The first element of each
row of the array (also the only element on each row that is
referenced) is written and read by a number of processors,
causing a large number of true sharing misses as well as
significant dead sharing.

B.12 Water

The problem with the ten worst blocks in water is
caused exclusively by a large array of locks neighboring
scalar locks in theGlobalMemory data structure. We re-
paired this problem by allocating a block for each lock,
largely eliminating false sharing from the program.

C Word vs. Block Coherence

This appendix provides several simple examples of
how it is possible to account for a miss as a false sharing
miss or what is meant by the termsupgradeanddown-
grade. In each example, we show an initial state that is
the same for both word coherence/transfer size as it is for
block coherence (at least for the words with which we
are concerned). In each case, an initial reference occurs
which changes the state. The second and third references
are the important ones for each example, as they demon-
strate the kinds of misses we wish to explain. All exam-
ples implicitly use sequential consistency.

For each of Figures 11-15, the word and blocks states
are one of MESI states as defined in Section 4.1. Although
a block’s coherence state represents the state for all the
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Figure 11: True sharing miss.

words within the block, we show the state of each word
under block coherence to minimize confusion.

Figure 11 shows an example of a true sharing miss.
Under both word and block coherence, the second miss
occurs because the word in question is actually shared be-
tween the two processors.

False sharing misses occur when a word’s coherence
state is affected by references to other words in the block,
so that the word is found in a different state under word
and block coherence when the next reference to the word
occurs. The state can be affected in two ways: the state
can be worse than what is expected under word coherence
(i.e., adowngradehas occurred), or it can be found in
a better state than expected (anupgrade) has occurred.
Keep in mind, we are not actually interested in the word’s
coherence state per se; rather we are interested in whether
a preceding reference to another word in the block causes
a data transfer or a coherence action when the word with
which we are concerned is accessed. For example, a read
to a valid word in the cache requires no coherence activity
if the word’s state is shared, exclusive, or modified. A
write causes no externally observed coherence actions if
the word’s state is exclusive or modified. A write to a
shared word causes an invalidation transaction; a read or
write to an invalid word causes a data fetch.

A read downgrade is said to have occurred when a
word is found to be invalid (because of actions performed
on other words under block coherence) when it would
be in a valid state with word coherence; a write down-
grade (with two levels of seriousness) occurs when the
state is either invalid (causing a fetch and invalidation) or
shared (causing an invalidation) when modified or exclu-
sive was expected. However, the memory system opera-
tion required for a write to a shared location is less than
required when a read or write to an invalid word occurs
(under write-allocate), so we distinguish between invali-
dation misses and fetch misses.

Figures 12 and 13 show the three different down-
grades possible. Figure 12 exhibits how a reference to an-
other word in the same block by another processor causes
a different outcome for the reference to the word by pro-
cessor B. The word was in a modified state, but a remote
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(reference by another processor) write causes the word to
be found in an invalid state. This type of miss is gen-
erally the most common of the false sharing downgrades
observed in our simulations and is the most serious.

In Figure 13, the read by processor A causes all the
words’ states to become shared under block coherence,
causing an invalidation miss by processor B, yet under
word coherence it would have been a hit. A write by pro-
cessor A causes yet another miss, whereas under word co-
herence it would have caused only an invalidation, but no
data transfer. So in this one figure, there are examples
of two kinds of downgrades: hit to invalidation miss, and
invalidation miss to fetch miss.

There are also three corresponding types of upgrades.
Figure 14 shows an upgrade caused by a beneficial use of
block coherence/fetching. A block fetch acts as a kind of
prefetching in uniprocessors as well as for well behaving
blocks in multiprocessor caches. By reading all the words
in a block at once, a number of misses can be eliminated
for subsequent accesses to the block under the right cir-
cumstances.

Block coherence can also cause less dramatic im-
provements in word states. When a read to a block that
is present in another cache but invalid in the local cache
occurs, the whole block is fetched and all the words are
placed in the shared state (read by processor A in Fig-
ure 15). A subsequent write by processor A to another
word in the block puts the entire block in the modified
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state, so that further writes by processor A are cache hits.
Under word coherence, the write to another word only af-
fects that word’s state, so that the second write causes an
invalidation miss. The prefetching effect of block coher-
ence can work for states as well as for the actual data in-
volved. So under these circumstances, block coherence
outperforms word coherence. However, as found in the
main portion of this paper, once the block size is suffi-
ciently large, the benefit (in terms of miss ratio) of us-
ing blocks for coherence and data transfers rapidly dimin-
ishes.

D Breakdown of Data by Work-
loads

Table 6 shows the categorization of the types of misses
for each individual workload, the average can be found in
Table 3. Figure 16 shows the same information in graphi-
cal form. The total misses consist of both fetch misses and
invalidation misses. In a real system, invalidation misses
are less serious than fetch misses, but under sequential
consistency, still cause the processor to stall while acquir-
ing exclusive access to a block. For each workload, the
number of misses is normalized to the total number of
misses for 4-byte blocks. The misses are broken down
into true sharing fetch misses (ts fmiss), true sharing in-
validation misses (ts imiss), private and cold start misses,

false sharing fetch misses (fs hit to fmiss), false sharing
hit to invalidation miss (fs hit to imiss), and false sharing
invalidation miss to fetch miss (fs imiss to fmiss).

As can be seen, for most workloads the number of
cold start and true sharing misses exceed the number of
false sharing misses. However, the four workloads with
bad false sharing behavior (barnes, pthor , and especially
pverify andtopopt) cause the average over all workloads
to have the majority of misses caused by false sharing
starting in the 16- to 64-byte block region and beyond.

E Expanded Information on Shar-
ing Granularity

This section contains figures and tables that have in-
teresting content, yet were moved out of the main section
due to space constraints. Most of the data is related to the
information presented in Sections 4.2 and 4.3.

When a write occurs to a block in the shared state
(presumably to update a shared variable), all copies of the
block in other processors’ caches must be invalidated. Be-
fore another remote read occurs, other words in the block
may be modified as well. Other processors interested in
the data must then re-read the block. Table 7 shows the
average number of the updated words that are read be-
fore a block is invalidated (read-write sharing granularity,
the bold entry is expanded into a histogram in Figure 5).
In most of the blocks that are shared, we do not observe
much of an overlap of local writes with remote reads dur-
ing an invalidation interval, causing the average number
of overlapping words to be on average rather small. Only
programs that show a tendency to migrate data objects be-
tween processors (such aswater) have a reasonable num-
ber of overlap of reads and writes. This value is an indica-
tion of the degree that false and dead sharing are occurring
in the workloads. Notice that the amount read-write shar-
ing is 100 percent for 4-byte blocks, in the situation where
only true sharing can occur. With bigger block sizes, the
number of overlapping words increases, but not nearly as
fast as the block size. Once the block reaches a certain
size, the amount of overlap starts decreasing due to the
large probability that several unrelated data structures are
placed in the same block and they really start interfering
with each other.

Table 8 shows the degree of overlap between sets
of writes to a block by different processors during suc-
ceeding invalidation intervals (when the writing proces-
sor changes). Workloads that show a large degree of
false sharing have a extremely low degree of write over-
lap (barnes, ocean, pthor , pverify , topopt), but gener-
ally the amount of write overlap within a block is fairly
low. Water has a fair degree of write-write overlap be-
cause the most typical memory reference pattern shows
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Figure 17: Distance between the furthest spread read
words (span) until invalidation, 64-byte blocks.

migratory behavior by overwriting the entire block each
time a molecule data structure passes between processors.

Tables 9 and 10 show the average number of distinct
words touched and the span of the words touched in each
copy of a block during an invalidation interval. On aver-
age, the span increases by about 49 percent each time the
block size doubles, while the number of distinct words
read increases by about 33 percent. Tables 11 and 12
show the average number of distinct words written and
the span of the writes between invalidations to the blocks.
A stream of writes by one processor can be interrupted by
either remote reads or a remote write. Tables 9–12 and
Figures 7, 8, 17, and 18 provide insight into the spatial
locality of the references to blocks while they reside in
the cache. For read references to 64-byte blocks, approxi-
mately 42 percent of the blocks use only a single word be-
fore being invalidated (Figure 7). Over 60 percent of reads
could potentially be satisfied by use of a 16-byte subblock
(cumulative sum of values up to 4 words in the histogram
in Figure 17). The writes tend to be more tightly concen-
trated that the reads, with an average increase in the span
of 40 percent for each doubling of block size, with the
number of distinct words growing by 29 percent. These
factors show that subblock fetching for shared blocks, if
used judiciously, could tremendously reduce the bus traf-
fic without greatly increasing the number of misses.

For most cases, more distinct words are read during
phase 2 of the invalidation interval than are written during
phase 1. Occasionally this assumption fails. For example,
in LocusRoutethere is a global data structure which con-
tains a number of read-mostly variables plus some num-
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Figure 18: Distance between the furthest spread written
words (span) in 64-byte blocks during an invalidation in-
terval.

ber of values that are updated. The writable variables are
protected with locks. When a processor runs out of work
to do, it has essentially a spin-loop that checks if it has
a new task on its queue. The variable on which it spins
is spatially (memory-wise) adjacent to the lock protecting
that variable. In addition, this data structure is kept as an
array, so possibly several processors are spinning on a sin-
gle word. Lock variables (lock and unlock operations are
classified as writes) that are placed in the same block as
variables used for busy-waiting can provide such seeming
anomalous behavior as more words are written in a block
than are read on average.

Figures 8 and 18 provide some indication how invali-
dations from sharing can affect a system. An examination
of the distinct number of words written (Figure 8) shows
that more than half of the time (58%) only a single dis-
tinct word is written (possibly multiple times). The com-
panion figure (Figure 18) shows the portion of the block
that the writes span (for a 64-byte block). The span of the
writes is one word for 58 percent of the cases; about 10
percent of the writes touch words on opposing ends of a
block (full span of the block). The average values of the
spans are reasonably close to the average number of dis-
tinct words words read/written considering that two (or
more) distinct words could have a span as large as 16 for
a 64-byte block. Because the words touched are likely to
be very near each other, subblock protocols would appear
to be a good solution for reducing false and dead sharing
in these workloads.

Figure 19 shows the fraction of invalidated blocks that
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have only a single word read or written. Both the read
and write statistics hit a minimum with 16-byte blocks and
increase from there.

E.1 Example Reference Patterns

Table 13 shows example reference patterns to words
within shared blocks. These patterns show interesting
behavior, which are not necessarily representative of the
sharing patterns of the whole program. The accesses are
specified by the large number (processor ID) with super-
scripts for the operation and subscripts for the word ac-
cessed within a block (in hexadecimal). The block size is
64 bytes for these samples. The operations on the words
can be write (w), read (r), successful lock (l), failed lock
(f), and unlock (u).

For example, the reference pattern forbarnes shows
a false sharing problem: words6 and 7 are exclusively
read and worda is a lock. Each successful locking opera-
tion results in an invalidation of the block from a number
of caches, even though the operations on the read-only
words are not related. In addition to the useless invalida-
tion of read-shared data, most of the words are not even
used, but must be wastefully be transferred between the
caches. The ability to perform smaller granularity inval-
idations would appear to be a large benefit in cases such
as this. Other examples of traces showing false and dead
sharing behavior in Table 13 aremp3d, pverify , topopt,
water. Cholesky shows an example of multiple proces-
sors waiting to acquire a lock.Oceanshows a number
of processors overwriting the same word without exam-

ining the value written by previous writers.LocusRoute
exhibits a number of processors repeatedly reading a par-
ticular word (b), with apparently unrelated writes to other
words. Raytrace provides a good example of dead shar-
ing, where only 2 words are accessed, of which one shows
only read references. In such a case, 14 words are waste-
fully transferred between caches. In addition, the writes
also invalidate the read-only word, indicating false shar-
ing as well.
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Breakdown of Misses, Normalized to 4–Byte Blocks
True Sharing False Sharing True Sharing False Sharing

Workload
Block Total

Fetch Inv. Cold Start hit–> hit–> imiss–> Workload
Block Total

Fetch Inv. Cold Start hit–> hit–> imiss–>Size Misses
MissesMisses Misses fmiss imiss fmiss

Size Misses
MissesMisses Misses fmiss imiss fmiss

4 1.000 0.717 0.102 0.181 0.000 0.000 0.000 4 1.000 0.159 0.376 0.465 0.000 0.000 0.000
8 0.578 0.404 0.058 0.099 0.012 0.000 0.001 8 0.506 0.081 0.189 0.234 0.003 0.000 0.000
16 0.411 0.246 0.037 0.053 0.064 0.005 0.002 16 0.270 0.045 0.101 0.121 0.003 0.001 0.000
32 0.331 0.144 0.024 0.030 0.114 0.012 0.002 32 0.151 0.027 0.056 0.063 0.004 0.001 0.000barnes
64 0.322 0.093 0.018 0.018 0.160 0.025 0.002

cholesky
64 0.091 0.018 0.033 0.034 0.005 0.001 0.000

128 0.326 0.065 0.016 0.010 0.186 0.040 0.006 128 0.062 0.015 0.021 0.018 0.007 0.001 0.000
256 0.378 0.059 0.016 0.005 0.239 0.047 0.009 256 0.049 0.014 0.015 0.010 0.008 0.001 0.001
512 0.429 0.059 0.017 0.003 0.288 0.046 0.012 512 0.047 0.015 0.014 0.006 0.010 0.001 0.002
4 1.000 0.243 0.173 0.584 0.000 0.000 0.000 4 1.000 0.415 0.273 0.312 0.000 0.000 0.000
8 0.519 0.126 0.088 0.302 0.001 0.000 0.001 8 0.803 0.381 0.222 0.176 0.014 0.007 0.000
16 0.297 0.075 0.048 0.165 0.003 0.003 0.001 16 0.444 0.194 0.116 0.094 0.023 0.013 0.000
32 0.184 0.049 0.027 0.094 0.006 0.005 0.001 32 0.289 0.099 0.064 0.050 0.052 0.020 0.000fmm
64 0.142 0.036 0.017 0.055 0.018 0.014 0.001

locus
64 0.194 0.052 0.037 0.028 0.055 0.020 0.000

128 0.122 0.029 0.011 0.034 0.026 0.019 0.001 128 0.139 0.030 0.024 0.015 0.051 0.017 0.000
256 0.122 0.025 0.009 0.022 0.038 0.025 0.001 256 0.120 0.019 0.020 0.009 0.054 0.016 0.001
512 0.134 0.022 0.007 0.014 0.053 0.035 0.001 512 0.115 0.016 0.021 0.005 0.055 0.015 0.001
4 1.000 0.482 0.477 0.041 0.000 0.000 0.000 4 1.000 0.533 0.394 0.073 0.000 0.000 0.000
8 0.556 0.260 0.268 0.021 0.005 0.002 0.000 8 0.539 0.301 0.201 0.037 0.000 0.000 0.000
16 0.341 0.157 0.162 0.011 0.007 0.004 0.001 16 0.549 0.290 0.107 0.021 0.029 0.103 0.000
32 0.233 0.106 0.109 0.006 0.007 0.004 0.001 32 0.493 0.257 0.063 0.012 0.044 0.117 0.000mp3d
64 0.187 0.083 0.084 0.003 0.008 0.004 0.004

ocean
64 0.488 0.241 0.040 0.007 0.073 0.126 0.000

128 0.175 0.073 0.071 0.002 0.012 0.008 0.009 128 0.496 0.224 0.031 0.005 0.098 0.137 0.000
256 0.183 0.072 0.069 0.001 0.017 0.010 0.013 256 0.515 0.210 0.027 0.003 0.119 0.156 0.000
512 0.216 0.075 0.071 0.001 0.031 0.020 0.017 512 0.516 0.193 0.023 0.002 0.139 0.158 0.000
4 1.000 0.548 0.186 0.267 0.000 0.000 0.000 4 1.000 0.526 0.329 0.145 0.000 0.000 0.000
8 0.956 0.478 0.169 0.169 0.089 0.036 0.005 8 2.840 0.519 0.324 0.106 1.023 0.865 0.002
16 0.839 0.377 0.136 0.103 0.145 0.046 0.008 16 4.195 0.516 0.322 0.079 2.002 1.273 0.003
32 0.790 0.341 0.124 0.061 0.188 0.044 0.010 32 5.381 0.514 0.320 0.059 3.045 1.438 0.003pthor
64 0.784 0.326 0.114 0.036 0.223 0.048 0.014

pverify
64 6.163 0.511 0.320 0.042 3.775 1.512 0.003

128 0.803 0.322 0.109 0.022 0.260 0.050 0.016 128 6.382 0.501 0.319 0.029 4.051 1.479 0.003
256 0.826 0.317 0.102 0.013 0.300 0.050 0.020 256 7.183 0.366 0.318 0.015 4.750 1.730 0.003
512 0.922 0.316 0.099 0.008 0.399 0.051 0.026 512 7.769 0.187 0.283 0.008 5.249 2.037 0.004
4 1.000 0.088 0.076 0.836 0.000 0.000 0.000 4 1.000 0.755 0.238 0.008 0.000 0.000 0.000
8 0.586 0.074 0.051 0.456 0.005 0.000 0.000 8 1.490 0.663 0.147 0.005 0.417 0.228 0.029
16 0.372 0.066 0.040 0.260 0.006 0.000 0.000 16 1.851 0.587 0.103 0.003 0.768 0.341 0.038
32 0.263 0.063 0.034 0.153 0.011 0.001 0.000 32 2.431 0.515 0.084 0.002 1.301 0.458 0.055raytrace
64 0.196 0.060 0.031 0.088 0.015 0.001 0.000

topopt
64 2.987 0.424 0.076 0.002 1.926 0.478 0.060

128 0.156 0.060 0.029 0.050 0.015 0.001 0.000 128 3.376 0.334 0.074 0.001 2.455 0.427 0.063
256 0.135 0.060 0.029 0.029 0.014 0.001 0.000 256 3.612 0.225 0.056 0.001 2.900 0.340 0.065
512 0.124 0.061 0.029 0.017 0.014 0.002 0.000 512 3.806 0.188 0.057 0.000 3.107 0.366 0.057
4 1.000 0.066 0.027 0.907 0.000 0.000 0.000 4 1.000 0.527 0.422 0.052 0.000 0.000 0.000
8 0.590 0.042 0.017 0.523 0.006 0.002 0.000 8 0.508 0.269 0.211 0.026 0.002 0.000 0.000
16 0.369 0.028 0.012 0.318 0.008 0.003 0.000 16 0.289 0.153 0.117 0.014 0.006 0.000 0.000
32 0.241 0.020 0.009 0.199 0.009 0.004 0.000 32 0.188 0.099 0.070 0.008 0.012 0.000 0.000volrend
64 0.172 0.016 0.008 0.134 0.009 0.004 0.000

water
64 0.149 0.073 0.047 0.005 0.024 0.000 0.000

128 0.131 0.014 0.008 0.095 0.010 0.004 0.000 128 0.132 0.058 0.035 0.003 0.036 0.000 0.000
256 0.096 0.013 0.007 0.060 0.010 0.005 0.000 256 0.132 0.047 0.031 0.002 0.051 0.001 0.000
512 0.070 0.013 0.007 0.032 0.012 0.005 0.000 512 0.133 0.035 0.030 0.001 0.065 0.002 0.000

Table 6: Breakdown of workload misses into various types of false sharing and true sharing misses for 16 processors,
normalized to misses for 4-byte blocks.
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Read Overlap with Preceding Writes
Block Size (bytes)Workload

4 8 16 32 64 128 256 512

barnes 1.000 1.648 1.993 1.905 1.363 0.848 0.449 0.245
cholesky 1.000 0.233 0.219 0.193 0.175 0.139 0.104 0.072

fmm 1.000 1.891 2.963 3.948 3.768 3.572 3.118 2.551
locus 1.000 0.993 1.868 2.578 3.509 4.387 4.091 3.307
mp3d 1.000 1.340 1.619 1.127 0.518 0.167 0.095 0.054
ocean 1.000 1.795 1.675 1.715 1.532 1.306 1.004 0.807
pthor 1.000 0.842 0.783 0.711 0.626 0.542 0.445 0.311

pverify 1.000 0.293 0.103 0.045 0.030 0.021 0.017 0.011
raytrace 1.000 0.965 1.135 0.952 0.824 0.699 0.638 0.617
topopt 1.000 1.016 0.857 0.661 0.453 0.331 0.216 0.120
volrend 1.000 1.739 3.038 5.159 7.791 10.173 11.508 11.252
water 1.000 1.985 3.873 7.513 10.756 11.151 6.060 3.539

Average 1.000 1.228 1.677 2.209 2.612 2.778 2.312 1.907

Table 7: Average set of words modified in the write phase of an invalidation interval that are read by other processors
during the read phase.

Write Overlap with Preceding Writes
Block Size (bytes)Workload

4 8 16 32 64 128 256 512

barnes 1.000 1.391 1.478 1.139 0.859 0.420 0.285 0.172
cholesky 1.000 1.968 3.458 5.679 8.028 9.763 10.278 9.021

fmm 1.000 1.843 3.092 4.800 5.828 4.963 4.061 3.336
locus 1.000 1.197 2.056 3.091 4.248 5.249 5.575 4.824
mp3d 1.000 1.750 2.511 2.868 2.505 1.816 1.268 0.724
ocean 1.000 1.152 1.146 1.140 1.118 1.100 1.090 1.065
pthor 1.000 0.785 0.743 0.588 0.489 0.411 0.343 0.263

pverify 1.000 0.225 0.127 0.101 0.088 0.074 0.052 0.038
raytrace 1.000 1.193 1.275 1.321 1.230 1.165 1.027 0.949
topopt 1.000 0.259 0.174 0.115 0.095 0.085 0.074 0.056
volrend 1.000 0.855 0.778 0.722 0.691 0.659 0.612 0.520
water 1.000 1.915 3.123 4.172 4.603 4.728 4.599 4.568

Average 1.000 1.211 1.663 2.145 2.482 2.536 2.439 2.128

Table 8: Average set of words written during invalidation interval that overlap words written in a succeeding invalida-
tion interval with different writing processors.
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Distinct Reads
Block Size (bytes)Workload

4 8 16 32 64 128 256 512

barnes 1.000 1.769 2.803 4.372 5.770 7.553 8.760 10.216
cholesky 1.000 1.967 3.575 6.120 9.260 12.355 14.565 14.487

fmm 1.000 1.919 3.181 4.877 6.337 8.344 9.750 11.139
locus 1.000 1.199 2.298 3.761 5.827 8.787 11.166 13.523
mp3d 1.000 1.875 3.077 4.556 5.824 6.910 7.619 7.922
ocean 1.000 1.779 1.894 2.135 2.357 2.548 2.674 2.855
pthor 1.000 1.176 1.581 1.925 2.264 2.738 2.901 2.915

pverify 1.000 1.007 1.028 1.164 1.573 2.047 2.773 3.468
raytrace 1.000 1.229 1.401 1.644 1.915 2.248 2.645 3.076
topopt 1.000 1.096 1.355 1.361 1.593 1.981 2.485 2.780
volrend 1.000 1.563 2.207 2.835 3.306 3.629 3.824 3.969
water 1.000 1.956 3.387 5.015 6.156 7.645 11.219 13.732

Average 1.000 1.545 2.316 3.314 4.349 5.565 6.699 7.507

Table 9: Number of distinct words read in a block per processor
before the block is invalidated.

Span Reads
Block Size (bytes)Workload

4 8 16 32 64 128 256 512

barnes 1.000 1.769 2.864 4.740 6.529 10.615 14.319 22.955
cholesky 1.000 1.967 3.621 6.263 9.643 11.830 14.957 16.746

fmm 1.000 1.919 3.201 5.132 7.048 9.951 14.402 22.827
locus 1.000 1.199 3.002 5.459 9.405 15.606 21.650 28.229
mp3d 1.000 1.875 3.146 4.725 6.390 7.135 8.000 8.586
ocean 1.000 1.779 1.895 2.344 2.928 4.063 7.390 12.610
pthor 1.000 1.176 1.784 2.339 3.311 4.173 5.173 7.405

pverify 1.000 1.007 1.029 1.289 2.462 4.869 13.642 33.013
raytrace 1.000 1.229 1.403 1.831 2.719 3.807 5.435 7.499
topopt 1.000 1.096 1.418 1.595 2.192 2.861 6.934 10.254
volrend 1.000 1.563 2.268 3.004 3.722 4.178 4.729 5.059
water 1.000 1.956 3.391 5.026 6.245 7.782 11.947 17.504

Average 1.000 1.545 2.418 3.646 5.216 7.239 10.715 16.057

Table 10: Span of words read in a block between invalidations.

Distinct Writes
Block Size (bytes)Workload

4 8 16 32 64 128 256 512

barnes 1.000 1.610 2.201 2.760 3.538 4.193 3.539 2.961
cholesky 1.000 1.982 3.661 6.421 10.074 13.865 16.710 16.988

fmm 1.000 1.908 3.401 5.650 8.092 10.111 10.508 10.913
locus 1.000 1.318 2.484 4.214 6.648 9.856 13.567 16.821
mp3d 1.000 1.780 2.940 4.369 5.496 6.158 6.584 6.588
ocean 1.000 1.184 1.187 1.201 1.277 1.575 2.151 3.654
pthor 1.000 1.096 1.335 1.462 1.526 1.571 1.599 1.606

pverify 1.000 1.002 1.033 1.082 1.175 1.422 1.487 1.443
raytrace 1.000 1.338 1.591 1.797 1.926 2.000 2.036 2.043
topopt 1.000 1.020 1.332 1.166 1.092 1.061 1.118 1.171
volrend 1.000 1.287 1.451 1.585 1.740 1.952 2.077 2.186
water 1.000 1.947 3.250 4.495 5.145 5.462 5.670 6.089

Average 1.000 1.456 2.156 3.017 3.977 4.936 5.587 6.039

Table 11: Number of distinct words written to a block before a
read by another processor.

Span Writes
Block Size (bytes)Workload

4 8 16 32 64 128 256 512

barnes 1.000 1.610 2.217 2.855 4.086 6.192 5.411 4.858
cholesky 1.000 1.982 3.662 6.480 10.330 14.866 19.468 22.363

fmm 1.000 1.908 3.417 5.713 8.302 10.485 12.043 16.057
locus 1.000 1.318 3.003 5.488 9.552 16.229 25.900 36.005
mp3d 1.000 1.780 3.078 4.662 6.178 7.445 8.686 9.565
ocean 1.000 1.184 1.187 1.201 1.277 1.596 2.226 4.165
pthor 1.000 1.096 1.386 1.650 1.883 2.194 3.086 4.694

pverify 1.000 1.002 1.033 1.084 1.178 2.307 3.720 6.750
raytrace 1.000 1.338 1.598 1.819 1.956 2.107 2.208 2.361
topopt 1.000 1.020 1.334 1.220 1.098 1.099 2.746 3.805
volrend 1.000 1.287 1.452 1.588 1.757 1.982 2.329 2.614
water 1.000 1.947 3.255 4.508 5.257 5.924 7.327 11.890

Average 1.000 1.456 2.219 3.189 4.405 6.035 7.929 10.427

Table 12: Span of words written to a block before a read by
another processor.
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Table 13: Sample shared memory block reference sequences for some workloads. The large number corresponds to
the processor ID, subscripts are the word accessed (in hexadecimal), the superscript is the operation to the word (w:
write, r : read:l: successful lock,u: unlock,f: failed lock attempt).
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