Analysis of Shared Memory Misses and Reference Patterns

Jeffrey B. Rothman and Alan Jay Smith

Report No. UCB/CSD-99-1064

/' September 1999

[

\

\

| | Computer Science Division (EECS)
| University of California

\ Berkeley, California 94720

\

\

[

Analysis of Shared Memory Misses and Reference Patterns

Jeffrey B. Rothman and Alan Jay Smith
Computer Science Division
University of California
Berkeley, CA 94720

September 23, 1999

Abstract 88 percent (for 64-byte blocks) while also decreasing the

miss ratio by 35 percent.
Shared bus computer systems permit the relatively

simple and efficient implementation of cache consistency .

algorithms, but the shared bus is a bottleneck which limds Introduction

performance. False sharing can be an important source of

unnecessary traffic for invalidation-based protocols, elim- Shared memory multiprocessor systems are becoming
ination of which can provide significant performance inincreasingly popular. The limit to the number of proces-
provements. For many multiprocessor workloads, ho@ors that can be placed on the same memory bus is due to
ever, most misses are true sharing and cold start mis$88 bus traffic demands of the processors. Here we present
Regardless of the cause of cache misses, the largest ffaBEW examination of the interference patterns of refer-
tion of bus traffic are words transferred between cactfiices to words within shared blocks, with the purpose of
without being accessed, which we refer todesd shar- aiding both software developers in data layout and hard-
ing. ware designers in the development of new protocols that

We establish here new methods for characteriziRg'form coherence (cache consistency) on a subblock ba-
cache block reference patterns, and we measure how tHdseOur purpose is to examine the causes of bad behavior
patterns change with variation in workload and block siz#. parallel programs, aiming to reduce bus traffic and miss
Our results show that 42 percent of 64-byte cache blodréios. This study uses relatively large traces of twelve
are invalidated before more than one word has been r@@(ﬂ&”@' workloads to provide our results. We measure the
from the block and that 58 percent of blocks that ha%laring behavior of words within shared blocks to deter-
been modified only have a single word modified beforgine the extent that false sharing occurs. We also look at
an invalidation to the block occurs. Approximately 5the related phenomenon déad sharingwhich is deter-
percent of blocks written and subsequently read by ottigined by measuring the words within a block that are not
caches shown no use of the newly written information betilized while in the cache; as will be shown, these words
fore the block is again invalidated. consume the largest proportion of bus traffic.

In addition to our general analysis of reference pat- The remainder of this paper is organized as follows:
terns, we also present a detailed analysis of false sharii§ next section describes our motivation for undertak-
and dead Sharing in each shared memory mu|tiproce§§@’this Study. Section 2 prOVideS an overview of related
program studied. We find that the worst 10 blocks froM{ork in the area of characterization of sharing patterns of
each our traces contribute almost 50 percent of the fapafallel programs. Section 3 discusses our methodology
sharing misses and almost 20 percent of the true sharifgcreating and evaluating the parallel memory traces and
misses (on average). A relatively simple restructuring 8¢scribes some of the metrics we use to measure the un-
four of our workloads based on analysis of these 10 wofitrlying behavior that causes shared memory traffic prob-
blocks leads to a 21 percent reduction in overall misgégs. In Section 4 we present our results and discuss our
and a 15 percent reduction in execution time. Perm@bservations. Section 5 summarizes our conclusions.
ting the block size to vary (as could be accomplished with
a sector cache) shows that bus traffic can be reducediby Definitions

tThe work presented here has been supported in part by the State of . -
California under the MICRO program, Sun Microsystems, Toshiba Cor- Table 1 provides the definitions of the terms we use

poration, Fuijitsu Microelectronics, Cirrus Corporation, Microsoft Cothroughout this paper.
poration, Quantum Corporation, and Sony USA Research Laboratories.

Definitions Used in This Paper

Shared Memory

The portion of the memory space that is visible to all processors.

Block

A group of sequential memory locations that are fetched and evicted from caches together, aligne
the address of first byte of the block Hag: (Block Size) zeros as the lowest order bits.

d so that

Shared Block

A shared block generally is a block from shared memory; more specifically, a block that is referen
more than one processor during the execution of a program.

ced by

Private Block

A block that is accessed only by one processor for the duration of the simulation.

Shared Access

A memory reference to a block that at some point during the simulation is considered to be a sha
block. Note: an access that is classified as shared in one simulation may not be shared in a simul
with a smaller block size.

ed
ation

Actively
Shared Memory

The set of blocks that are accessed by multiple processors for a given set of simulation paramete

[S.

Global Unshared
Access

Access to a portion of memory that is declared to be shared, but is used exclusively by a single pn

ocessor.

Private Access

A memory reference to a private block.

False Sharing

False sharing occurs when two or more data items that are unrelated happen to be placed in the

block, causing an unnecessary increase in bus traffic to maintain coherence. In this paper we def
sharing as a reference to a word in a block, finding it to be in a different state in a particular block

block coherence and transfer size than under word granularity coherence/transfer size. Thus it cg
good side-effects (such as in the prefetching effect of large blocks), or bad side-effects, such as ¢
misses and coherency operations.

same
ne false
under

n have a
xtra

Dead Sharing

The portions of the block that are not referenced while in the cache, resulting in wasted bus traffid|.

Local Read

Read by the processor that has most recently written the block.

Local Write

Write by the processor that has most recently written the block.

Remote Read

Read by any processor except the one that has most recently written the block.
This also includes reads by processors with their own copies of the block.

erval.

ory.

In\llrilgszlon The string of references to a block by all processors between coherence induced invalidations.
Span Distance between the furthest apart words in a block that are referenced during an invalidation int
Processor-spatigiThe footprint of accesses by a processor during an invalidation interval.
Cache Hit The data requeste_d is found in the cache and the processor can proceed without causing a
coherence operation.
Fetch Miss | A reference to the cache which does not find the requested data, requiring a fetch from main men
(fmiss) or another processor’s cache.
Invalidation |A write reference to a block (or word) held in the cache insharedstate, requiring the processor
Miss(imiss) [to stall while invalidating copies of the data in other caches (under sequential consistency).
Miss Both fetch and invalidation misses.
reference run |the stream of uninterrupted references by one processor to a block.
read run a reference run consisting purely of reads
read/write run |a reference run consisting of reads and writes
write run the stream of writes in the read/write run

Table 1: Definitions used in this paper.

1.2 Motivation 3 Methodology

In the process of determining what sort of memory oyr work is based on trace-driven simulation (TDS).
accesses caused the most traffic in our workloads, we Rfially we used execution-driven simulation for our re-
amined the source code to identify which data Structurgss rch, but we changed to TDS for two reasons: (1) the lo-
were responsible for the most unfortunate sharing patteggions of data objects varied as parameters such as block
(detailed in Section 4.4 and Appendix B). Some of thg,e changed, making detailed analysis very complicated:
programmer specific details that have come out of thigq (2) our EDS tools are dependent on generally obso-
research are described in more detail in Section 4. DWW DEC 5000 machines; using traces allows for much
ing our analysis we found several recurring types of dg{&yre rapid generation of results on faster PCs and work-
structures which seem to lead to bad data access pattefflsions. We used our EDS tool Cerberus [RS99b] to gen-

When the programmer is not sufficiently careful in higyate traces for the simulation system. The trace genera-
or her data layout, it is necessary for some combinatiggy, system simulates synchronization objects (locks and
of the compiler and hardware to try to minimize cohefarriers) at runtime, which aids in reducing trace length
ence induced traffic. This paper investigates the SOUTgES eliminating spin-waiting loops in the trace file) and

of traffic caused by inadvertently poor data organizatigfjows more accurate synchronization behavior while pro-
and provides suggestions for solving these problems. ducing traces.

Our goal in this research is to uncover the effects of
poor programming style and to provide information abouyt . .
how these problems can be corrected. Additionally, 1 Simulation
want to show how all types of sharing impact the perfor- oyr simulations use infinite size fully-associative
mance of these workloads, and to demonstrate the deggghes to eliminate capacity and conflict misses, to fo-
to which block size affects spatial locality. cus on the effect of coherency induced misses and traf-
fic. The remaining misses fall into three categories:
cold start/private, cold start/shared, and coherency caused
misses. A reference to a private block causes a single cold

tta_lrt miss, which is the only miss for the rest of the sim-
gtion; shared blocks can have up to 16 cold start misses
ith 16 processors reading them in for the first time),

2 Background

Previous research on multiprocessor reference p
terns has primarily focused on evaluating various cac

coherence protocols for suitability, primarily contrastin b tshared mi ith dbvt fal
invalidation- and update-based algorithms. The initi sequentsharedmisses are elther caused by true oriaise

papers in this area ignored block size altogether, exchl aring. The cache simulators tested parallel workloads

sively using 4-byte blocks to examine primarily the paj _i_th 16 processors and block sizes ranging from 4 to 512
tes

terns of writing references [EK88, AG88]. The referen
patterns were categorized by the length of tikerence
run. A reference run can be further refined ikad runs 3.2 Workload Characterization
read/write runs and thewrite run (Table 1). The write- Twelve parallel programs were examined to provide
run lengths varied widely between applications, leading tﬁ) .
inconclusive results whether update- or invalidate—bastﬁg results for th.'s paper. Ten of the programs come from
protocols give superior performance. the SPLA_SH suites from Stanford Umvers_,lty, which have
been available to the research community as a de facto

Research concerningeference runsfor different . .
benchmark for comparing parallel program execution.

block sizes found that for scalar (non-vector) workload_F .
. . : hese programs have all been used in a number of stud-
the lengths of the various reference runs did not increase

: ; -_1es analyzing parallel code performance and are character-
with block size, although vgctor workloads .showed M- 4 and described in more detail in [SWG92, WB].
proved processor locality with larger block sizes [GS9 . :

e other two programs used in this studgpopt and

The poor locality in scalar workloads was attributed t0° .

fine-grain sharing of data among the processors. A st a/erlfy) were created by the CAD group at U.C. Berkeley

of the effect of block size on data structures concludg d hav_e been use_d for measurements at Berkeley and the

that the excessive invalidations are caused by a mism Crfivgrsny of Washlngton [EK89a, EK89D, EJ9L, ABQS].'

between data objects and block size [GW92] etailed descriptions of the workloads can be found in

) | Appendix A. All workloads were traced on a MIPS

R3000 based workstation using tRerberus multipro-
cessor simulator [RS99b]. Each workload is traced from
beginning to end to capture the entire behavior of the pro-
gram.

Program Characteristics

References Shared | Private Shared Private
Programs (Millions) Data Data Fraction of Data References
Inst | Data (KBytes) Reads| Writes | Locks | Reads| Writes

barnes | 114.23| 42.31 | 33.02 34.64 | 0.159 | 0.005 | 0.002 | 0.456| 0.379
cholesky | 90.67 | 34.32 | 970.02 | 783.38 | 0.496 | 0.075 | 0.013 | 0.287 | 0.130
fmm 288.30| 166.82] 380.41 | 460.14 | 0.136| 0.006 | 0.000 | 0.347 | 0.511
locus 805.62| 164.45] 1405.70| 1151.79§] 0.563 | 0.020 | 0.001 | 0.255| 0.162
mp3d 174.88| 60.82 | 701.91 | 181.53] 0.318 | 0.223 | 0.001 |} 0.302 | 0.157
ocean | 234.12| 92.38 | 140.16 | 984.45 | 0.264 | 0.031 | 0.014 | 0.560 | 0.132
pthor 275.87| 97.77 | 1233.09| 1026.75] 0.384 | 0.047 | 0.049] 0.350 | 0.176
pverify 181.29| 55.24 23.08 149.67 | 0.473| 0.015 | 0.008 | 0.320 | 0.186
raytrace | 471.13| 196.96] 667.30 | 2144.09] 0.318 | 0.003 | 0.002 | 0.429 | 0.248
topopt | 655.75| 141.60| 19.22 38.76 | 0.812 | 0.087 | 0.000 | 0.085| 0.016
volrend | 351.62| 79.92 | 395.61 | 2340.98} 0.477 | 0.007 | 0.003] 0.287 | 0.226
water 366.23| 127.67| 44.51 102.37 | 0.179| 0.016 | 0.002 | 0.577 | 0.227
Total Average
Overall | 4009.7] 1260.3] 6014 | 9399 | 0.381] 0.044 [0.008 | 0.354 0.213

Table 2: Reference characteristics of workloads for 16-processor simulation, using 4-byte blocks.

Table 2 shows the reference characteristics for a dbcontention by examining the length of these different
processor 4-byte block simulation of the various workypes of reference runs, but they provide no indication
loads on our SMP simulator, which runs on uniprocessalout the type or granularity of sharing within a block.
workstations. The number of shared references in Tablg\2 establish a new reference stream interval calleid-an
were measured using 4-byte blocks, which captures thadidation interval which is the string of references to a
number of truly shared words. Global unshared referenddsck by all processors between coherence induced inval-
and private references (Table 1) are lumped together idations (Figure 1). This allows a longer term and much
der theprivate heading. The fraction of shared accessesore detailed study of dynamic sharing behavior within a
has quite a large variation; it ranges from 0.1Garnes block.
to 0.90 intopopt, with an average of 0.43 for all work- The metrics we describe here are all concerned with
loads. However, as the block size increases, memorytloe processor-spatiabroperties of multiprocessor pro-
cations and references which are classified private in Baams. By this term we mean the number of unique words
ble 2 can become shared, so it is necessary to tracewathin a block that are accessed while it is valid in a cache.
references which are to shared memory. We also trackéds concept also encompasses measuring the fraction of
all references to private memory to understand its cahe block which contains these words, which we refer to
tribution to total memory traffic. As the cache simulaas thespan By using these types of metrics, it is possible
tors were designed to make the common transactions vierget an idea of the typical range of block sizes that make
quick through the use of hashing, tracking the referencanse to use with multiprocessor caches.
to private memory is generally not a major contributor to The results presented later in this paper demonstrate

simulator execution time. that a variable block size (or use of subblocks) can signif-
icantly outperform any fixed block size for all the work-
3.3 Metrics loads examined, reducing traffic by 88 percent while de-

creasing the miss ratio by 35 percent (on average) for 64-

The traditional reference stream interval used fowte blocks.
measuring sharing behavior is theference runfEK88, We can think of an invalidation interval as having two
AG88, GS94]. Along with related measures such as tprases: (1) a write phase and (2) a read phase. The write
read run read/write run and thewrite run (Table 1), it phase consists of local reads and writes, which cause no
can provide some idea of the residency time of a blocklis activity after the first write (assuming write-allocate).
one processor’'s cache (processor locality) and the apprhe read phase (if there is one) begins with the first re-
priateness of coherence protocol (invalidate vs. updatejnote read, and consists of local and remote reads. We

A major problem with the reference run as a metrigse the statistics of the references to individual words dur-
is the lack of information concerning how the processairgy invalidation interval to evaluate processor-spatial lo-
share data within blocks. It is possible to get a crude idea

Block Q
Remote Actions Local Processor Action

CPUy Reads —

Invalidation Signal —=|-+——— CPU x Writes (begins interval)

-<«—— CPU x Reads

Write Phase

<«— CPU x Writes

gllzlLJJ)z/ Eggg: __ [CPUXxReads
CPU y Reads |~ CPUxReads Read Phase

-<«——— CPU x Reads

Invalidation Signal —|=———— CPU z Writes (new interval)
y
Access Timeline

Figure 1: An invalidation interval is a string of references to a block, lasting from the first invalidation to a block until
the next invalidation. During the interval other processors may read the block, but not write it.

cality, which we will show is generally rather poor, i.ethe most popular class of protocols that are actually im-

large block transfers for shared data are demonstrategliemented in real systems [Ste90, HP96], which makes

be wasteful. them a more attractive target for performance improve-
Our goal is to provide the tools to aid in improvingnent. When a program is properly (re)structured to re-

spatial locality in shared memory systems, or at least prhice the movement of blocks between processors, write-

vide insight into the lack of spatial locality. It has beemvalidate based protocols provide better overall perfor-

demonstrated that shared data in multiprocessor wonkance.

loads have worse locality of reference than unshared data

[EK89b], but increasing the block and cache sizes haye

not always provided a solution. It is necessary to undg- Results

stand what kind of misses are causing poor performance

and examine the data structures/objects that produce such' NS Study examines SMP (symmetric multiproces-
problems. sor) memory access behavior on three levels, which suc-

Implicitly our study assumes a write-invalidate pro(_:essively refine the granularity of the inspection to smaller

tocol as backdrop against which our analysis is dor{ggtures. The first an.d coarsest level of analysis looks at
Invalidation-based protocols logically offer a better sold€ @9gregate behavior of all of the memory references.
tion to bus-based systems, due to the necessity of reduéYHgs_es are b_roken_down into true and falsg sharing fetch
traffic over the shared bus to memory. A pure update pRﬁ '|nva.I|dat|on misses, and the bus traffic due to dead
tocol (update on each write to a shared block) uses an Faaring is shown. .
timated 2-25 times the traffic of write-invalidate protocols 1€ Second level of memory reference observation
for coherence related operations [Lil93], and the amoUfPkS at the spatial reference pattern to shared blocks.
of network traffic increases with cache size. Thisis causEB'S_ consists of examining the unique (d|s_t|ncF) _words
by the requirement to update on each write to shared ca&?ﬂg"n a block that_ are re_fere_n(_:e(_j from the time it IS r_ead
blocks, regardless of the age (staleness) of the blockRiP the cache until the time itis mvahdattlad.. In addition,
the cache; this problem worsens as the number of bIotYl@_IOOk at the footprint of those words W'th'n the block,
in the cache increases, generating the most bus trafff&ich we refer to as thepan The span provides a means

for infinite caches. There are some adaptive protoc&isdetermining the spatial locality of a set of block refer-
that allow switching between update and invalidate f&F'C€S:

each block depending on the access pattern for the block; 1 drt]avelop ahardware prf(f).tofcol or S(;ftware restruhctur-
but of the non-adaptive coherence protocols, invalidatigdd Method to reduce bus tra |chr0m co eren;:yt?vgr ea;]d,
based protocols typically outperform update-based protbiS Necessary to understand the patterns of sharing that

cols [GS96]. Additionally, write-invalidate protocols ar@ccur and the competition of processors for words within
shared blocks. At our finest grain level of examination,

the words from the 10 worst (judged by misses) 64-byte
blocks from each workload are characterized by the ref-| Proc 1 Proc 2
erence pattern for each individual word. This provides
insight into the types of data objects which cause much of
the traffic problems when they are placed in close prox-
imity and provides hints into hardware and software solu- | cache 1 Cache 2
tions that can be used to eliminate or ameliorate much of
the traffic/miss problem.

System Bus

4.1 Gross Characterization of Misses Shared Block

Most cache coherence protocols associate a set of
states with each block in each cache, which are a subset

P1 P
of the MOESI family of protocols [SS86]. Each state con- \\ /

P 2 —_—

sists of binary values for each of three attributes: validity
(contains the most recent cached value of a block), exclu-
sivity (only copy of a block), and ownership (the block
in the cache possibly is inconsistent with main memory,
but is the “correct” copy). The MOESI states consist dfigure 2: Simple schematic of false sharing. Two pro-
M (exclusive and owned)) (shared and ownedE;, (ex- cessors access disjoint words within a block, causing
clusive and unowned$ (shared and unowned), ah¢in- it to transfer back-and-forth between the caches (ping-
valid). A shared block is one which can be presentin m@onging).
tiple caches; an owned block is inconsistent with memory,
requiring a write-back by the “owner” processor at some . : . .
point. All but thel state have the validity attribute assocl enforced with block size granularity, the whole bI,OCk IS
. . . transferred back and forth between the processors’ caches
ated with them. Almost any protocol (update, invalidat

or hybrid protocols) can be defined by a (sub)set of the@g a process referred to gng-ponging. In this situa-

states, plus the local and remote operations to the blOgg\%’eﬂtﬂrﬁgisr':g”rggiﬁ;::ti;ghuenZicr:]iissstzzycd'agtai:nr?of?rrll(-ar_
that cause transitions between the various states. Y:

. o - tant that the data has become inconsistent, since none
Using a MESI (noO state erte—lnvalldatlon—basedpor . . ’ .
g () f the data is actually shared, just the block that contains

protocol with an infinite cache, we simulated a number .
of parallel programs maintaining two levels of granula hem. The data does not need to be updated in the cache of

ity of coherence for blocks: for individual words and fo he other processor (since it is never used); only the main

the whole block, tracked in parallel during program exgiemory heeds to be properly updated when the block is

cution. Once a block has been referenced, a valid copyV\gftten back on eviction of the block from the cache. Note

it exists in at least one cache for the rest of the simulatioﬂr}‘."lt if the blocks, but _n_ot the Wor_ds, haye become Incon-
sistent, when a modified block is copied back to main
memory, only the modified words should be updated in

main memory; otherwise main memory will not be prop-

False sharing has been studied by a number §fy updated.
researchers to measure the impact [TLH94, DSR Misses due to false sharing are easy to determine in a
BS93], as a concern for protocol developers [Kng,lock with a reference behavior such as in Figure 2 when
Lil93, Dah95], and as a target for data restructurirﬁ?Ch processor accesses its own disjoint set of distinct
[EJ91, TLH90, JE95, HLO0]. As measured in [TLH94]yvords in a block. In that situation all misses except the ini-
false sharing misses generally have a smaller impact % compulsory misses are false sharing misses. In most
the miss ratio and bus traffic than true sharing miss€&ses, a determination of the type of sharing that is occur-
Our results show that false sharing misses become fing requires reference by reference analysis of block and
largest source of misses for our workloads (on avera%@rd states, as the access patterns of each processor to a
with blocks as small as 16 bytes. lock vary over time.

False sharing occurs when two or more processors To measure false sharing in less obvious situations,
share a cache block, but access disjoint words or portidhi$ necessary to examine the how the state of a word
of the block. A classic example consists of two procel§ affected by it being included with other words into
sors writing to their own distinct words within a block Plock granularity coherence unit. In our simulations,
(Figure 2). The words are not shared, but since cohereM& perform this task by maintaining coherence state for

Non-Shared Subblocks

4.1.1 Types of Sharing Misses

each block and simultaneously for each word in the blodlesulting from the prefetching effect of block transfers,
Each time a memory location is referenced, the valuesadfwhich one type still requires a coherency operation
the word and block states are compared. The result of(gmiss = imiss). The other three possible outcomes
access to a memory location can have one of three aarte those in which the type of miss or hit is identical for
comes: hit, fmiss, or imiss (see Table 1 for definitionshpth word and block coherence, which are classified as
these outcomes can be at variance when tracking coltere sharing hits or misses.
ence with word and block granularity. When these out- Table 3 provides a breakdown of the six types of shar-
comes are different, we record that false sharing has oty misses plus private/cold start misses on average for
curred. our workloads, distinguishing the cause of the misses and
When word granularity coherence is used, only trike comparison of the state of word granularity coherence
sharing and compulsory misses can occur because actimblock granularity (e.g., hit to fmiss). It shows that false
on other words have no impact. This section focuses simaring fmisses begin to dominate true sharing fmisses for
comparing word and block states for each shared memonyr workloads (on average) once blocks are bigger than
reference to determine the number of misses causedlBybytes, which would seem to disagree with the results
false sharing. of [TLH94]. However, most of our workloads (Table 6,
Although in these simulations the memory transaand Figure 16 in Appendix D) individually agree with the
tions occur instantaneously, in the real world there aresults of [TLH94].
different penalties depending on the type of coherence op- The extent to which the prefetching effect of larger
eration/miss processing that must occur. Note that whalocks aids in turning misses into hits (which could be
necessary, we present the results of simulations incorponsidered false sharing hits) can be observed by the de-
rating realistic timings (e.g., Table 5). For example, th@ease in miss ratio from the 1.0 normalized value as the
data may not be in the cache at all (requiring a fetchlock size increases. The two workloads with the heavi-
or may be present but in the wrong state (requiring a cest fraction of false sharing missgsvérify andtopopt)
herence operation but no data transfer). To differentiaentain blocks exhibiting the classic example of false
between the various memory system operations, we dibaring, which is caused by arrays which have elements
tinguish between two types of miss occurrences: fetekclusively accessed using the processor ID as the in-
misses which require loading a word/block into the caclagx. These references would be unshared except they are
possibly causing an invalidation of other copies of thgrouped together into blocks, which results in the clas-
block (fmiss); and an invalidation missrfiss) caused by sical false sharing ping-ponging pattern. The workloads
a write to a word/block in the shared state, requiring avith the largest concentration of false sharing fetch misses
invalidation operation. A cache reference can have ong(bit = fmiss) also show a large component of false
three outcomedhft, fmiss, imiss). If coherence is trackedsharing invalidation misses (hit to imiss). Conversions
at independently for words and blocks, an access to {lopgrades) of misses to imisses occur so infrequently that
cache can have one of the three outcomes at each cotieay are not visible on this scale. However, significant
ence granularity, leading t8* or 9 different outcomes. downgrades of imisses to fmisses can be seanpfd,
For example, a write reference might be a hit if tracked pthor, andtopopt (Table 6 in Appendix D).
word granularity, but be a miss for block level coherence, Data cache fetch miss ratios for the multiprocessor
which we would refer to as a false sharing miss, becaugerkloads fall far more slowly with an increase in the
a preceding reference to another word in the block caud#dck size than the data cache miss ratios for uniprocessor
a miss to occur at the by changing the coherence statevatkloads. Figure 3 shows a comparison of the infinite
block level, which would not have occurred with word codata cache fetch miss ratios for all workloads, the geomet-
herence granularity. Appendix C shows examples of haig average of these fetch miss ratios, and the DTMRs (de-
each of the different cases can occur. sign target miss ratios) for a 32 Kbyte data cache [Smi87]
By our definition, a true sharing fmiss or imiss is onever a range of block sizes. As the block size increases,
which occurs for both granularities of coherency. Faltiee rate of decrease of the miss ratios slows down, basi-
sharing misses are those which occur when the statecally staying flat with 128- to 512-byte blocks.
the word using block coherency results in a coherency Even in the region where false sharing is not a domi-
operation that would not have happened with word gramant effect (4 to 16-byte blocks), we can see that the work-
ularity. Three types of false sharing reference dowlsads show less improvement with increasing block size
grades are possiblehit = imiss, hit = fmiss, than for uniprocessor DTMRs. Beyond 16 bytes the im-
andimiss = fmiss, where the first outcome is wordprovement in fetch miss ratio shows rapidly diminishing
granularity coherence and the second result from whoturns. In some cases, increasing the block size matches
block coherence. Three corresponding upgrades (ube prefetching effect of larger blocks with counteract-
ful prefetches/state changes) in misses are also possilolg,increases in false sharing fetch misses, keeping the

Breakdown of Misses, Normalized to 4—Byte Blocks

Workload o 0%K| Total |- |True ?:h?;g? i [hit=>hit ks Sh?mg
orkload g;,e [Misseq €tCN| V. [LOIA Starkry,, N> NI=>IMISS=> TMISS=> | 1)
MissesMisses Misses fmiss|imiss| fmiss | imiss

4 11.000] 0.423|0.256| 0.321 |1.000.0040.009 0.000| 0.000 |0.00d
8 |0.874] 0.300| 0.162| 0.180 |0.6440.1320.095 0.003 | 0.002 |0.237
16 | 0.854] 0.228| 0.108| 0.104 |0.44Q0.2560.150 0.004 | 0.004 |0.414
32 |0.916] 0.186| 0.082| 0.062 |0.33(J0.4010.176 0.006 | 0.004 |0.5871
64 |0.992]0.161| 0.069| 0.038 |0.2640.5260.187 0.007 | 0.005 |0.725
128 1.028] 0.144| 0.062| 0.024 |0.23(@0.6020.183 0.008 | 0.005 |0.798§
256 | 1.114]0.119]0.058] 0.014 [0.19710.71(0.199 0.009 | 0.005 |0.923
512[1.193]0.098 0.055] 0.008 |0.161]0.78§0.229 0.010 | 0.005 |1.032

Average

Table 3: Breakdown of workload misses into various types of false sharing and true sharing misses for 16 processors,
normalized (ratio of miss ratios) to total (fetch, invalidation, cold start) misses for 4-byte blocks, arithmetic average
over all workloads. The notations under the false-sharing heading, shdhagniss, indicate the fraction references

that are hits with 4-byte block coherence that become fetch misses with larger block sizes.

Workload Miss Ratios sharing are the cause of most of the misses and thus most
02 [1 1 1 of the bus traffic. However, as will be demonstrated,
A DaaMiss Ratios (PR O most of the words within a block are not accessed be-

tween invalidations to that block. This results in a large
amount of unnecessary traffic from moving the unused
words around, which we refer to aead sharing The
next section (Section 4.1.2) examines the variation in the
make-up of bus traffic as the block size increases. Even
if the misses decline with block size, the traffic increases
because the words within the larger block are not properly
exploited, even for uniprocessor caches [RS99c]. Our re-
sults in Section 4.3 examines data utilization in a block
(spatial-processor locality) while it resides in a cache.

Miss Ratio

4.1.2 Dead Sharing

0.001 — Heel, TaytraceEE3=mamer. %’]f
fm Memmee, .
0.0005 ; ; | | >I< """" a i In an attempt to measure the impact of large block
4 8 16 32 64 128 256 512 sizes on bus utilization in an implementation independent
Block Size manner, we use the bus traffic metric. Each transaction

transmits a 4-byte address across the bus plus (when ap-
Figure 3: Data cache fetch miss ratios compared with Beopriate) some number of data bytes. The bus traffic con-
Kbyte data cache design target miss ratios from [Smi83]sts of fetches (address + fmisseblock size) and inval-
The averagevalue is computed using a geometric aveidations (consisting only of the fixed overhead to transfer
age. an address over the bus, since no data transferred is re-
quired). This is a reasonable estimate for bus utilization

) i for split-transaction busses. Figure 4 shows average bus
overall number of misses fairly steadgogan pthor). yaffic for infinite caches with 4- to 64-byte blocks (rel-

Some of the workloads show a U-shaped curve, wilfiye to 4-byte block traffic), broken down into 5 main
misses hitting a minimum near 64 bytesa(nes wa- ynes of traffic: private traffic, global unshared traffic, in-

ter, mp3d). Two workloads have the minimum numbeyjigation signals (address transfer only), active shared
of misses with 4-byte blocks and explode with false shafzsic (truly utilized) and dead shared traffic.

ing misses §verify, topopt). Some workloads have litte The dead shared traffic is determined by analyzing

problem with false sharing and show continuing improv@hich words in a shared block have not been accessed

ment with larger blocksdholesky, raytrace, volrend). g the time the block is invalidated. The active shared por-
In most SMP workloads, compulsory misses and Ty of the shared traffic consists of the words that were

Breakldown ofIBus Tralffic

Relative to 4-Byte Block Traffic

private

global unshared
invalidation
active shared
dead shared @ p——d

Normalized Bus Traffic
o = N w SN (@] (e)] ~ (0e]
|

4 8 16 32 64
Block Size (bytes)

Figure 4: Breakdown of workload average bus traffic, normalized to 4-byte block traffic.

actually referenced before the block was invalidated. Ther of parameters to consider. For example, bus utilization
breakdown shows that traffic from private blocks is relés a better metric than bus traffic for measuring how close
tively insignificant (from 1.17 percent for 4-byte block$o saturation the bus is. In such a case, implementation
to 0.10 percent for 64-byte blocks on average) and traiependent issues must be considered, such as bus width,
fic from global unshared blocks starts at 9.3 percent amctual transaction overheads, bus pipelining, memory la-
declines to 0.5 percent for 64-byte blocks. Dead shaency, split vs. non-split transaction, etc. Bus utilization
ing traffic causes about 41.0 percent of the traffic wiind saturation issues are beyond the scope of this paper
16-byte blocks and grows very rapidly with larger blockut are considered in [RS99a]. Assuming a one cycle
sizes. The traffic approximately doubles for each increasm#dress transfer time and a split-transaction bus, the bus
in block size beyond 64-byte blocks, reaching 54.3 timé&sffic information in Figure 4 shows a reasonably good
4-byte block traffic when 512-byte blocks are used. Tlapproximation of relative bus utilization between various
active shared traffic increases much more slowly thatock sizes. In a memory system that does not support
dead shared traffic. Increases in the active shared tradfidit-transactions, the bus would be unusable during the
are due to the incorporation of global unshared data imtemory latency period as well, which would cause a dra-
shared blocks as the block size increases, so that glabatic change in the relative bus utilization from what is
unshared references are turned into active shared refi@splayed here.
ences, causing more active shared traffic. Dead sharing
traffic hits 79.3 percent of totlal traffic with 64-byte b!oc;ka__z Granularity of Sharing
and reaches 95.1 percent with 512-byte blocks. This indi-
cates that there is much room for enhancing the operation When the set of words being written to a block by one
of shared memory systems. processor shows little correspondence to the words read
Dead sharing traffic results from both false and trdxy other processors, there is a strong indication that false
sharing that causes a block to be invalidated before all tred dead sharing are a problem. For example, if gener-
words within the block can be utilized. The next sectionlly one word in a block is the target for all writes to the
looks at the access patterns of distinct words within théock, but many of the other words are read-only after ini-
blocks to understand the cause of this dead sharing. tialization (as occurs in th&lobalMemory (or similarly
Note that when trying to establish statistics like busamed) data structure used for global shared variables in
performance for a realistic system, there would be a numany of our workloads), most of the data in that block is

Read Overlap Wlth Preceding Writes erte Overlap with Precedlng Writes

50 el L1 | | N Y B | 50 | T N [N) I I |
64 Byte Blocks 64 Byte Blocks
16 Processors 16 Processors
40 - - 40 — -
8 8
o s}
tao— - tso— -
5] o -
c c
8 I}
=20 - ©20 L
S_J [}
Average Value 2.61 Words a
10 — - 10 —
Average Value 2.48 Words
i Aleom oo]

L L
7 8 9 101112 13 14 1516 0123 435

| L
6 6 7 8
f Overlapping Words Overlapping Words

Figure 5: Read-write sharing during invalidation intef~igure 6: Write-write sharing between invalidation inter-
vals, average of all workloads. vals, average of all workloads.

needlessly invalidated almost every time a write occursfor 64-byte blocks, calculated by logically ANDing the
Figure 5 shows a histogram of the number of reads thvatctor of words written during successive invalidation in-
overlap preceding written words from the same invalidéervals when the writers have different processor IDs. Al-
tion interval for 64-byte (16-word) blocks, averaged ovenost 50 percent of the succeeding intervals which have
all workloads. Roughly 50 percent of invalidated cachdifferent processors writing show no overlap in the set of
blocks have no overlap of the words read in the secowdrds written. Of the remaining blocks which have at
phase of an invalidation interval with the series of writdsast one written word in common, the next largest value
that began the invalidation interval, meaning that noseows an overlap of only a single word. The histogram
of the updated information was accessed before anotimelicates a bifurcation of access patterns to blocks: either
cache miss occurs for the processors reading the bloglkcceeding processors accessing a block have very little
Approximately 20 percent of blocks have a read-writgrite sharing, or share a large fraction of the block (the 16
overlap of only a single word. The number of updatedord component is somewhat prominent). Figures 5 and
words read before an invalidation rapidly falls off, bud indicate that a coherency protocol that could adaptively
with significant components for 8 and 16 words. Theshoose large or small granularity for enforcing coherence
statistics demonstrate that half of the invalidations ateuld be very successful in reducing coherency traffic.
caused by updates to words which are not subsequently
read by other processors before the blocks are aga|n4n3 Spatial Locality
validated, fully wasting the information transfer. A large
fraction of those blocks which do read updated words only A typical way to measure spatial locality for unipro-
read a single word before invalidation. Increasing tleessors is to examine the change in the miss ratio as the
block size affects the degree of overlap by increasing thiock size varies. A more insightful metric for multipro-
likelihood that writes by different processors prematuredgssors is our characterization of the read and write refer-
invalidate information in the block, which causes the aences to blocks between invalidations. A type of spatial
erage overlap to peak at 2.7 words for 128-byte blockeality (which we refer to aprocessor-spatial localify
and drop with larger block sizes (Table 7 in Appendix E§an be determined by measuring the span and number of
indicating a massive waste of bus traffic. distinct words (defined in Table 1) referenced in a block
Another method to examine how words within blockghile the block is valid in the cache, regardless of the in-
are shared between processors is to measure whetégeaving read accesses by other processors. For each in-
writes by different processors to the same block happervididated block, the words within the block are examined
occur to the same set of words (write-write sharing graio- see how well they were utilized. If too many of the
ularity). Figure 6 shows a breakdown of the average cdstched words are not used, bandwidth is wasted in the

10

Distinct Words Read Distinct Words Written

50 | 1 I (N I N (S) I O A | 60 N N Y I [S N (N Y I A |
64 Byte Blocks 64 Byte Blocks
_ 16 Processors 50 16 Processors
40 — -
g =40 =
30— L 2
S -
..qc_-; 030_ -
©20 - S
P | %20— -
a
10 Average Value 4.35 Words | Average Value 3.98 Words
104 -
—
0 rrr1rr1r1rrr1rr1r1rr1T 1T 1T T T 0 T rTr T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 45 6 7 8 9 1011 12 13 14 15 16
Number of Words Words Written in Block

Figure 7: Distinct words read before invalidation, averagiégure 8: Distinct words written during an invalidation
of all workloads. interval, average of all workloads.

form of dead sharing. Likewise, if too many words in theould be caused by a remote write, or a remote read fol-
invalidated block are not subsequently updated, valid d%a/ed by a local write. For many of the workloads, the
was needlessly canceled and likely will have to be re-reagstograms of the number of distinct words read/written
also a waste of bus bandwidth. An increase in block SIGEigures 7 and 8) are very similar in composition to the
increases the likelihood that a remote write to unrelatggan of the words read/written (Figures 17 and 18 in Ap-
data can unnecessarily invalidate a block from the cachendix E), indicating a great deal of spatial locality to the
causing dead sharing. _ _ _ _ portions of the block that are used. To understand the un-
To provide a more detailed view of spatial localitygerlying cause of the poor block usage, we next examine

Figures 7 and 8 show the number of distinct words regge memory reference patterns that cause dead and false
within a block and the number of words written to a blockharing to occur.

while the block is in the cache, respectively, for 64-byte
blocks, averaged over all workloads. This shows that s
the plurality (42 percent) of the blocks are invalidate -4 Examination of Problem Blocks
by another processor before more than one distinct word Many of the dead and false sharing problems revealed
is read, and only a single word is written 58 percent @f the previous sections can be directly linked to poor pro-
the time during an invalidation interval. Except for singramming style or ignoring the role of the cache in shared
gle word blocks that have 100 percent usage (due to @gemory systems. Although caches are designed to be in-
mand fetching), the percentage of blocks with only a sigisible to the programmer, poor data placement can have
gle word read or written before a block is invalidated holdglarge effect in reducing system performance.
in a narrow range over block size, ranging on average be- Table 4 shows statistics about the 10 worst behaving
tween 37.6 and 45.8 percent for reads, and between 48dcks (based on the number of fetch misses) for each
and 64.0 percent for writes (Figure 19 in Appendix Epf our 12 workloads. For each workload, we specify the
The data shows that not much of the information in faction of actively shared memory these blocks occupy,
block is used in any manner before another processor the fraction of total shared references to these blocks, the
terferes, either by causing an invalidation of the data (ifaction of false and true sharing fetch and invalidation
the case of a remote write), or by reading the block (plagisses for which these blocks are responsible, and a clas-
ing it in the sharedstate), forcing the next write to causesification of the reference patterns of the words within
an invalidation miss. the blocks. The categorization of the words within the
These figures indicate that it is not often that a wholstocks are partially based on reference patterns classified
block need be invalidated, since frequently only a singie[GW92, CBZ95]. The 10 worst blocks are (on average)
word is written before another invalidation occurs, whidfesponsible for a good deal of the false sharing misses as

11

Categorization of Words Within the 10 Worst Blocks

10 Worst Blocks Reference Types (percent of words)

Progranmj % Shared % Fmisses % Imisseg Private Shared

mem| refs| False/ True| Falsg True] un [pl [pro[prw [hI] I [ro [rm][mi [br [rw
barnes| 1.62| 4.7 | 22.7|18.7| 11.1({26.7§14.4 0 | 0 | O |0.6/{31.9] O (1.9 1.2|48.1] 1.9
cholesky} 0.06(11.4| 75.2| 6.1|37.3| 05| 6.2 0| O |3.1] 0(88.10.6|0.6/ O |1.2| O
fmm J0.12({0.1| 84 | 48| 02|24§06|06/ O | O |J1.2|175 O 0| O | O [80.0
locus | 0.03|8.2|53.0(1.9|20.3| 5.9]30.0/6.2| 1.2(20.6]1.2| 8.8| 2.5| 0 {10.0/14.4] 5.0
mp3d | 0.08/ 26| 9.1 | 53| 29|47]119 0|1.2|25)0.6/1.2|3.8/0.6/| 0 |10.6/67.5
ocean | 0.14| 4.7 | 20.9|35.2| 3.8 |25.910.0 0 | O |32.5)2.5/ 0 [36.2/3.8] 0 [15.0] O
pthor] 0.03(30.5| 63.4(49.4| 36.1|38.4]16.9| 0 (15.6] 1.2 |1.2|12.5/6.2| 0 | 0 |31.2[15.0
pverify 1 0.52| 7.4| 29.5| 5.7|29.9| 0.2 }10.0, 0 | 1.2|61.2] 0 |10.0, 6.2| O | O |10.6/ 0.6
raytrace] 0.05| 1.0 | 56.4 |52.2| 67.6|83.8]46.2| 0 | 8.8| 0.6 1.2|10.6/ 7.5| 0 | 0.6 |15.0| 9.4
topopt | 1.27|18.0| 65.2| 8.0|92.3| 7.6]10.00 0| O |[25J 0| O | O | O |45.6/33.1] 8.8
volrend | 0.06| 9.8 | 50.5| 5.6 | 0.1 |18.3]70.00 0| O | O J1.2/10.6/1.2|3.1) O |8.1|5.6
water | 1.04| 0.9|100.026.6f 0 |0.7]75/0| O | O J1.2/912 0 |O| O | O | O

[Average] 0.4 8.3] 46.2]18.3] 25.1]17.9] 19.5/0.6] 2.3[10.3] 0.9]23.5] 5.4]0.8] 4.8]15.6[16.2)

Table 4: Categorization of the word reference patterns of the worst behaving 64-byte blocks for each workload. The
categories for classifying each word in the worst blocks consistuof: unusedpl - private locks,pro - private
read-only,prw - private read-writehl - high contention locks>* 3 seeking accessl), - low contention locks (3 or

fewer processors seeking the lock on average),shared read-onlym - shared read-mostly (at least 75 percent of
references are readsii - migratory (more than 6 uninterrupted references on average by each processor accessing
it), br - broadcast (one processor writing, many processors readingjyandead-write (words that do not fall into

the other categories).

well as many of the true sharing misses. The number4#.1 Improvements
misses are far out of proportion to the number of mem- Four workloadsarn thor t t water) wer
ory references and the fraction of shared memory space our workloadsiames, pthor, topopt, water) were

these blocks occupy. The basic problem is that variab psen to be restructured in an attempt to improve pro-

. . . am performance. We modified the workloads to repair
are placed (perhaps inadvertently during dynamic mef: .
ory allocation) into the same blocks as variables or da%ozle?ﬁ o(tj)s;er_\ll ed fl?hthehworst ten 5164;b);the) bloiTS c:jf
structures with incompatible reference patterns (forexaﬁf”}C - | Ne details of the changes made o the workloads,

ple, arrays of private read-write variables that are acces (9 ;hef data shtru?ttjhr es asa)mzted W'tg tr;e 1% proﬁlem
by processor ID, read-only variables next to frequen ocks Tor each of the workioads can be found in Ap-

:) .nendix B.
written variables, etc). Almost one-fourth of the words i . . .
these blocks are locks with low contention (i.e., not much When modifying the data structures involved with the

competition for them), that in isolation would cause Iittl¥vorSt 10 blocks, some of these changes carry over 1o

problem, but interact poorly together because locks ha Qer blocks not in the top 10. However, improvements to

poor processor-spatial locality of reference. Other prof worst 10 blocks could also worsen behavior in other

lem words arébroadcastwords that cause false sharingloc_ks' E]or egampl_e, |solz':|ngkp|ebces do(;‘_data struc(;[ures by
misses when placed together (but are still likely to hav cing them in their own blocks (by adding unused arrays

fair number of true sharing misses in isolation), and rea _mtegerfs to pad-outlfhe r?eml_nersgl, C?(n cgtLlhs?hmlsses 0
write variables that interact together poorly. Increase for many well performing blocks wi € same

In Appendix B we provide a more detailed analys%ata Iayput, causing lackluster improvement in the num-
bgr of misses.

of each of the workloads to determine the kind of da F Cof th ructured th ber of
structures that are causing most of the problems. Here or most ot the restructured programs, theé number o

we present a summary of our attempts to restructure 4jtructions increases shght_ly. Th|s_ IS gengrally_due to
tteg extra pointer dereferencing required by isolating per-

the workloads ourselves, and some programming hints .
prevent such problems in the future. processor datq in separate data structures. On average,
the number of instructions increases by less than 1.5 per-
cent, while reducing the number of misses by more than
20 percent (Table 5). Although it depends on how much

of a problem the data miss ratio is to begin with, this ap-

12

Data Restructuring to Reduce Coherence Misse&4-byte Blocks)
Infinite Cache, Single Cycle Memory Realistic System
Program Overall False Sharing | Instruction Execution Time
Miss Reduction| Miss Reduction| Increase | 16K cache| 64K cache
barnes 12.0% 21.1% 0.0% -1.4% -6.7%
pthor 21.4% 53.3% 0.3% -7.2% -9.5%
topopt 31.9% 30.1% 3.9% -42.3% -46.0%
water 20.0% 99.9% 0.2% -9.0% -6.0%
| Average | 21.3% | 51.1% | 11% | -150% | -15.4% |

Table 5: Results of rearranging data structures to reduce coherence misses, 64-byte blocks.

pears to be a reasonable trade-off. Using a multiprocess,g oxs00 Tag 0x801 Tag 0x802 Tag 0x803
sor timing simulator with 24 processor cycle memory la-

tency supporting split transactions, 4-byte memory path (4 \ Reduced / ereased
processor cycles per word), 4-byte memory addresses for Traffic Traffic

each memory transaction, and 4 processor-cycle bus arbi-

tration, we present (Table 5) the effects of the optimiza- 720 0x400 a0 0x401

tions for two cache sizes (16K and 64K bytes per proces- Keep as

sor for 16 processors). Since the effects on the miss ra- individual

tios reported in Table 5 are for infinite caches with single

cycle memory accesses, effects such as capacity misses Tag 0x802 Tag 0x803

are not included. (The timing simulations, in the last two

columns, are based on finite cache sizes.) When us . L .) . .
. . Igure 9: Heuristic algorithm: neighboring blocks are
small caches, the capacity misses can overwhelm the co-_, . .) .
ombined into a larger block when it reduces traffic, oth-

her.en.ce MISSEs, possibly worsening behavior if spatial Eorilvise the blocks are left at their current size.

cality is disturbed too much. The end result of the op-

timizations reduced execution time by approximately 15

percent. In the case dbpopt, which spends most oflar shared variable only to increment the value. The value

its time waiting for memory, the spatial locality was inis actually only used in extremely rare cases (none that we

creased at the same time that false sharing was reduodderved during program execution), but the incrementa-

leading to a tremendous increase in performance. In tien by each processor causes many true sharing misses.

next section, we present some programming hints; hoWhis variable can be restructured to isolate private copies

ever, these optimizations must also be reconciled with ttoeg each processor, to be summed up when the value is

impact they have on spatial locality and capacity misseactually needed. By examining program behavior more
carefully using tracing and by programming with cache

4.4.2 Programming Hints coherence in mind, significantly higher performance can

be obtained.
Based on the detailed examination of the problem ar-

eas of our workloads, we provide here a distillation of th
poor programming choices that lead to so many false shar

ing misses: high contention locks should be isolated from To demonstrate the performance improvement that
each other and from all other data; in many programs thé¥h be obtained by reducing false and dead sharing, we
are keptin arrays. Low contention locks should be placgde data collected from trace driven simulations of each
with the data they protect. Some arrays (regardless of dgtgagram to find the best block size for each individual
type) are accessed using the ID of the processor as thejrd in the memory space. Each program was simulated
dex into the array; in some cases this results in a groupgth block sizes from 4 to 512 bytes. For each shared
essentially private read-write variables being assignedyerd, we kept track of the address tag, the number of
the same block, causing a large quantity of false sharipgisses and fmisses, and various other statistics. Using a
misses and dead sharing traffic. simple greedy algorithm designed to minimize bus traffic,
Sometimes variables that appear to have true sharg demonstrate that a cache that supports multiple block
misses can be restructured to eliminate almost all missgises significantly outperforms all fixed-block systems.
For example, irpthor each processor accesses a particu- The heuristic algorithm that is used to select the block

5 Proper Block Sizing

13

sizes is designed to minimize bus traffic through the ufe size of the blocks, most words are still included in the
of variable (static) size blocks; i.e., the block size choidggger blocks (top of Figure 10). From the results shown
varies over the memory space of the program, but angre, we conclude that: (1) the use of variable block sizes
given word is assigned to a specific fixed block size fpermits the system to compensate for a mixture of false
the entire program execution. Included as part of the &tsaring and high processor-spatial locality; (2) alternately,
traffic is a 32-bit (4-byte) address for each bus transactibshould be possible for the programmer to rewrite his or
(both imisses and fmisses) and the data transferred olver code to avoid many false sharing situations (Table 4).
the bus (fmisses only). Figure 9 shows the process Ngte that the method we have used for this analysis would
which blocks are evaluated for the best size. Starting wiglenerally be of very little use in a real computer system,
each word in the memory space that is used, neighborsigce applying it would require that programs be traced
blocks are combined if when combined they produce leasd analyzed, and that each block of the program address
bus traffic than when left as single blocks. When neigbpace be tagged (or otherwise identified) with a block size.
boring words have similar access patterns and it is usiemight be possible to have the compiler do some static
ful to prefetch one while demand fetching the other, tfanalysis, and associate block sizes with regions, but the ef-
traffic is reduced when the words (or blocks) are groupéttiveness of that approach has not been considered here.
into a single unit due to fewer address transmissions ovidre purpose of our analysis, rather, has been to identify a
the bus. When excessive traffic is generated due to fagsemising direction for improvement.
or dead sharing, the problem blocks are isolated by not In a follow-on paper [RS99a], we use the results of
combining them into larger units. The combining prahis research to develop an invalidation-based cache co-
cess continues until the maximum block size of 64 bytesrence protocol that uses dynamically-sized subblocks
is reached. for fetching and invalidation. By tracking the pattern of
Figure 10 shows the fixed (uniform) block size simuwrites to a block between remote events to the block, the
lation performance, normalized to the performance of asmallest subblock with a power-of-two number of words
heuristic (the line across the lower two graphs at valtleat contains the modified words is used as the subblock
1.0; note the log scale on the vertical axis). The heurisize. The subblock size is reevaluated occasionally, and
uses less traffic than any fixed block size for all worladjusted to the most commonly measured value. Using
loads, sometimes as much as 47 times better in the meatiable subblock sizes, we find that our protocol outper-
extreme casepferify). On average it has 87.8 percerforms a regular full block coherence protocol for all work-
less traffic than a 64-byte fixed size block. At the sanh@ads, reducing the execution time by 35 percent (on av-
time, the number of misses is reduced by an averageeofge), as well as outperforming fixed size subblock pro-
35.2 percent. In the worst case it is still within a factor dbcols.
two of misses for fixed 64-byte blocksdlrend). Com-
pared with 4-byte fixed size blocks, the heuristic has 70.4 .
percent fewer misses and 23.8 percent less traffic. Nete Conclusions

that other heuristics are possible; for example, one could _ _
try to minimize the miss ratio rather than the bus traffic. !N this paper we have analyzed shared memory misses

Timing simulations would be required to determine which'd bus traffic at three levels: in aggregate, statistically as

heuristic performs the best, but we believe that reduciffg"ds within blocks during the invalidation interval, and

traffic (while not increasing misses) on a shared bus sPy- examining special/bad cases in fine detail. The bulk

tem is a reasonable simple target, given that bus utilizatigR2!ysis of misses shows that false sharing is generally not

is typically the bottleneck, and that bus traffic correlat&d€ largest fraction of the total misses for most workloads,
with cache misses. and therefore CPU idle. being fewer than cold start and true shared misses. When

The block sizes chosen using our heuristic (the qinalyzing the traffic caused by cache coherence, we do

agram second from the top of Figure 10) are most friind that a significant problem is the fraction of bus traffic

quently 4-bytes and 64-bytes, with 8-byte blocks slightf)r/‘at is transferred between caches without being accessed,

less popular. That these two extremes are most popUllich we refer to aslead sharing _
is not surprising, based on the results from previous sec- Our analysis of invalidated blocks shows that typically

tions. Large blocks are best for shared regions with higRly & small fraction of a block is referenced before it is
processor locality; small blocks work best for regions mvahdgted. Generally there is little or no oygrlap between
which there is a high probability that adjacent words are i€ régions of cache blocks updated by writing processors

use by different processors. Note, however, that in gene#dfl réad by other processors between invalidations to the

there is a large variation between the optimal block sizB9CKS. Processors writing to the same block show very

titffe overlap in most situations, but a great deal of overlap

between the different workloads. We can also see ftf vele X) :
when the number of blocks of each size is multiplied BY & significant number of occasions. From this analysis

14

Word Placement in Heuristic Layout

x|

E
obeIIAY

L 11111
mm&m?ﬁ_l

E ODBIOAY __| S5eeinmnnnnmnns mnnni
E (&) AT D
JEIE - 19Jem = Jayem HEn
Vo
9o
ﬁ\v
B S =
pualjon I+ puaJjonTEE

1dodo) M

-

DR

aoenAhel

g Heuristic

35eiAel ﬁ_l a0elAG] % s
E E XK 2|
Ajuand Ayuand M T _
5@ Joupd %

uead’o %

_ Fraction of Total Memory Words
Normalized Misses

Workloads (block size in bytes)

Choice of Block Sizes Usin

(%]
()
c
=
©
@

O

T

pedw D m, mSW M.M,M,Um % _”

" nﬂ_ mwmwmmﬂ_o w
Snooj

AR e =

ol el =g =

E] : S

o

Z

>v_mm_ocoEt.ﬁ_l

sauieq

RiSsio0 Eﬁ

Traffic Relative to Heuristic

AL Eﬁ
A EEa
5 DD MDD
SamamE R A
UBSIU =220
RRDI RO
E DI AT
]

-

1
0.9

10 {Misses Relative to Heuristic

0.9 —
0.8 —
0.7 —

L
I e B
©c o oo

0.8
0.7 —

1 | |

© 10 - © w8 R

N e SoSSIN aAneRy © 1))
SPIOANA JO uonoRIH S)20|g Jo uonoel

Figure 10: Normalized traffic and misses for fixed sized blocks normalized with respect to the variable block size
15

heuristic and the choice of block sizes the heuristic uses. Note the log scale on the y-axis on the lower two graphs.

we believe a good case can be made for adaptively @BHM93] David R. Cheriton, Hendrik A. Goosen, H. Holbrook, and
tecting the granularity of sharing within individual block$hilip Machanick. Restructuring a Parallel Simulation to Improve Cache

: ot : ehavior in a Shared-Memory Multiprocessor: a First Experience. In
and appropriately adjusting the portion of the block that roc. 1993 Workshop on Parallel and Distributed Simulatipages

invalidated. 159-162, San Diego, CA, May 16-19 1993.

False sharing (and to some degree true sharing) sh@¥gs1] K. M. Chandy and J. Misra. Asynchronous Distributed Simu-
a tremendous degree of concentration. The ten blodk®n Via a Sequence of Parallel ComputatioBsmmunications of the
with the highest number of misses from each workloatfM 24(11):198-206, April 1981.
contain close to half of all false sharing misses on av@pah95] Fredrik Dahlgren. Boosting the Performance of Hybrid

; : : ooping Cache Protocols. Rroc. 22nd Annual International Sympo-
age and a large number of true sharing misses and m\g'l{l]m on Computer Architecturpages 60—69, Santa Margherita Ligure,

idations. These blocks generally take up a tiny fractio@y, june 22-24 1995.
of the shared memory Space and a small fraction of tofg\ig7] s. Devadas and A. R. Newton. Topological Optimization of
data references. By looking at the reference patternsnfitiple Level Array Logic. IEEE Transactions on Computer-Aided

each of the individual words within the offending block&esign of Integrated Circuits and Syster@\D-6(6):915-941, Novem-
we found a large problem with arrays of locks and array$§ 1987.

: : e ; SRt93] Michel Dubois, Jonas Skeppstedt, Livio Ricciulli, Krishnan
of otherwise private words that exhibit classical false sh amamurthy, and Per Stermm” The Detection and Elimination of

ing. Another S.igniﬁcant prOb_lem was f!’equently accessefeless Misses in Multiprocessors. Rroc. 20th Annual International
read-only variables placed in proximity to write-sharegSymposium on Computer Architectupages 88-97, San Diego, CA,

variables. The concentrated nature of bad behavior Mgy 16-19 1993.
dicates that a little attention to detail by the programm[ﬁ]%] Susan J. Eggers and Tor E. Jeremiassen. Eliminating False Shar-

would go a long way towards reducing misses and Siﬁﬂg. In Proc. 1991 International Conference on Parallel Processing

ificantly i g ;) torts led to 8 2 ages |-377—1-381, August 12—17 1991.
nimcantly Improving performance; our etiorts 180 10 & 24y gg) gsan J. Eggers and Randy H. Katz. A Characterization of

percent dgcre_ase in total mis_ses, _resulting in & 15 perceiing in Parallel Programs And Its Applicibility to Coherency Pro-
decrease in simulated execution time. tocol Evaluation. InProc. 15th Annual International Symposium on

We exam|ned a Slmple greedy algo”thm heunst@omputer Architectur,epages 373-382, Honolulu, HI, May 30-June 2
which determined the best size block with which eacfe>:

: : : 89a] Susan J. Eggers and Randy H. Katz. Evaluating the Perfor-
word in main memory should be associated. Based Eﬁnce of Four Snooping Cache Coherency ProtocolBrdr. 16th An-

the results Of.this heuriStiC_v we find that by USin_g & Valhual International Symposium on Computer Architectyrages 2-15,
ety of block sizes, bus traffic can be reduced a significartusalem, Israel, May 28-June 1 1989.
amount over 64-byte fixed size blocks while generally rgek89b] Susan J. Eggers and Randy H. Katz. The Effect of Sharing on

ducing miss ratios. Many of the best choices of blodke Cache and Bus Performance of Parallel Progran®de. Third In-

: : : - —_— rnational Conference on Architectural Support for Programming Lan-
sizes for improving performance using our heuristic we %ages and Operating Systerages 257—270, Boston, MA, April 36

4- and 8-byte blocks (due to false and dead sharing), ¥8tg. acm.

.mO.St of the data should be placed in Iarger blocks. TfP_@S94] Jeffrey D. Gee and Alan Jay Smith. Analysis of Multiprocessor
indicates that a cache that supports variable granulamtymory Reference Behavior. Proc. 1994 IEEE International Confer-
fetching and invalidation (i.e., judicious use of subblockgg EgonCCOrEpgter ?Ae:l;g)n: VbLSI1|8 Clgr?.ggtfrs and Procesgaiges
should greatly enhance program performance. —>9, Cambridge, MA, October 10-12 1994. =

[GS96] Jeffrey D. Gee and Alay Jay Smith. Evaluation of Cache Con-

sistency Algorithm Performancé2roc. Fourth International Workshop

on Modeling, Analysis, and Simulation of Computer and Telecommuni-
Refe rences cation Systemgages 236-248, February 1-3 1996.

[AB95] Craig Anderson and Jean-Loup Baer. Two Techniques for IfW92] Anoop Gupta and Wolf-Dietrich Weber. Cache Invalidation
proving Performance on Bus-based Multiprocessors. Prioc. First Patterns in Shared-Memory MultiprocessortEEE Transactions on
IEEE Symposium on High-Performance Computer Architectipages Computers41(7):794-810, July 1992.

264-275, Raleigh, NC, January 22-25 1995. [HL90] Mark D. Hill and James R. Larus. Cache Considerations for
[AG88] Anant Agarwal and Anoop Gupta. Memory-Reference ChaMultiprocessor Programmer€ommunications of the ACN83(8):97—
acteristics of Multiprocessor Applications under MACH.Rroc. 1988 102, August 1990.

ACM SIGMETRICS Conference on Measurement and Modeling of qu’pp%] John Hennessy and David A. PattersaBomputer Architec-
puter Systemsgages 215-225, Santa Fe, NM, May 24-27 1988. ture, A Quantitative ApproachiMorgan-Kaufmann, 2nd-edition edition,
[BH86] J. E. Barnes and P. Hut. A Hierarchical O(N log N) Force Calt996.

culation Algorithm. Nature 324(6096):446-9, December 1986. [JE95] TorE. Jeremiassen and Susan J. Eggers. Reducing False Sharing
[BS93] William J. Bolosky and Michael L. Scott. False Sharing andn Shared Memory Multiprocessors through Compile Time Data Trans-
its Effect on Shared Memory PerformantSENIX Symposium on Ex- formations. InProc. Fifth ACM SIGPLAN Symposium on Principles and
periences with Distributed and Multiprocessor Systepages 57-71, Practice of Parallel Programmingpages 179-188, Santa Barbara, CA,
September 1993. July 19-21 1995.

[CBZ95] John B. Carter, John K. Bennett, and Willy ZwaenepogdKB95] Murali Kadiyala and Laxmi N. Bhuyan. A Dynamic Cache
Techniques for Reducing Consistency-Related Communication in D&db-block Design to Reduce False SharingPtac. International Con-
tributed Shared-Memory Systen#fCM Transactions on Computer Sys-ference on Computer Design: VLSI in Computers and Procegsages
tems 13(3):205-243, August 1995. 313-18, Austin, TX, October 2—4 1995.

16

[LC86] G.C. Lie and E. Clementi. Molecular-Dynamics Simulation ofSWG92] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop
Liquid Water with an ab initio Flexible Water-Water Interaction PotenGupta. SPLASH: Stanford Parallel Applications for Shared-Memory.
tial. Physical Review A (General Physic8B(4):2679-93, April 1986. Technical report, Stanford, June 1992. Report No. CSL-TR-92-526.

[Lil93] David J. Lilia. Cache Coherence in Large-Scale SharefLH90] Josep Torrellas, Monica S. Lam, and John L. Hennessy. Mea-
Memory Multiprocessors: Issues and ComparisoACM Computing surement, Analysis, and Improvement of the Cache Behavior of Shared
Surveys25(3):303-338, September 1993. Data in Cache Coherent Multiprocessors. Technical report, Stanford,

[MDWSS89] Hi-Keung Tony Ma, Srinivas Devadas, Ruey-Sing Wei',:ebruary 1990. Report No. CSL-TR-90-412.

and Alberto Sangiovanni Vincentelli. Logic Verification Algorithmg[TLH94] Josep Torrellas, Monica S. Lam, and John L. Hennessy. False
and Their Parallel ImplementationEEE Transactions on Computer- Sharing and Spatial Locality in Multiprocessor Cachi£E Transac-
Aided Design of Integrated Circuits and SysteB(®):181-189, Febru- tions on Computerst3(6):651-663, June 1994.

ary 1989. [WOT+95] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,
[RG90] Edward Rothberg and Anoop Gupta. Techniques for Improyaswinder Pal Singh, and Anoop Gupta. The SPLASH-2 Programs:
ing the Performance of Sparse Matrix Factorization on Multiprocesseharacterization and Methodological Considerationgrbt. 22nd An-

Workstations. IProc. Supercomputing '9(ages 232—41, New York, hual International Symposium on Computer Architectp@ges 24-36,
NY, November 12—16 1990. Santa Margherita Ligure, Italy, June 22—-24 1995.

[Ros88] Jonathan Rose. LocusRoute: A Parallel Global Router for

Standard Cells. IfProc. 25th ACM/IEEE Design Automation Confer- . .

ence pages 189-95, New York, NY, June 12—15 1988. A Workload DeSCI’IptlonS

[RS99a] Jeffrey B. Rothman and Alan Jay Smith. An Adaptive Sub- .

block Coherence Protocol for Improved SMP Performance. Technical The fundamental properties of the SPLASH work-
Report QCB/CSD-99-10XX, Computer Science Division, University dbads we use have been throughly described in [SWG92,
California, Berkeley, Berkeley, CA 94720, October 1999. In preparWOT+95]; here we provide a synopsis of the sharing be-

tion. . . .
_ ~havior of all of our workloads based on descriptions in
[RS99b] Jeffrey B. Rothman and Alan Jay Smith. Multipro-

cessor Memory Reference Generation Usi@grberus. Tech- prewously pUb“Shed works:
nical Report UCB/CSD-99-1054, Computer Science Division,

University of California, Berkeley, August 1999. Available

from http://www.cs.berkeley.edwtothman/cerberus and aIsoA'l Barnes

hitp://sunsite.Berkeley. EDU/NCSTRL. ' ~ Barnes[BH86, SHG92] measures the evolution of an
[RS99c] Jeffrey B. Rothman and Alan Jay Smith. Sector Cache Desnnbody system under the influence of gravity using the

and Performance. Technical Report UCB/CSD-99-1034, Computer Sgj-
ence Division, University of California, Berkeley, January 1999. 5(71 log n) Barnes-Hut algorithm. The original three di-

[SGL94] Jaswinder Pal Singh, Anoop Gupta, and Marc Levoy. Paralmensmnal space I$ recursively broken up into eight equa_l
Visualization Algorithms: Performance and Architectural Implication§'zed pieces any time a space has more than one body n
IEEE Computer27(7):45-55, July 1994. it. An octree is used as the data structure to represent this
[SH91a] Jaswinder Pal Singh and John L. Hennessy. An Empiriédivision process. At each time step and for each body, the
Investigation of the Effectiveness and Limitations of Automatic Pardlorce-calculation algorithm descends the octree, treating
lelization. InProc. International Symposium on Shared Memory Mult|gr01‘|pingS of bodies as a single body if the grouping is far

rocessingpages 25-36, Tokyo, Japan, April 2—4 1991. ;
[pSHglb] j}p g. der Pal Si : d.;) h LpH b L i enough away, otherwise pair-wise Interactions are exam-
aswinder Pal Singh and John L. Hennessy. Data Locality
3@3&d for each leaf.

Memory System Performance in the Parallel Simulation of Ocean E . .
Currents. IrProc. Second Symposium on High Performance Computing B€fore each new time step, the octree must be rebuilt

pages 43-57, Montpellier, France, October 7-9 1991. from the new distribution of bodies resulting from the pre-
[SH92] Jaswinder Pal Singh and John L. Hennessy. Finding and B#0US step. Writes occur during the body partitioning task
ploiting Parallelism in an Ocean Simulation Program: Experience, Rgnd when the body positions are updated. During the
ig'gi)gd_l{gp”,\;:g‘ig?;“ma' of Parallel and Distributed Computing force computations the sharing is read-only; these com-
' ') putations use the greatest proportion of execution time.

[SHG92] Jaswinder Pal Singh, John L. Hennessy, and Anoop Gupta. .
Implications of Hierarchical N-body Methods for Multiprocessor A|ﬁtﬁl an attempt to balance the computation load among the

chitecture. Technical Report CSL-TR-90-439, Stanford, February 19§¥0C€ss0rs, the tasks are roughly divided up between the
[SHHG93] J. P. Singh, C. Holt, J. L. Hennessy, and A. Gupta. A paral@f0C€SSOrs in a manner that does not take locality in the

adaptive fast multipole method. Rroc. Supercomputing '9pages 54— data space into account.
65, Portland, OR, November 15-19 1993.

[Smi87] Alan Jay Smith. Line (Block) Size Choice for CPU Cach
Memories. |IEEE Transactions on Computer€£-36(9):1063-1075, A2 ChOIeSky

September 1987. Cholesky [RG90] performs a Cholesky factorization

[SS86] Paul Sweazey and Alan Jay Smith. A Class of Compatilggnq 7, - LT = Input Matrix) of a sparse matrix, us-

Cache Consistency Protocols and their Support by the IEEE Futurebus

In Proc. 13th Annual International Symposium on Computer Archite9 the SuPemOdal fan-out method. The Input matrix is

ture, pages 414-423, Tokyo, Japan, June 2-5 1986. not a standard sparse matrix, but one that has been al-
[Ste90] Per Stenatrii. A Survey of Cache Coherence Schemes f&?ady reor(_dered to redu_ce the amount of fill in the result-
MultiprocessorslEEE Computer23(6):12—25, June 1990. ing lower triangular matrix L. Supernodes (set of columns

17

with nearly identical non-zero entries) are used for effi- MP3D statically assighs molecules to processors, but
ciency purposes (including data distribution efficiencyfhere is no guarantee that molecules associated with a par-
The task size assigned to a processor is a supernode plugar processor have any kind of locality within the 3-D
the set of all modification tasks the supernode performgace. On each time step, molecules are moved according
on other supernodes. When the number of modificatiotmstheir motion vectors between unit-sized space cells. A
required by a supernode becomes zero, the node is putolision takes place when two (or more) molecules oc-
a shared task queue where it can start performing moddipy the same cell. The data sharinghtP3D occurs
cations to other supernodes. Sharing can occur when sglien the molecules of two different processors occupy
eral processors performing operations on behalf of th#ie same cell. Any access to the array of space cells can
own supernode tasks affect the values of the same supeaise result in sharing.

ode. Once a supernode has no remaining modifications to

be _performgd on it, it is processed by a single Processgle Ocean

which may in turn affect other shared supernodes. Once

a supernode has been completely processed, no furthetOcean[SH91b, SH92] measures the effects of wind

memory references occur to it. stress, planetary rotation, and friction on large-scale ocean
movements. The body of water is confined within a
A3 FMM cuboidal basin, and the role of eddy and boundary cur-

rents are examined. The simulation is run until the eddies
FMM [SHHG93] is another N-body system studiednd mean ocean flow reach a mutual equilibrium. On each
over time (likebarnes), but it uses the adaptive fast multime step, a set of spatial partial differential equations are
tipole method to simulate two-dimensional interactionsolved, using an iterative red-black Gauss-Seidel multi-
The data structures are similar to thoséarnes but the grid solver.
algorithm makes a single pass up and down the tree struc-Data consisting of numerous 2-D arrays are allocated
ture, rather than a pass through the tree for each baaiyiong the processors in such a way as to minimize com-
Data is not distributed with any attempt to increase locaftunications between them. This data is permanently as-
ity, so the data access patterns can be haphazard. signed to each processor and only that processor writes to
it. Read sharing may occur, but typically the data read by
A.4 LocusRoute other processors was written during the previous iteration
and is not modified during the current time step.
LocusRoute [Ros88] is a VLSI standard cell router
which attempts to minimize the cost of routing wires b? 7 Pthor
tween cells. The tasks consist of wires, grouped into dif-
ferent geographical regions, which are assigning to avail- Pthor is a parallel circuit simulator based on a vari-
able processors to route. When a processor finishesaits of the Chandy-Misra algorithm [CM81]. Unlike many
tasks, it can look for wires to route in another procestrcuit simulators that keep all circuits synchronized to
sor’s region. Wires are routed using a shared cost argdgbal time, pthor allows elements to advance at their
of routing cells (eight bytes per cell) which keep track aiwn rates, based on input events. When input events oc-
the number of horizontal and vertical wires in each celiur, an element is placed on a task queue to be processed.
These cells are not locked, which can occasionally leBeéadlock is possible using this algorithm and is detected
to stale information. The cost array is the main area amd adjusted to allow further progress.
which sharing occurs, but the degree of sharing is kept The circuits consists of wires (nodes) and logic ele-
low by geographically assigning the routing. The othenents. These form the primary data structures along with
potentially shared data structures are the task queues thieddistributed per-processor task queues, which are all
the data describing the wires’ routes and pin positions, lpdtentially shared among the processors. Associated with
these are not accessed as frequently as the cost array.each wire is an event list. Each element is assigned a pre-
ferred queue (associated with a processor), assigned when
A5 MP3D the circuit is read in, where it gets placed each time it is
activated. The goal of data distribution is load balanc-
MP3D [CGHM93] simulates hypersonic rarefied fluidng; there is no attempt to increase locality by assigning
flow through a rectangular shaped aperture. Moleculessociated elements or wires to the same processor. Pro-
flow through a three dimensional space, mostly in a pagssors can steal tasks from other processors when their
itive x direction. Occasionally the molecules collide withask queues are empty.
each other or with the boundary tunnel.

18

A.8 Puverify rithm to generate high-quality solutions, similar in quality

. - . to uniprocessor solutions.
Pverify [MDW389] V(_ar|f|_es t_he Boolean equwalenc_e The main data structures consist of cells (gates) and
of two combinational logic circuits. The method for veri-

fication involves tracing backwards f . t the wire nets that connect the cells together. The cells
ication Involves tracing backwards from a primary outp tre split among the processors, but all of the nets may
to find the set of cubes that cause the output to be 1 (

: i i h . Tok f
ON set) or 0 (the OFF set). A cube is a subset of inpy examined by each processor. To keep processors from

X X) erfering with each other (with respect to the nets) dur-
with a certain value that determines the value of the OEE- 9 (P)

i dl f th | f the input tside of t window evaluation, each net has four arrays indexed
put, regardless of the values of the Inputs outside ot Ty processor ID. This leads to massive amounts of false
subset. Whenever a primary input is chosen for exa

nation, two tasks are generated for the output value (onearlng during program execution.
each for 0 and 1), which is put on a task queue. Once the

ON and OFF sets have been found, they can be appliedtd1 Volrend

the circuits under test to verify that they are equivalent.

Th ind i £ inf : Volrend [SGL94] creates a series of two dimensional
€ main data structure consists of information Spegr'ojections of a three dimensional object (the supplied in-

ifying aI_I the inputs, WIres, n_odes, and gates Iead_mg Rt files contain a head) from different perspectives. It
eaph primary Ol_JtpUt’ Wh'Ch IS referred to asane cir- uses ray casting to render the object. Neighboring pix-
C,u't' .The data is organized in ?’“Ch a way that the COBfS from the image plane are assigned to each processor.
circuits can k?e evaluated.and simulated in pargllel, SI"Pfie main data structures are voxels used to represent the
any of the wires and portions of the cone Circuits can $fee dimensional image, octrees to aid in aid in tracing

multaneously be under test_ by different processors. T, 2 rays through the object, and image plane pixels. The
data structures use arrays indexed by processor ID to ta accesses are input dependent and unpredictable.
low simultaneous evaluation. True data sharing mainly

takes place in writing to the table of cubes and in main-
taining the task queues, but the data organization cavfed2 \Water

major amounts of false sharing. Water [LC86, SH91a] is an N-body simulation of the
forces and potential between water molecules. A box,
A.9 Raytrace which is large enough to hold the molecules, is the bound-

: hree di ional i ary for the system. To avoid calculating tbgn?) inter-
Raytrace [SGL94] is a three dimensional image r'eN5ctions between the molecules on each time step, a cut-off

derer that uses ray tracing. The work space is split Htiius equal to half the length of the box is utiized.

using a hierarchical grid similar to octrees. Aray is trace The molecules are represented as an array of struc-
backwards from api_xel in an image plane and Qe”erf"‘tetﬁPes, one structure for each molecule. The structures
ray tree from reflections caused by contacts with ObJeCI:%ntain a 3-D array describing the molecular layout, plus

The problem is broken up into distributed task qUeUESyajier array representing center of mass information.

consisting of contiguous pixels. The important data Struf?/folecules, which are not necessarily adjacent in the sim-

tures consist of the hierarchical grid, task queues, rays figteq space, are statically assigned to processors. Data

ray trees, and the scene descr|pt_|on. Data access patt@ﬁ%?ing can occur when the forces on pairs of molecules
are not regular due to the unpredictable ray reflect|ons.are calculated, but no more than half the processors in-

volved in the problem will touch a particular molecule.
A.10 Topopt

Topopt [DN87] (a.k.a. GENIE 11) is a gate matrix B Analysis of Problem Blocks
layout package for automated layout synthesis of static

CMQOS, static NMOS, and DOMINO design styles. It |n Section 4.4 we noted that the worst 10 blocks (in
uses simulated annealing to attempt to minimize the lagrms of the number of fetch misses) contain many of
out cost under the constraint of terminal locations arige false sharing misses over the various workloads. In
non-uniform transistor sizes. this appendix, we look at the actual data structures in-
At the beginning of the program, each processor is agived and describe what is causing the conflicts to occur.
signed a set of gates and signals in the array (referred t¢a8 four of the programs, we modified the source code
awindow). Each processor independently tests differefat make improvements to improve software performance,
arrangements within its window. Through the use of dyhe results of which are presented in Section 4.4.1. These
namic windowing, gates can occasionally be exchangségrams werdarnes, pthor, topopt, andwater. For
between windows. This allows the multiprocessor algeach of these select workloads, the modifications are also

19

explained in this section. 64-byte blocks are used in alften. In addition, there are several locks in close proxim-
examples in this section. ity to each other. Two other bad blocks consist of an array
of type TaskQueuelLockRecord which has a lock and a
short integer as members. Two blocks consist of an array
of pointers which are frequently modified by various pro-

There are two main problemslmarnes (1) ituses ar- cessors. The last 3 of the bad blocks are contiguous and
rays of locks; and (2) theell structure, which is 78 byteshold an array of typ&egmentHeadSyncRecordwvhich
long, is spread over several blocks, in such a manner tbah all be manipulated simultaneously by different pro-
the next data structure starts on the same block on whigssors, leading to false sharing.
the previous one ended, resulting in 4 of the worst blocks.
Although most of the locks are low contention (less th@B MP3D
three processors competing for the lock on average), ar-
rays of such locks cause massive false sharing.Qdike Two of the bad blocks come from ti@&obalMemory
Lock array has 2000 entries, of which the first 50 entriefata structure, which consists of frequently read members
result in four of the top ten worst blocks. The other twmixed with frequently written data and various locks. The
of the worst blocks are caused by the layout of&leb- rest of the bad blocks consist of portions of tBell data
alMemory data structure, by placing locks and by occatructure. Cell is smaller than a block and in the worst
sionally written variables in proximity to frequently readases, portions of 3 data structures are placed in the same
data. block, causing false sharing.

To improve the program, th&lobalMemory struc-
ture was reorganized to group locks with the data thg/_G Ocean
protect, and lock arrays were changed to isolate each lock
in its own 64-byte block. Further attempts to make im- The 10 worst blocks consist mostly of portions of the 4
provements by padding out tleell structure to fill an in- dimensional arrag_-multi. The array layout is a function
teger number of blocks slightly reduced the false sharinfjthe number of processors and the size of the problem
misses, but actually increased capacity misses and exdxging run. Because of the way it is created, each dimen-
tion time for the 16K and 64K byte caches tested, due sn of the (ragged) array requires pointers to be stored
the increased space required to store the data structuraier than calculated. In an apparent attempt to increase

B.1 Barnes

so this optimization was eliminated. locality of reference, the order of allocation mixes dimen-
sional pointers (exclusively read after initialization) with
B.2 Cholesky the read/write data in th@_multi array, causing a large

amount of false sharing. One bad block consists of locks
Nine of the worst ten blocks consist of portions of awhich neighbor each other.
array of locks calledolLock. The tenth block consists of
three overlapping data structuregork _tree (an array of B.7 Pthor
integers), theGlobalMemory structure, and th&askQ
structure. Two of these structures have locks, although Six of the bad blocks irpthor consist of portions

only the lock associated wiffaskQ is used. of the globmem structure, which consists of frequently
read data mixed with read/write data and locks. We also
B3 FMM discovered an interesting sharing issue: there are sev-

eral variables (at least 5) which appear to be truly shared,

Two of the bad blocks consist of a number of neighbut a closer analysis shows that in fact that the variables
boring locks. The other 8 of the blocks have portions of @me mostly incremented, but very rarely (if at all) read to
array {(ocal_expansionin data structurbox) which are of be used for other purposes, only fopentf statement.
type complex, which has two double precision membetéearly such a class of variables should be turned into
and represent a complex humber. an array accessed by processor, but in such a way as to
minimize false sharing. Then, when the value is actually
required, a loop could be used to accumulate the values
from each processor.

Three of the worst blocks are the first three blocks of The other 4 problem blocks are contiguous and consist
the GlobalMemory structure, which have problems beef portions of an array. The array is of a data structure of
cause some of the frequently read members (which @&ypeActList which contains 3 pointers and a lock. There
generally read-only) are near members which are writtappears to be no locality to access between the various

B.4 LocusRoute

20

elements of the array, causing large amounts of false shar-To attempt to fix the false sharing problemgapopt
ing. required creation of new data structures to aggregate in-
To reduce the false sharing pthor, the data struc- formation by processor, not by type or function. This re-
ture ActList was padded out to 64 bytes to prevent intequired a fair amount of coding to restructure. For exam-
ference between the locks in neighboring array membegke, arrays calledight andleft were changed so that they
A memory allocator was added to make sure that thésame scalars members of a new data structure. This iso-
data structures are aligned on 64 byte boundaries. Datad data by processor and eliminated a good deal of false
structureglobmem was slight rearranged to isolate twsharing. In fact, it increased spatial locality by grouping
locks from each other and from other members. Addbgether data with good affinity, and showed tremendous
tionally, a frequently read membarwas separated fromeffect in improving execution time for the real systems
a frequently written membéddeadCount simulation, enhancing performance by reducing misses
beyond the false sharing misses eliminated.

B.8 Pverify
Among all the workloadsPverify seems to be the ex-B'll Volrend

ample of how not to arrange data layout. One problem Two of the bad blocks are caused by overlaps between
block contains an array of locks. Another one contaitisree data structures and the reference patterns to them.
a two-dimensional array indexed by processor ID in thievo of these data structuresyjacobian andinvinvja-
inappropriate dimension, in such a manner as to cawsdbian, are initialized by a number of processors writing
false sharing. Th&VIRE structure contains several arto the same words at the same time, which appears to be a
rays accessed by processor ID, resulting in 6 bad blocksstake in the program. Two other bad blocks are caused
The other 2 problem blocks are caused by the mannebinmixtures of synchronization variables (both locks and
which data is allocated in shared memory: there are altbarriers). The other blocks have portions of a large two
natingNODE andWIRE structures, which do not workdimensional array of integers. The first element of each
well when placed together. row of the array (also the only element on each row that is
referenced) is written and read by a number of processors,
causing a large number of true sharing misses as well as
significant dead sharing.

Thegmem structure is responsible for 2 of the worst
blocks, arranging read-only, read/write and lock variabl&slz Water
near each other. The other 8 of the ten worst blocks
is caused by alternating shared memory allocations of The problem with the ten worst blocks in water is
NODE and WPJOB data structures. Because of theaused exclusively by a large array of locks neighboring
nature of this program, huge amounts of data are resmhlar locks in th&lobalMemory data structure. We re-
compared to the amount written, and the written datapaired this problem by allocating a block for each lock,
mostly isolated by processor, so there are few false sHargely eliminating false sharing from the program.
ing misses.

B.9 Raytrace

B.10 Topopt C Word vs. Block Coherence

Four of the bad blocks consist of the armayows, Thig appe'ndix provides severalisimple examples.of
whose elements are generally migratory values (i.e., LE}?-W it is poss[ble to account for a miss as a false sharing
interrupted accesses by one processor for a while, tHBi$S or what is meant by the termipgradeand down-

passed to another processor). The other bad blogkade In each example, we show an initial state that is
mostly consist of arraysight, nmax_height, cell.num1, the same for both word coherence/transfer size as it is for

celLnum2, net->nminp, net->nmaxp), in which each block coherence (at least for the words with which we
element is written by only one processor (different pré/® concerned). In each case, an initial reference occurs
cessor for each array element), but read by several pfélich changes the state. The second and third references
cessors (broadcast reference pattern). Some of the bigigthe important ones for each example, as they demon-
also contain portions of two arrays, such that the begtj{ate the kinds of misses we wish to explain. All exam-
ning of one array and the end of another array fall on tRES implicitly use sequential consistency.

same block. False sharing misses dominate other source§©r €ach of Figures 11-15, the word and blocks states
of misses for all of the 10 worst blocks in this workload.2re one of MES| states as defined in Section 4.1. Although

a block’s coherence state represents the state for all the

21

Outcome Outcome
Word Block Word Block
Coh. Coh. Coh. Coh.
Processor A Processor B Processor A Processor B Processor A Processor B Processor A Processor B
g [(I MM 3 § 0Im LY 5
g W Miss | Miss W 1 E w Miss | Miss W 1
53}
g MO [FMMM] INENANEN g MO [TMMM] MMM[M] - [TT]T]T]
§ R Miss | Miss R 2 g R Hit | Miss R 2
g [EOTM & MO [FMMM]
Figure 11: True sharing miss. Figure 12: False sharing miss downgrade.
L Outcome
words within the block, we show the state of each worg Word Block
under block coherence to minimize confusion.
. . . Processor A Processor B Processor A Processor B
Figure 11 shows an example of a true sharing miss. g T T 4
Under both word and block coherence, the second miss; _R MM vics | iss R MM L 3
occurs because the word in question is actually shared be% sy
tween the two processors. w Hit | InvMiss w 2
False sharing misses occur when a word’s coherence2 [SITTT1T] [T
state is affected by references to other words in the block, IIIIII VM'SS Miss e 8
so that the word is found in a different state under word M MMM

and block coherence when the next reference to the word
occurs. The state can be affected in two ways: the state . Fal harind invalidati i
can be worse than what is expected under word cohereng@Ure 13: False sharing invalidation miss downgrades.

(i.e., adowngradehas occurred), or it can be found in

a better state than expected (apgradg has occurred. (reference by another processor) write causes the word to
Keep in mind, we are not actually interested in the words found in an invalid state. This type of miss is gen-

coherence state per se; rather we are interested in whegggny the most common of the false sharing downgrades
a preceding reference to another word in the block CaugRerved in our simulations and is the most serious.
a data transfer or a coherence action when the word with In Figure 13, the read by processor A causes all the

which we are concerned is accessed. For example, a readys' states to become shared under block coherence,
to a valid word in the cache requires no coherence aCt'VHé(using an invalidation miss by processor B, yet under
if t_he word’s state is shared, exclusive, or modlﬂec_i. ﬁ?ord coherence it would have been a hit. A write by pro-
write causes no externally observed coherence actionsdfsor A causes yet another miss, whereas under word co-
the word's state is exclusive or modified. A write 10 fgrence it would have caused only an invalidation, but no
shared word causes an invalidation transaction; a reaiQf transfer. So in this one figure, there are examples

write to an invalid word causes a data fetch. of two kinds of downgrades: hit to invalidation miss, and
A read downgrade is said to have occurred when & aiidation miss to fetch miss.

word is found to be invalid (because of actions pe_rformed There are also three corresponding types of upgrades.
on other words under block coherence) when it woullgre 14 shows an upgrade caused by a beneficial use of
be in a valid state with word coherence; a write dowRyock coherencelfetching. A block fetch acts as a kind of
grade_ (W!th two Ieyels of §erlousness) occurs wh_en tBPefetching in uniprocessors as well as for well behaving
state is either invalid (causing a fetch and invalidation) g[ocks in multiprocessor caches. By reading all the words
shared (causing an invalidation) when modified or exclig 5 piock at once, a number of misses can be eliminated

sive was expected. However, the memory system op&g-subsequent accesses to the block under the right cir-
tion required for a write to a shared location is less thanmstances.

required when a read or write to an invalid word occurs piqck coherence can also cause less dramatic im-

(under write-allocate), so we distinguish between invaji;yements in word states. When a read to a block that
dation misses and fetch misses. _ is present in another cache but invalid in the local cache

Figures 12 and 13 show the three different dowgecyrs, the whole block is fetched and all the words are
grades possible. Figure 12 exhibits how a reference to Pliced in the shared state (read by processor A in Fig-

othgr word in the same block by another processor cauggs 15). A subsequent write by processor A to another
a different outcome for the reference to the word by prgz,q in the block puts the entire block in the modified
cessor B. The word was in a modified state, but a remote

22

Figure 14: False sharing hit (prefetch upgrade).

Outcome

Word

Block

Word Outcome Block false sharing fetch misses (fs hit to fmiss), false sharing
Coh. Coh. hit to invalidation miss (fs hit to imiss), and false sharing
Processor A Processor B Processor A Processor B invalidation miss to fetch miss (fs imiss to fmiss).
§ [T [T M oo 5 As can be seen, for most workloads the number of
2w Miss | Miss W 1 cold start and true sharing misses exceed the number of
g MO [T [T false sharing misses. However, the four workloads with
s R Miss | Hit R 2 b . . .
5 ad false sharing behavidvgrnes, pthor, and especially
¢ ME[T] [T IRENAREN . '
* pverify andtopopt) cause the average over all workloads

to have the majority of misses caused by false sharing
starting in the 16- to 64-byte block region and beyond.

E Expanded Information on Shar-

Coh. Coh.
Processor A Processor B Processor A Processor B Ing GranUIarlty

g vics | vise) § This section contains figures and tables that have in-
3 [S[TITT] [SMIS[T] teresting content, yet were moved out of the main section
E W Miss | InvMiss W 2 due to space constraints. Most of the data is related to the
information presented in Sections 4.2 and 4.3.
g W InvMiss | Hit W 3 When a write occurs to a block in the shared state

e o (presumably to update a shared variable), all copies of the

block in other processors’ caches must be invalidated. Be-
fore another remote read occurs, other words in the block
may be modified as well. Other processors interested in
the data must then re-read the block. Table 7 shows the

state, so that further writes by processor A are cache hfféerage number of the updated words that are read be-
Under word coherence, the write to another word only dR"€ & block is invalidated (read-write sharing granularity,
fects that word's state, so that the second write causedf Pold entry is expanded into a histogram in Figure 5).
invalidation miss. The prefetching effect of block cohefl Most of the blocks that are shared, we do not observe
ence can work for states as well as for the actual data YCh of an overlap of local writes with remote reads dur-
volved. So under these circumstances, block coherefft@an invalidation interval, causing the average number
outperforms word coherence. However, as found in tREOVeriapping words to be on average rather small. Only
main portion of this paper, once the block size is suffirograms that show a tendency to migrate data objects be-
ciently large, the benefit (in terms of miss ratio) of ugWeen processors (suchwaater) have a reasonable num-

ing blocks for coherence and data transfers rapidly dimff€" Of overlap of reads and writes. This value is an indica-
ishes. tion of the degree that false and dead sharing are occurring

in the workloads. Notice that the amount read-write shar-
ing is 100 percent for 4-byte blocks, in the situation where
only true sharing can occur. With bigger block sizes, the
number of overlapping words increases, but not nearly as
fast as the block size. Once the block reaches a certain

Table 6 shows the categorization of the types of miSﬁSe%e’ the amount of overlap starts decreasing due to the

for each individual workload, the average can be found arge probability that several unrelated data structures are

Table 3. Figure 16 shows the same information in graplglll__aced in the same block and they really start interfering

. . . with each other.
cal form. The total misses consist of both fetch misses ané Table 8 shows the degree of overlap between sets

invalidation misses. In a real system, invalidation misse§ . . .
. ; of writes to a block by different processors during suc-
are less serious than fetch misses, but under sequential

consistency, still cause the processor to stall while ac ucltre_eding invalidation intervals (when the writing proces-
Y, P d Workloads that show a large degree of

. : or changes).
ing exclusive access to a block. For each workload, t ! :
a?se sharing have a extremely low degree of write over-

number of misses is normalized to the total number % (bames ocean pthor, pverify, topopt), but gener-
misses for 4-byte blocks. The misses are broken dow S hp ' P + 1opopy), g

into true sharing fetch misses (ts fmiss), true sharing iflr?])—ly the amount of write overlap within a block is fairly

validation misses (ts imiss), private and cold start missex”: Water has a fair degree of write-write overlap be-

cause the most typical memory reference pattern shows

Figure 15: False sharing upgrades.

D Breakdown of Data by Work-
loads

23

Breakdown of Misses

] 0OTNOO DO NO
NOO<TMANHO o OO0 0O O0O0OHOOOOOo
LI1iilll] | I T T I I O
— o~
—
n
m ©
n
N~
(7]
()
S
§ 8
8 sS4
()
N
-
) = m)
£ g = S % .
g g £ S g
o T o @
o m > S o0 h=}
i S
(8]
o3
3 988
©
S EES
-
Qo 8 a
© m M
] W
N - <
W]
7))
o
=
2 L
s 8

imiss

256

128
PR fs fmiss to imiss

I fs hit to fmiss
[1 fshitto imiss
N s

64

barnes
cholesky
fmm

32
(Bytes)

16

Block Size

— A
e
—

I.ﬁﬁﬁﬁ.
Iﬂ,,u,,“.“,“.ﬂ,,ﬂﬁld
I.&.....ﬁ.ﬁ
— A Y

Fota ottt ¥y
T £
T BERER

I R | 7
PN e i
pesid <

o FEE ettt B

Figure 16: Breakdown of workload misses into various types of false sharing and true sharing misses for 16 processors,
normalized to misses for 4-byte blocks.

24

Span of Words Read Span of Words Written
s 1 1 1 1 1 1 1 1 1 1 1111 60 [N N I I N O N N S [) I |

64 Byte Blocks [] 64 Byte Blocks
16 Processors 16 Processors
] 50 — -
40— -
_ 40— -
= ©
£ 30 - e
E £
5 2 30 _
= c
g 3
© 20— - =
o &
o 20 — -
10— -
Average Value 5.22 10 I~
Average Value 4.40
1
O—T T T T T T T T T T T T T T T O—T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Words Maximum Extent of Writes (Words)

Figure 17: Distance between the furthest spread rd@idure 18: Distance between the furthest spread written
words (span) until invalidation, 64-byte blocks. words (span) in 64-byte blocks during an invalidation in-
terval.

migratory behavior by overwriting the entire block each
time a molecule data structure passes between procesdttisof values that are updated. The writable variables are
Tables 9 and 10 show the average number of distiféptected with locks. When a processor runs out of work
words touched and the span of the words touched in e#@H§l0, it has essentially a spin-loop that checks if it has
copy of a block during an invalidation interval. On ave@ Neéw task on its queue. The variable on which it spins
age, the span increases by about 49 percent each timdgig®atially (memory-wise) adjacent to the lock protecting
block size doub|es, while the number of distinct Word@at variable. In addition, this data structure is kept as an
read increases by about 33 percent. Tables 11 andaf&Y, SO possibly several processors are spinning on a sin-
show the average number of distinct words written ade word. Lock variables (lock and unlock operations are
the span of the writes between invalidations to the blocledassified as writes) that are placed in the same block as
A stream of writes by one processor can be interrupted ¥giables used for busy-waiting can provide such seeming
either remote reads or a remote write. Tables 9—12 aggpmalous behavior as more words are written in a block
Figures 7, 8, 17, and 18 provide insight into the spatiéflan are read on average.
locality of the references to blocks while they reside in Figures 8 and 18 provide some indication how invali-
the cache. For read references to 64-byte blocks, appréiations from sharing can affect a system. An examination
mately 42 percent of the blocks use only a single word b@f-the distinct number of words written (Figure 8) shows
fore being invalidated (Figure 7). Over 60 percent of reati@at more than half of the time (58%) only a single dis-
could potentially be satisfied by use of a 16-byte subblo#Rct word is written (possibly multiple times). The com-
(cumulative sum of values up to 4 words in the histograp@nion figure (Figure 18) shows the portion of the block
in Figure 17). The writes tend to be more tightly conceffdat the writes span (for a 64-byte block). The span of the
trated that the reads, with an average increase in the spéites is one word for 58 percent of the cases; about 10
of 40 percent for each doubling of block size, with theercent of the writes touch words on opposing ends of a
number of distinct words growing by 29 percent. Theddock (full span of the block). The average values of the
factors show that subblock fetching for shared blocks,Spans are reasonably close to the average number of dis-
used judiciously, could tremendously reduce the bus tréfict words words read/written considering that two (or
fic without greatly increasing the number of misses. ~ more) distinct words could have a span as large as 16 for
For most cases, more distinct words are read duridd@4-byte block. Because the words touched are likely to
phase 2 of the invalidation interval than are written duririgf very near each other, subblock protocols would appear
phase 1. Occasionally this assumption fails. For examp#e pe a good solution for reducing false and dead sharing
in LocusRoutethere is a global data structure which corin these workloads.
tains a number of read-mostly variables p|us some num- Figure 19 shows the fraction of invalidated blocks that

25

Blocks with Single Accesse

1

| | |

1

d Word
|

1.0
0.9 —
0.8 —
0.7 —
0.6 —

0.5 —

writes

ining the value written by previous writereocusRoute
exhibits a number of processors repeatedly reading a par-
ticular word), with apparently unrelated writes to other
words. Raytrace provides a good example of dead shar-
ing, where only 2 words are accessed, of which one shows
only read references. In such a case, 14 words are waste-
fully transferred between caches. In addition, the writes
also invalidate the read-only word, indicating false shar-
ing as well.

reads
0.4 — -

0.3 — -

Fraction of Invalidated Blocks

0.0 T T T T T T
4 8 16 32 64 128 256 512

Block Size (bytes)

Figure 19: Fraction of invalidated blocks with only a sin-
gle word read or written.

have only a single word read or written. Both the read
and write statistics hit a minimum with 16-byte blocks and
increase from there.

E.1 Example Reference Patterns

Table 13 shows example reference patterns to words
within shared blocks. These patterns show interesting
behavior, which are not necessarily representative of the
sharing patterns of the whole program. The accesses are
specified by the large number (processor ID) with super-
scripts for the operation and subscripts for the word ac-
cessed within a block (in hexadecimal). The block size is
64 bytes for these samples. The operations on the words
can be write (w), read (r), successful lock (1), failed lock
(f), and unlock (u).

For example, the reference pattern barrnes shows
a false sharing problem: wordsand7 are exclusively
read and word is a lock. Each successful locking opera-
tion results in an invalidation of the block from a number
of caches, even though the operations on the read-only
words are not related. In addition to the useless invalida-
tion of read-shared data, most of the words are not even
used, but must be wastefully be transferred between the
caches. The ability to perform smaller granularity inval-
idations would appear to be a large benefit in cases such
as this. Other examples of traces showing false and dead
sharing behavior in Table 13 anep3d, pverify, topopt,
water. Cholesky shows an example of multiple proces-
sors waiting to acquire a lockOceanshows a number
of processors overwriting the same word without exam-

26

Breakdown of Misses, Normalized to 4-Byte Blocks

True Sharing False Sharing True Sharing False Sharing
Workload BSI?ZC: MTiZts,aeI< Fetch] Inv. [Cold Starfhit—[hit—>[imiss— | workload BSI?ZC: MTiZti: Fetch| Inv. |Cold Starfhit—>hit—>|imiss—
IMissesMisses Misses | fmiss|imiss| fmiss IMissesMisseg Misses | fmiss|imiss| fmiss

4 11.000§ 0.717(0.102| 0.181 J0.0000.000 0.000 4 11.000f 0.159(0.376| 0.465]0.0000.000 0.000

8 |[0.578] 0.404| 0.058| 0.099 [0.0120.000 0.001 8 |0.506) 0.081(0.189| 0.234]0.0030.000 0.000

16 |[0.411] 0.246]/ 0.037] 0.053 [0.0640.005 0.002 16 |0.270] 0.045/ 0.101] 0.121]0.0030.001 0.000

barnes 32 |0.331] 0.144]| 0.024| 0.030 J0.1140.012 0.002 cholesky] 32 |0.151] 0.027]| 0.056] 0.063 [0.0040.003 0.000
64 |0.322] 0.093|0.018| 0.018 J0.1600.025 0.002 64 |0.091] 0.018/0.033| 0.034 [0.0050.001 0.000

128 | 0.326] 0.065| 0.016{ 0.010 J0.1860.040 0.006 128 | 0.062] 0.015| 0.021| 0.018]0.007/0.0013 0.000

256 | 0.378] 0.059] 0.016] 0.005 J0.2390.047 0.009 256 | 0.049] 0.014] 0.015] 0.010]0.0080.001 0.001

512 | 0.429] 0.059| 0.017| 0.003 J0.2880.046 0.012 512 | 0.047] 0.015| 0.014| 0.006 J0.0100.001f 0.002

4 11.000f 0.243|0.173| 0.584 }]0.0000.000 0.000 4 11.000f 0.415(0.273| 0.312]0.0000.000 0.000

8 |0.519] 0.126] 0.088| 0.302 [0.001{0.000 0.001 8 [0.803]0.381|0.222| 0.176]0.0140.007 0.000

16 | 0.297] 0.075/ 0.048] 0.165 }J0.0030.003 0.001 16 | 0.444] 0.194| 0.116f 0.094]0.0230.013 0.000

fmm 32 |0.184] 0.049| 0.027| 0.094 (0.0060.005 0.001 locus 32 |0.289] 0.099]| 0.064| 0.050 §0.0520.020 0.000
64 |0.142] 0.036/ 0.017| 0.055 J0.0180.014 0.001 64 |0.194] 0.052| 0.037| 0.028 [0.0550.020 0.000

128 | 0.122] 0.029| 0.011| 0.034 }J0.0260.019 0.001 128 | 0.139] 0.030| 0.024| 0.015]0.0510.017 0.000

256 | 0.122] 0.025| 0.009| 0.022]0.0380.025 0.001 256 | 0.120] 0.019] 0.020] 0.009]0.0540.01 0.001

512 | 0.134] 0.022| 0.007| 0.014 J0.0530.035 0.001 512 | 0.115] 0.016{ 0.021| 0.005 J0.0550.015 0.001

4 11.000f 0.482(0.477| 0.041 J0.0000.000 0.000 4 |1.000f 0.533(0.394| 0.073]0.0000.000 0.000

8 |0.556] 0.260| 0.268| 0.021 [0.0050.002 0.000 8 [0.539] 0.301| 0.201| 0.037 [0.0000.000 0.000

16 | 0.341] 0.157|0.162f 0.011 J0.0070.004 0.001 16 | 0.549] 0.290(0.107{ 0.021]0.0290.103 0.000

mp3d 32 10.23310.106/ 0.109] 0.006 J0.0070.004 0.001 | ... | 32 |0.493J0.257]0.063] 0.012 J0.0440.117 0.000
64 |0.187] 0.083] 0.084| 0.003 J0.0080.004 0.004 64 |0.488] 0.241| 0.040{ 0.007 J0.0730.126 0.000

128 | 0.175] 0.073| 0.071| 0.002 [0.0120.00§ 0.009 128 | 0.496] 0.224] 0.031| 0.005 [J0.0980.137 0.000

256 | 0.183] 0.072| 0.069| 0.001]0.017/0.010 0.013 256 | 0.515] 0.210] 0.027] 0.003]0.1190.156 0.000

512 | 0.216] 0.075{ 0.071| 0.001 §0.0310.020 0.017 512 | 0.516] 0.193| 0.023] 0.002 }J0.1390.158 0.000

4 11.000f 0.548|0.186| 0.267 }0.0000.000 0.000 4 |1.000f 0.526(0.329| 0.145]0.0000.000 0.000

8 |0.956] 0.478]/ 0.169| 0.169 [0.0890.03§ 0.005 8 [2.840] 0.519|0.324| 0.106]1.0230.865 0.002

16 | 0.839] 0.377(0.136f 0.103 }J0.1450.049 0.008 16 | 4.195§ 0.516(0.322f 0.079]2.0021.273 0.003

pthor 32 [0.790f 0.341] 0.124| 0.061 [0.1880.044 0.010 pverify 32 |5.381] 0.514| 0.320| 0.059 [3.0451.438 0.003
64 | 0.784] 0.326] 0.114| 0.036 J0.2230.048 0.014 64 |6.163] 0.511] 0.320{ 0.042 |3.7751.512 0.003

128 | 0.803f 0.322 0.109| 0.022 [0.26000.050 0.016 128 | 6.382] 0.501| 0.319 0.029 [4.051|1.479 0.003

256 | 0.826) 0.317{ 0.102| 0.013 J0.3000.050 0.020 256 | 7.183] 0.366| 0.318| 0.015 J4.7501.730 0.003

512 [0.922] 0.316/ 0.099] 0.008 []0.3990.051 0.026 512 | 7.769] 0.187| 0.283] 0.008 [5.2492.037 0.004

4 |1.000] 0.088|0.076] 0.836 J0.0000.000 0.000 4 |1.000] 0.755|0.238| 0.008]0.0000.000 0.000

8 |[0.586] 0.074| 0.051| 0.456 [0.0050.000 0.000 8 |1.490] 0.663(0.147{ 0.005]0.4170.228 0.029

16 | 0.372] 0.066(0.040{ 0.260 J0.0060.000 0.000 16 |1.851] 0.587|0.103] 0.003]0.7680.341 0.038
raytrace 32 [0.263] 0.063] 0.034| 0.153 [0.0110.001f 0.000 topopt 32 |2.431] 0.515/0.084| 0.002 [1.301{0.458 0.055
64 | 0.196f 0.060{ 0.031| 0.088 J0.0150.001f 0.000 64 | 2.987] 0.424] 0.076] 0.002 J1.9260.478 0.060

128 | 0.156f 0.060{ 0.029| 0.050 [0.0150.001 0.000 128 | 3.376] 0.334| 0.074| 0.001 [2.4550.427 0.063

256 | 0.135] 0.060{ 0.029| 0.029 J0.0140.001f 0.000 256 | 3.612] 0.225| 0.056] 0.001 J2.9000.340 0.065

512 [0.124] 0.061| 0.029] 0.017]0.0140.002 0.000 512 | 3.806] 0.188] 0.057| 0.000 [3.107/0.366 0.057

4 |1.000f] 0.066| 0.027| 0.907 J0.0000.000 0.000 4 |1.000f 0.527|0.422| 0.052]0.0000.000 0.000

8 |[0.590] 0.042| 0.017| 0.523]0.0060.002 0.000 8 |0.508) 0.269(0.211| 0.026 J0.0020.000 0.000

16 |0.369] 0.028]/ 0.012] 0.318 [0.0080.003 0.000 16 |[0.289] 0.153]/ 0.117] 0.014]0.0060.00(0 0.000

volrend 32 |0.241] 0.020]| 0.009| 0.199 (0.0090.004 0.000 water 32 |0.188] 0.099]| 0.070] 0.008 §0.0120.000 0.000
64 |0.172] 0.016] 0.008| 0.134 J0.0090.004f 0.000 64 |0.149] 0.073] 0.047| 0.005 J0.0240.000 0.000

128 | 0.131] 0.014{ 0.008| 0.095 [0.0100.004 0.000 128 | 0.132] 0.058] 0.035| 0.003 }0.0360.000 0.000

256 | 0.096] 0.013| 0.007| 0.060 §0.0100.005 0.000 256 | 0.132] 0.047{ 0.031] 0.002 }J0.051/0.001f 0.000

512 | 0.070] 0.013]| 0.007| 0.032]0.0120.005 0.000 512 | 0.133] 0.035] 0.030{ 0.001]J0.0650.002 0.000

Table 6: Breakdown of workload misses into various types of false sharing and true sharing misses for 16 processors,
normalized to misses for 4-byte blocks.

27

Read Overlap with Preceding Writes
Block Size (bytes)
4 | 8 [16 | 32 | 64 | 128 | 256 | 512
barnes || 1.000| 1.648| 1.993| 1.905| 1.363 | 0.848 | 0.449 | 0.245
cholesky || 1.000| 0.233| 0.219| 0.193| 0.175 | 0.139 | 0.104 | 0.072
fmm 1.000| 1.891| 2.963| 3.948| 3.768 | 3.572 | 3.118 | 2.551
locus 1.000| 0.993| 1.868| 2.578| 3.509 | 4.387 | 4.091 | 3.307
mp3d 1.000| 1.340| 1.619| 1.127| 0.518 | 0.167 | 0.095 | 0.054
ocean || 1.000| 1.795| 1.675| 1.715| 1.532 | 1.306 | 1.004 | 0.807
pthor 1.000| 0.842| 0.783| 0.711| 0.626 | 0.542 | 0.445 | 0.311
pverify || 1.000| 0.293| 0.103| 0.045| 0.030 | 0.021 | 0.017 | 0.011
raytrace || 1.000| 0.965| 1.135| 0.952| 0.824 | 0.699 | 0.638 | 0.617
topopt || 1.000| 1.016| 0.857| 0.661| 0.453 | 0.331 | 0.216 | 0.120
volrend || 1.000| 1.739| 3.038| 5.159| 7.791 | 10.173| 11.508| 11.252
water 1.000| 1.985| 3.873| 7.513| 10.756| 11.151| 6.060 | 3.539
Average || 1.000| 1.228| 1.677| 2.209| 2.612 | 2.778 | 2.312 | 1.907

Workload

Table 7: Average set of words modified in the write phase of an invalidation interval that are read by other processors
during the read phase.

Write Overlap with Preceding Writes
Block Size (bytes)
4 | 8 [16 | 32 | 64 [128 256 | 512
barnes || 1.000| 1.391| 1.478| 1.139| 0.859| 0.420| 0.285 | 0.172
cholesky || 1.000| 1.968| 3.458| 5.679| 8.028| 9.763| 10.278| 9.021
fmm 1.000| 1.843| 3.092| 4.800| 5.828| 4.963| 4.061 | 3.336
locus 1.000| 1.197| 2.056| 3.091| 4.248| 5.249| 5.575 | 4.824
mp3d 1.000| 1.750| 2.511| 2.868| 2.505| 1.816| 1.268 | 0.724
ocean || 1.000| 1.152| 1.146| 1.140| 1.118| 1.100| 1.090 | 1.065
pthor 1.000| 0.785| 0.743| 0.588| 0.489| 0.411| 0.343 | 0.263
pverify || 1.000| 0.225| 0.127| 0.101| 0.088| 0.074| 0.052 | 0.038
raytrace || 1.000| 1.193| 1.275| 1.321| 1.230| 1.165| 1.027 | 0.949
topopt || 1.000| 0.259| 0.174| 0.115| 0.095| 0.085| 0.074 | 0.056
volrend || 1.000| 0.855| 0.778| 0.722| 0.691| 0.659| 0.612 | 0.520
water 1.000| 1.915| 3.123| 4.172| 4.603| 4.728| 4.599 | 4.568
Average || 1.000| 1.211| 1.663| 2.145| 2.482| 2.536| 2.439 | 2.128

Workload

Table 8: Average set of words written during invalidation interval that overlap words written in a succeeding invalida-
tion interval with different writing processors.

28

6¢

Distinct Reads
[Block Size (bytes)
Workload|———s—T 5 T3r T 64 | B [756 [512 Span Reads
bames || 1.000| 1.769] 2.803 4.372]5.770] 7.553] 8.760]10.216 Workload] | S B";Czk 5'254(bytel'52)8 I
Cholesky|| 1.000| 1.967| 3.575(6.120] 9.260| 12,355 14.565 14.487 | 4 [8 [16]32] 64] [[
fmm 1.000[1.919|3.181/4.877/6.337| 8.344| 9.750|11.139 barnes [[1.000] 1.769]2.864| 4.740]6.529[10.615 14.319 22.955|
locus || 1.000]1.199[2.298]3.761|5.827| 8.787 | 11.166| 13.523 cholesky[[1.000]1.967]3.621] 6.263]9.643| 11.830[14.957| 16.746|
mp3d || 1.000| 1.875|3.077| 4.556|5.824] 6.910| 7.619| 7.922 fmm [[1.000[1.919(3.201|5.132] 7.048| 9.95114.40222.827,
ocean || 1.000{1.779]1.894]2.135|2.357| 2.548| 2.674 | 2.855 locus 1.000(1.199| 3.002(5.459| 9.405(15.606| 21.650| 28.229
pthor |{1.000] 1.176| 1.581[1.925|2.264] 2.738| 2.901 | 2.915 mp3d [[1.000]1.875|3.146|4.725/6.390] 7.135| 8.000 | 8.586
pverify || 1.000|1.007| 1.028| 1.164| 1.573| 2.047| 2.773| 3.468 ocean || 1.000| 1.779| 1.895| 2.344] 2.928| 4.063| 7.390 | 12.610
raytrace || 1.000| 1.229| 1.401] 1.644 1.915| 2.248| 2.645| 3.076 pthor |[1.000|1.176[1.784]2.339|3.311] 4.173] 5.173] 7.405
fopopt || 1.000| 1.096| 1.355| 1.361| 1.593| 1.081| 2.485| 2.780 pverify || 1.000| 1.007| 1.029] 1.289] 2.462 4.869 | 13.642 33.013
volrend || 1.000] 1.563| 2.207| 2.835| 3.306| 3.629 | 3.824| 3.969 raytrace [[1.000[1.229[1.403| 1.831]2.719| 3.807] 5.435] 7.499
water || 1.000| 1.956|3.387|5.015|6.156| 7.645 | 11.219 13.732] topopt [[1.000]1.096|1.418]1.595[2.192] 2.861 | 6.934|10.254
Average || 1.000| 1.545| 2.316| 3.314] 4.349] 5.565| 6.699| 7.507 volrend [[1.000] 1.563]2.268]3.004|3.722| 4.178] 4.729] 5.059
water || 1.000] 1.956|3.391] 5.026| 6.245| 7.782 | 11.947 17.504
Average || 1.000| 1.545| 2.418| 3.646| 5.216| 7.239 | 10.715 16.057|

Table 9: Number of distinct words read in a block per processor

before the block is invalidated. Table 10: Span of words read in a block between invalidations.
Distinct Writes Span Writes
[Block Size (bytes) [Block Size (bytes)

Workload | ———g——15 T30 T 64 [128 [756 [512 Workload | ———g——15 T30 T 64 [128 [756 [512

barnes || 1.000] 1.610] 2.201] 2.760] 3.538] 4.193] 3.539] 2.961 barnes || 1.000] 1.610] 2.217] 2.855] 4.086] 6.192] 5.411] 4.858

cholesky|| 1.000| 1.982]3.661| 6.421| 10.074 13.865 16.710 16.988 cholesky|| 1.000| 1.982] 3.662| 6.480| 10.330] 14.866| 19.468 22.363

fmm || 1.000] 1.908| 3.401] 5.650| 8.092 | 10.111] 10.508 10.913 fmm || 1.000] 1.908| 3.417|5.713| 8.302 | 10.485 12.043 16.057]

locus || 1.000|1.318|2.484]4.214] 6.648 | 9.85613.567 16.821 focus || 1.000| 1.318]3.003|5.488] 9.552 | 16.229 25.900 36.005

mp3d || 1.000] 1.780| 2.940] 4.369| 5.496| 6.158| 6.584| 6.568 mp3d || 1.000]1.780| 3.078| 4.662| 6.178| 7.445| 6.686| 9.565

ocean || 1.000|1.1684|1.187|1.201| 1.277| 1.575| 2.151| 3.654 ocean ||1.000|1.1684|1.167| 1.201| 1.277| 1.596 | 2.226| 4.165

pthor || 1.000| 1.096| 1.335| 1.462] 1.526| 1.571| 1.599| 1.606 pthor || 1.000| 1.096| 1.366| 1.650] 1.883| 2.194| 3.086| 4.694

pverify |[1.000/1.002|1.033)1.082) 1.175| 1.422| 1.487| 1.443 pverify |[1.000|1.002|1.033) 1.084] 1.178| 2.307| 3.720] 6.750

raytrace || 1.000| 1.338| 1.591| 1.797| 1.926| 2.000| 2.036| 2.043 raytrace || 1.000| 1.338| 1.598| 1.819] 1.956| 2.107 | 2.208| 2.361

fopopt || 1.000] 1020/ 1.332| 1.166| 1.092| 1.061| 1.118| L.171 fopopt || 1.000] 1.020] 1.334] 1.220] 1.098| 1.099| 2.746| 3.805

volrend |[1.000] 1.287| 1.451] 1.585| 1.740| 1.952| 2.077| 2.186 volrend |[1.000] 1.287| 1.452[1.588| 1.757| 1.982| 2.329| 2.614

water || 1.000]1.947|3.250,4.495] 5.145| 5.462| 5.670| 6.089 water || 1.000]1.947|3.255)4.508] 5.257 | 5.924| 7.327|11.890

Average || 1.000] 1.456] 2.156| 3.017| 3.977| 4.936] 5.587| 6.039 Average || 1.000| 1.456| 2.219] 3.189] 4.405| 6.035| 7.929| 10.427
Table 11: Number of distinct words written to a block before a Table 12: Span of words written to a block before a read by

read by another processor. another processor.

Sample Multiprocessor Reference Patterns
130132140145 70 7542 4500059595 112115 1515606510]

barnes 1035353151 LOR 15440 4T2g2g738§8f8f8f8f8f8f
cholesky 41 108 10D ts ot 0l L
1415 1415] 1415{ 14151 14151 14151 141 5{ 14} 245! 141 14}
ocus | 3636149 Lp 115 13757 10;4}87 155 14797 1§ 11713357105 4387 157
1479717 3011513750 1054787 1553930 1453797 1511513555105 4585
mp3d T T T T T T TE10,10510510510410710¢ 10,104 105108

10“10210% 1010710510510410210%10410413413713513513%
ocean| LZASIZ4I8 0505 11713,14;15,5,6, 7,9, 10, 11;13;
1471555565 7797 105 1 244X 8L 1 28] W 2w 3w 4w g] wow 3w
THTY 125120 T 12547 4V 4T 9T 137137137 363165107

verif
P y 64300514, 7,74 74157152 9:8515,.828L 1059:9¢ 9%
145145'5555'3535' 11511511737, 1451455555 14712512512
raytrace
5y 757574252527 1051054545105105 107145145 147, 4545
topopt 11¥1379% 1379599 115 11¥13,134 859189 11511913713
059511511¢13%13%959%878%11711%¥13;13Y11511¢13]13Y
water | AL A1 201201257121 12)1 241251281 27125127

12012612012 120125120 120124128 125120 1210127125,12212%

Table 13: Sample shared memory block reference sequences for some workloads. The large number corresponds to
the processor ID, subscripts are the word accessed (in hexadecimal), the superscript is the operation towhe word (
write, r: read:l: successful locky: unlock,f: failed lock attempt).

30

